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Abstract: This paper presents an improved current source equivalent model method to determine the
short-circuit current of a distribution system with multiple fixed-speed and variable-speed induction
generators (IGs). The correlation coefficients of flux components between stator and rotor under the
unsymmetrical fault are analyzed using the positive and negative sequence steady-state equivalent
circuits of an IG. The terminal voltage and current responses of fixed-speed and variable-speed
IGs with and without the rotor slip changes under different penetration levels are compared to
investigate the coupling relation between the short-circuit currents of IGs and the nodal voltages in
the distribution network. Then the transient equivalent potential of an IG at the grid fault instant is
derived. Sequence components of the short-circuit current in the network can be determined using the
proposed technique. The correctness of the proposed method is verified using dynamic simulation.

Keywords: short circuit calculation; induction generator; symmetrical components; rotor slip;
steady-state equivalent circuit; distribution network

1. Introduction

The increased penetration of renewable power has resulted in more distributed generators
(DGs) embedded in distribution networks. The integration of large-scale DGs into the distribution
network changes the distribution of power flow and short-circuit currents, and leads the short-circuit
current contribution of the DGs to affect the power system protection and reclosing [1]. DGs include
synchronous generators, induction generators (IGs), and other power sources with electronic interfaces;
of these types, the squirrel-cage IG has received increased attention in distribution networks because
of its low cost, small size, and low maintenance requirements [2]. When short-circuit faults occur,
IGs are unable to maintain their terminal voltage without an external excitation current, because
they have different short-circuit current characteristics compared with synchronous generators [3].
IG technology is based on the relatively mature induction motor (IM), and the difference is that the
IG tends to excessively accelerate instead of the IM stalling that occurs during faults. Short-circuit
calculation of the IM usually uses the voltage source equivalent method [4]. The similar method used
for IG cannot calculate the short-circuit currents accurately during the fault process, because it does
not consider the electromagnetic transient characteristics of IGs [5,6]. Therefore, understanding the
dynamic characteristics and short-circuit current calculation of IGs under different fault conditions is
essential. This work aims to study the short-circuit calculation of a multi-IG distribution network.

Surge current in the stator windings of IGs is driven mainly by the stator transient DC flux
linkage. At the same time, the extra transient AC component of the stator current is produced by
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the rotor flux linkage when a short-circuit fault occurs in the distribution network. The short-circuit
behavior of IGs has been extensively investigated using dynamic simulation software [7–9], physical
experiments [10] and real-time simulation tools [11]. With the assumption of a fixed rotor speed
during fault, an approximate formula based on the generator state equations at dq0 coordination
has been derived for three-phase short-circuit current calculation in [12]. Owing to the short-current
contribution of the healthy phases during an unsymmetrical faults, the short-circuit characteristics
of IGs under symmetrical and unsymmetrical faults are different from one other. For unsymmetrical
voltage sags, the analytic expressions of transient stator voltage and current and transient rotor voltage
and current have been derived in [13–15]. The above studies are limited to the mathematical and
time-domain transient studies. Although the short-circuit current of a distribution network with
IGs can be determined by using simulation software, but a very long computation time is required.
Additionally, the physical transient process of IGs during a fault cannot be explained theoretically.
The implicit simulation is usually adopted for the numerical stability and errors and it is difficult to
obtain the analytical relationship between the short-circuit current of IGs and their parameters. A more
accurate sequence network circuit representation of IG is derived for the short-circuit calculations
on the basis of the sequence network in [16]. The transient reactance and short-circuit current of a
single fixed-speed IG is studied, however the work cannot calculate the trend of short-circuit current
changing with time and the short-circuit current of multiple fixed-speed and variable-speed IGs. Those
studies are not suitable for fault analysis in a distribution network with multiple IGs because of without
considering the coupling between the short-circuit current of IGs and the distribution network.

The fundamental frequency components of the current and voltage in a power system for the first
few cycles after a fault are the primary focus of protection engineers. The sequence component method
is usually adopted to calculate the short-circuit current because of the smaller computational burden
and problem size compared with those of other methods [17]. The present work analyzes the transient
behavior of fixed-speed and variable-speed IGs when an unsymmetrical fault occurs in the distribution
network and the sequence components current source models of fixed-speed and variable-speed IGs
considering the rotor slip change during a fault is established. The terminal voltage and short-circuit
current responses of IGs under different integrated capacity, with and without considering slip change
are investigated. Then an analytical method to calculate the shortcircuit currents of a multi-IG system
based on the current source model of IG and the parameters of the distribution network is then
proposed. The technique is a significant improvement of the one in [16] and can significantly reduce
computational burden. The method is verified using the simulation software PSCAD/EMTDC where
IGs are presented by the fifth-order differential model. The errors between analytical and simulation
results are analyzed.

2. Sequence Component Current Model of Induction Generators (IGs)

2.1. Stator and Rotor Flux of IGs during Grid Faults

All parameters in this paper are per unit. The stator short-circuit current of the IG is determined
by the stator and rotor fluxes when an unsymmetrical fault occurs. The stator and rotor fluxes of IG
are not affected by the zero-sequence component of the voltage [13], whereas the forced sinusoidal
component is driven only by the positive and negative sequence components of the IG terminal voltage.
With the motor convention, the stator voltage equation of the IG under an unsymmetrical fault using a
space vector can be written as:

usptq “ u1sptq ` u2sptq “
.

U1sejωst `
.

U2se´jωst “ Rsri1sptq ` i2sptqs `
d
dt
rψ1sptq `ψ2sptqs (1)

where u1s(t) and u2s(t) are the positive and negative voltage space vectors, i1s(t) and i2s(t) are the
positive and negative current space vectors, Rs is the stator resistance, ψ1s(t) and ψ2s(t) are the positive
and negative fluxes after faults,

.
U1s and

.
U2s are the sequence component phasors of the stator voltage,
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andωs is the synchronous electric angular velocity. When the stator resistance is disregarded, the forced
components of the stator flux can be expressed as ψ1s(t) =

.
U1sejωst{jωs and ψ2s(t) = ´

.
U2se´jωst{jωs

by solving Equation (1). According to the flux linkage conservation, the post-fault stator flux also
contains a DC component. Assuming the normal operation voltage us(t) =

.
Usejωst, then the stator

post-fault flux linkage ψs(t) of IG can be given as:

ψsptq “

.
U1s
jωs

ejωst ´

.
U2s

jωs
e´jωst ` r

.
Us

jωs
´ p

.
U1s
jωs

´

.
U2s

jωs
qse´t{Ts (2)

where Ts = (Ls ´ Lm
2/Lr)/Rs is the stator time constant, Lm is the excitation inductance, Ls = Lls + Lm,

Lr = Llr + Lm, and Lls and Llr are the leakage inductances of stator and rotor. The post-fault forced
flux components in the stator are the steady-state response, and the positive and negative forced
components in the rotor can be derived through the steady-state equivalent circuits in Figure 1. The
relationship between the rotor current

.
I1r,

.
I2r and the stator current

.
I1s,

.
I2s can be expressed as follows:

.
I1r “

´jωsLm
.
I1s

Rr{s` jωsLr
,

.
I2r “

jωsLm
.
I2s

Rr{p2´ sq ´ jωsLr
(3)
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Figure 1. Positive and negative sequence steady-state equivalent circuits of an IG: (a) Positive sequence
circuit, (b) Negative sequence circuit.

where Rr is the rotor resistance, the rotor slip s = (ωs ´ωr)/ωs, andωr is the rotor angular velocity.
Combining ψs(t) = Lsis(t) + Lmir(t) and ψr(t) = Lmis(t) + Lrir(t), the post-fault forced components in the
rotor can be calculated as follows:

ψ1rptq “
LmRr{s¨ψ1sptq

LsRr{s`jωspLs Lr´L2
mq
“ η1rspsqψ1sptq

ψ2rptq “
LmRr{p2´sq¨ψ2sptq

LsRr{p2´sq´jωspLs Lr´L2
mq
“ η2rspsqψ2sptq

(4)

With a 3MW IG (the parameters are given in [18]) as an example, Figure 2 illustrates the amplitude
and phase characteristics of the positive and negative sequence correlation coefficients η1rs and η2rs in
Equation (4) between the stator and rotor flux. The amplitude of η1rs is near 1.0 when the rotor slip
is small in the normal operation [2]. When the slip drops to ´0.1 during the fault, the amplitude of
η1rs will decrease by 90%, as shown in Figure 2. This decrease indicates that a small slip change has a
significant influence on the positive sequence forced rotor flux in the rotor. Therefore the slip change
should be taken into consideration in the rotor flux calculation.

The negative sequence flux component in rotor windings induced by the stator negative sequence
forced flux can be neglected, because η2rs is near zero under the different rotor slips for a fixed-speed IG
in Figure 2a. However, there are still negative sequence short-circuit currents of IGs caused by the grid
negative sequence voltages, especially, the negative sequence current of a variable-speed IG is mainly
influenced by the control structures and objectives in its machine side and line side converters [19].
The rotor resistance of a variable-speed IG will increase significantly after its crowbar protection
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activation during grid faults and the magnitude of η2rs will stay in the range of 0.2–0.3 pu under
different rotor slips, as shown in Figure 2b. In this figure, the rotor resistance rises to 25 times that of
the fixed-speed IG, and so a non-ignorable flux component in the rotor windings of a variable-speed
IG can be generated by the negative sequence component of the stator flux. Besides the coupling
differences of flux forced components between fixed-speed and variable-speed IGs, the decay time
constant of the rotor flux DC component, Tr = (Lr ´ Lm

2/Ls)/Rr, will also be changed by increase in
rotor resistance of variable-speed IGs during a grid fault.
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Figure 2. Positive and negative sequencecorrelation coefficients between stator and rotor flux: (a) a
fixed-speed IG, (b) a variable-speed IG.

The stator flux ψs(t) has both the positive and negative sequence forced components ψ1s(t) and
ψ2s(t) and the DC component ψdcs(t) in Equation (2). The reverse rotation flux with the rotor speed
will be generated in the rotor windings because of ψdcs(t) cutting the rotor windings. The stator flux
DC component is difficult to analyze in the stator reference frame, but it can be discussed in the rotor
side by the frequency transformation [2]. The equivalent circuit in the rotor reference frame for the
stator flux DC component is shown in Figure 3, where

.
Idcs and

.
Idcr are the DC components of the stator

and rotor currents, and
.

Udcs is a virtual voltage caused by the stator flux DC component. With the
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relationship of the stator current
.
Idcs and the rotor current

.
Idcr in Figure 3, the rotor flux component

ψdcr(t) caused by the stator flux DC component ψdcs(t) can be obtained as:

ψdcrptq “
LmRr ¨ψdcsptq

LsRr ´ jωsp1´ sqpLsLr ´ L2
mq
“ ηdcrspsqψdcsptq (5)
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The amplitude and phase characteristics of the DC component correlation coefficient ηdcrs in
Equation (5) between the stator and rotor fluxes are shown in Figure 4. The reverse rotation flux
component ψdcr(t) in the rotor windings of a fixed-speed IG is approximately zero because of its small
rotor resistance. Meanwhile, the amplitude changing range of ηdcrs for a variable-speed IG is from
0.4 pu to 0.6 pu as the rotor slips increase. The rotor flux of variable-speed IG will also appear as a
significant reverse rotation component in the rotor flux.
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2.2. Sequence Component Current Model of Fixed-Speed IGs

Assuming the initial slip of a fixed-speed IG is s0 before the short-circuit fault occurrs, the rotor
flux linkage ψr(t) of the fixed-speed IG in the stator reference frame is derived as in Equation (6)
according to the flux linkage conservation:

ψrptq “ η1rspsq

.
U1s
jωs

ejωst ` η1rsps0q

.
Us ´

.
U1s

jωs
e´t{Tr ejωrt (6)
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where Tr = (Lr ´ Lm
2/Ls)/Rr is the rotor time constant. With Equations (2) and (6) substituted into

is(t) = (Lrψs ´ Lmψr)/(LsLr ´ Lm
2), the general expression for the post-fault stator short-circuit current

of a fixed-speed IG can be given as:

isptq “ 1
Ls Lr´L2

m

"

rLr ´ Lmη1rspsqs
.

U1s
jωs

ejωst ´ Lmη1rsps0q¨
.

Us´
.

U1s
jωs

e´t{Tr ejωrt
*

`
Lr

Ls Lr´L2
m

.
U2s
´jωs

e´jωst ` Lr
Ls Lr´L2

m
r

.
Us
jωs

´ p

.
U1s
jωs

´

.
U2s
jωs
qse´t{Ts

(7)

The short-circuit current of the fixed-speed IG is composed of three components. The first
component is the steady periodic component, which includes both positive and negative components.
The second component decays exponentially with the time constant Tr and rotates withωr in the stator
reference frame because of the natural rotor flux. The third component is the DC component decaying
exponentially with the time constant Ts because of the natural stator flux. Given that the neutral
point of a distribution network is commonly not grounded or grounded by arc-suppression coil, the
zero sequence is not considered here. When a short-circuit fault occurs in distribution networks with
multiple IGs, the short-circuit currents of IGs inject into the distribution network in the form of a
variable current source based on symmetrical components, and the DC component is not within the
symmetrical network.

The change law of the short-circuit current with time and the relation between the current and
terminal voltage sequence components of IG can be determined by Equation (7). With a terminal
three-phase short circuit, the rotor speed after 10 cycles is less than 1.10 when a rated torque is
given [20]. Thus the AC component of the short-circuit current rotating with ωr can be considered
a synchronous frequency component. Assuming the slips of m sets of fixed-speed IGs are si (i = 1,2,
. . . ,m), the positive and negative sequence phasors of the short-circuit current for the ith fixed-speed
IG can be derived as in Equations (8) and (9):

.
I1si “

1
LsiLri ´ L2

mi

#

rLri ´ Lmiη1rsipsiqs

.
U1si
jωs

´Lmiη1rsipsi0q

.
Usi ´

.
U1si

jωs
e´t{Tri

+

(8)

.
I2si “

Lri

LsiLri ´ L2
mi

.
U2si
´jωs

(9)

2.3. Sequence Component Current Model of Variable-Speed IGs

Besides considering the effect of positive sequence forced component ψ1s(t) in the stator flux,
the post-fault rotor flux of the variable-speed IG has to include the flux components produced by
the negative sequence forced component ψ2s(t) and the DC component ψdcs(t). According to the flux
linkage conservation before and after a short-circuit fault occurs, the post-fault rotor flux ψr(t) of the
variable-speed IG in the stator reference frame can be given as:

#

ψrptq “ η1rspsq
.

U1s
jωs

ejωst ´ η2rspsq
.

U2s
jωs

e´jωst ` ηdcrspsqr
.

Us
jωs

´ p

.
U1s
jωs

´

.
U2s
jωs
qse´t{Ts `ψr0e´t{Tr ejωr t

ψr0 “ η1rsps0q
.

Us´
.

U1s
jωs

` η2rsps0q
.

U2s
jωs

´ ηdcrsps0qr
.

Us
jωs

´ p

.
U1s
jωs

´

.
U2s
jωs
qs

(10)

The stator current can be obtained as is(t) = (Lrψs ´ Lmψr)/(LsLr ´ Lm
2) through the relationships

among the flux and current in the stator and rotor windings. Combined with the formulas of ψs(t) and
ψr(t), the short-circuit current of a variable-speed IG can be written as:

isptq “ 1
Ls Lr´L2

m

"

rLr ´ Lmη1rspsqs
.

U1s
jωs

ejωst ´ Lmψr0e´t{Tr ejωrt
*

`
Lr´Lmη2rspsq

Ls Lr´L2
m

.
U2s
´jωs

e´jωst `
Lr´Lmηdcrspsq

Ls Lr´L2
m

r

.
Us
jωs

´ p

.
U1s
jωs

´

.
U2s
jωs
qse´t{Ts

(11)
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The positive sequence steady component of the short-circuit current of variable-speed IG is the
same as that of fixed-speed IG, but the positive sequence steady component, transient decay AC
component rotoring with ωr, and DC component are different from those in Equation (7) because
of the nonignorable flux correlation coefficients η2rs and ηdcrs In consideration of the AC component
rotoring withωr as a synchronous frequency component, the positive and negative sequence phasors
of the short-circuit current for the ith variable-speed IG can be derived as follows:

.
I1si “

1
Lsi Lri´L2

mi

"

rLri ´ Lmiη1rsipsiqs

.
U1si
jωs

´ Lmi

„

η1rsipsi0q

.
Usi´

.
U1si

jωs
`η2rsipsi0q

.
U2si
jωs

´ηdcrsipsi0q

ˆ .
Usi
jωs

´

.
U1si
jωs

`

.
U2si
jωs

˙

e´t{Tri

*

(12)

.
I2si “

Lri ´ Lmiη2rsipsiq

LsiLri ´ L2
mi

.
U2si
´jωs

(13)

According to the interaction among the stator short-circuit current, network equation and rotor
movement equation, the terminal voltage and slip can be updated iteratively in each data window
during the fault. The calculation process is similar with that of the simulation software. The IGs are
represented by the analytical expressions including Equations (8), (9), (12) and (13) in the proposed
method, while the simulation software adopts the fifth-order differential-algebraic equations as
the model of IGs. Then the time series for the positive and negative sequence components of the
short-circuit current can be determined based on the dynamic phasor and analytical expression during
the fault process from sub-transient to steady-state.

3. Coupling Relationship between Short-Circuit Current of IGs and the Distribution Network

When the integrated capacity of IGs is small, the terminal voltages of IGs will drop to a steady-state
value as soon as the fault occurs in a distribution network [13–15]. However, the terminal voltages
will be significantly changed by their own short-circuit current injections in a distribution network
with high permeability of IGs. In this case, the coupling between short-circuit currents of IGs and
distribution network have to be considered. A distribution network with a short-circuit capacity
of 240 MW is analyzed, and the short-circuit ratio (SCR) [21] between IG and network is 80. The
dynamic simulation and calculation results of a fixed-speed IG with a three-phase short-circuit fault at
the end of the feeder downstream are shown in Figure 5, where ε is the relative error of the calculation
results. By setting the impedance of the downstream feeder equal to the short-circuit impedance of
the network, the voltage dip magnitude at the generator terminals during a fault can be fixed to a
proportion p = 0.5 (the voltage changes from

.
Us to p

.
Us, where p is the proportion of the post-fault

voltage versus the pre-fault voltage), the rotor speed increases in a linear manner with a slope of
(p2 ´ 1)Tm/(2H), where Tm = ´1.0 is the mechanical torque and H = 5.04 s is the inertia constant.
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The short-circuit current can be calculated by substituting the pre-fault and post-fault terminal
voltages and slip variation of IGs into Equation (8). The calculation results under the variable slip and
fixed slip (including both the initial slip s0 = ´0.0051 pu and zero slip) are shown in Figure 5. The
calculation error of fixed slip increases with time. The calculation accuracy with initial slip is above
that of zero slip, although its relative error can be over 10%. The comparison results show that the
calculation results with variable slip is much closer to the simulation results.

When a phase B to phase C fault occurs at the end of the feeder downstream, the sequence
components of the terminal voltage are

.
U1s “ 3p{2

.
Us and

.
U2s “ p{2

.
Us, and the rotor speed increases

with the slope of (5p2/2 ´ 1)Tm/(2H), where Tm = ´0.5. Figure 6 shows the sequence components of
the short-circuit of fixed-speed and variable-speed IGs in the case of two-phase fault. The positive and
negative sequence components of short-circuit current of IG are extracted by a sequence filter based on
the second-order generalized integrators [22]. The output of filter is the instantaneous waveform of
positive and negative sequence current, and then the RMS value of instantaneous waveform can be
computed through a RMS block.The negative sequence component I2s of fixed-speed IG reaches its
steady-state value directly and doesn’t change with the slip in Figure 6a, while I2s of variable-speed IG
decreases with the increase of fault duration because of the rising rotor speed in Figure 6b.
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Figure 6. Two-phase short-circuit current with and without rotor slip change: (a) a fixed-speed IG,
(b) a variable-speed IG.

The steady-state short-circuit currents of variable-speed IGs in Figure 6b are less than that of
fixed-speed IGs because of the offsetting effect from the short-circuit currents caused by the positive
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and negative sequence forced fluxes in rotor windings, which are markedly influenced by the rotor
resistance and the rotor speed. For the steady-state short-circuit currents, the signs of η1rs and
η2rs are minus in Equations (12) and (13) where the change of η1rs with rotor slip becomes slow
and the magnitude of η2rs stays in the range of 0.2–0.3 pu due to the rising of rotor resistance of
variable-speed IGs. The calculation results of fixed initialand zero slips can not match the real trend
of I2s of variable-speed IG during a grid fault. Although the calculation error with a fixed initial slip
(s0 = ´0.0023 pu) is slightly reduced because of the smaller rotor slip differences compared to that
of zero slip, the errors are still larger than that with a variable slip in both cases of fixed-speed and
variable-speed IGs.

Figure 7 shows the terminal voltage and short-circuit current response of fixed-speed IGs with a
three-phase fault at the end of feeder downstream when an IG, four IGs, and eight IGs are integrated
into a distribution network with a short-circuit capacity of 240 MW separately. Furthermore, the peak
values I1sp of the short-circuit current of fixed-speedand variable-speed IGs under different SCRs are
shown in the figure. A large difference is observed between the calculation results of fixed-speed IGs
using Equation (8) without considering the transient variation of terminal voltage and the simulation
results with a small SCR. According to the variation of I1sp with SCR, it is unnecessary to consider
the effect of the short-circuit current of IGs on their terminal voltage when SCR ě 20 for fixed-speed
IGs and SCR ě 40 for variable-speed IGs. However, the current of IGs is determined by both the
transient characteristics of the IG generator and the power system network equations when SCR < 20
for fixed-speed IGs and SCR < 40 for variable-speed IGs.
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When a short-circuit fault occurs at a distribution network, the surge current in the stator winding
is driven mainly by the stator transient DC flux linkage. At the same time, the transient AC component
of the stator current is produced by the rotor flux linkage. The injection of short-circuit current changes
the distribution of nodal voltages in the distribution network, and the terminal voltage of IGs changes
with the decaying current, and then affects the short-circuit current in reverse. Therefore, besides the
slip change, the interaction of the injection current of IGs and the network equations for short-circuit
calculation of a multi-IG system must be thoroughly considered.

The coupling relation between the short-circuit current of IG and the distribution network is
shown in Figure 8, where only the current source model of IG (at bus i) is given. Bus 1 is the main
source node of distribution network,

.
Es, Z1s and Z2s are the voltages (i.e., the positive and negative

sequence of the main source),
.

U1 f ,
.

U2 f ,
.
I1 f , and

.
I2 f are the sequence components of voltage and

current at the fault bus f. When a fault occurs at bus f, the initial short-circuit current can be determined
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by the initial conditions, and then the voltage can be updated in the next step by substituting the
current into network equations. Meanwhile, the electromagnetic power is calculated to update the slip.Energies 2016, 9, 277 10 of 20 
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Figure 8. Schematic diagram of coupling relation between short-circuit current of IGs and
distribution network.

The terminal voltage and slip can be considered constant in the step because the iterative step is
very small. At the initial time of fault, the initial value of short-circuit current of IGs can be obtained
according to the unchanged transient potentialof IGs at the fault moment, and their terminal voltages
during the first iterative step can also be determined by combining the network equations and the
short-circuit current injection of IGs. Then the voltages of the last iterative step can be substituted into
Equations (8) and (9) for a fixed-speed IG, as well as Equations (12) and (13) for a variable-speed IG,
to achieve the short-circuit currents of IGs at the next iterative step. The positive sequence currents
of fixed-speed and variable-speed IGs exponentially decayin terms of the rotor time constant in
Equations (8) and (12), whereas the negative sequence current of variable-speed IG changes only with
the rotor slip in Equation (13). The terminal voltages and rotor slips can be calculated at this iterative
step and used to determine the short-circuit currents of IGs by the equations at the next iterative step.
The method to determine the sequence components of short-circuit current using the current source
model of IGs will be given in the next section.

4. Short-Circuit Calculation of the Multi-IG Network

4.1. Initial Value Calculation for Short-Circuit CurrentSequence Components of IGs

Substituting ψs(t)/dt and dψr(t)/dt, which are determined by the stator and rotor voltage
equations, into the differential of is = [Lrψs(t) ´ Lmψr(t)]/(LsLr ´ Lm

2) as:

LsLr ´ L2
m

Lr

disptq
dt

“
dψsptq

dt
´

Lm

Lr

dψrptq
dt

“ usptq ´ Rsisptq ´
Lm

Lr
rjωrψrptq ´ Rrirptqs (14)

Equation (14) can be modified using ir(t) = [Lsψr(t) ´ Lmψs(t)]/(LsLr ´ Lm
2). The expression of

us(t) can be then written as:

usptq “ Rsisptq `
LsLr ´ L2

m
Lr

disptq
dt

`
Lm

Lr
rpjωr ´

RrLs

LsLr ´ L2
m
qψrptq `

RrLm

LsLr ´ L2
m

ψsptqs (15)

The fluxes ψs(t) and ψr(t) remain unchanged at the moment the fault occurs. Thus, the third part
of Equation (15) can be defined as the transient equivalent potential of IG. Assume there are m sets
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of IGs in the distribution network, and the integrated buses of IGs are from bus 2 to bus m + 1. The
transient equivalent potential of the ith IG can be described as follows:

.
E
1

si “
.

Usi ´ Z11si
.
Isi “

.
Usi ´ pRsi ` jωs

LsiLri ´ L2
mi

Lri
q

.
Isi (16)

where Z11si is the positive transient impedance of the ith IG. Given that the three phase quantities
form a balanced system during normal operation, the pre-fault voltage and current can be calculated
using the Newton-Raphson method, then the transient equivalent potential can be determined. With
the iteration step for short-circuit calculation defined as ∆t = T/2 (T = 0.02s), the initial value of the
short-circuit current can be determined by the unchanged transient potential at the first step. Adding
the positive and negative impedances Z11si “ Z12si of IGs into the original positive and negative matrix
Z1 and Z2 of the network to form the node-impedance matrixes Z1

1 and Z2
1 of n ˆ n order. The normal

operation voltage of each node:

.
U
p0q
“ Z11

.
I
p0q
“ Z11r

.
I1,

.
I
p0q
2 , ¨ ¨ ¨ ,

.
I
p0q
m`1, 0, ¨ ¨ ¨ , 0s

T
(17)

where
.
I1 “

.
Es{Z1s and

.
I
p0q
i “

.
E
1

si{Z11si are the equivalent current of the main source and the Norton
circuit of the ith IG respectively. The normal voltages of each node are equal to the pre-fault voltages
of each node in the network because the transient equivalent potential of IGs remains unchanged at
the first step. Taking a phase B to phase C fault at bus f for an example, the sequence components of
the short-circuit current at the fault bus at the first iterative step can be calculated as:

.
I
p1q
1 f “ ´

.
I
p1q
2 f “

.
U
p1q
f

Z11 f f ` Z12 f f ` z f
“

.
U
p0q
f

Z11 f f ` Z12 f f ` z f
(18)

The voltage phasors of each node in the positive and negative sequence fault component networks
can be derived as Equation (19) using the superposition principle in fault analysis:

∆
.

U
p1q
1 “ rZ111 f , ¨ ¨ ¨ , Z11i f ¨ ¨ ¨ , Z11n f s

T
p´

.
I
p1q
1 f q

∆
.

U
p1q
2 “ rZ121 f , ¨ ¨ ¨ , Z12i f ¨ ¨ ¨ , Z12n f s

T
p´

.
I
p1q
2 f q

(19)

The post-fault voltage phasors are
.

U
1p1q
1 “

.
U
p1q
` ∆

.
U
p1q
1 and

.
U
1p1q
2 “ ∆

.
U
p1q
2 , and the initial values

of the positive and negative sequence short-circuit current at the first step are given as:

.
I
p1q
1si p0q “

.
U
1p1q
1i ´

.
E
1

si
Z11si

,
.
I
p1q
2si p0q “

.
U
1p1q
2i

Z12si
(20)

Given that the sequence components of the terminal voltage and the slip are unchanged at each
step, the positive sequence component of the short-circuit current decays exponentially with the time
constant Tr, while the negative component is unchanged according to Equations (8), (9), (12), and (13),
The RMS of the negative sequence current in the first ∆t is rIp1q2si srms “ Ip1q2si p∆tq “ Ip1q2si p0q. The RMS of
the positive sequence short-circuit current at the end of the first step can be derived by substituting
.

U
1p1q
1i and si

(1) = si0 into Equations (8) and (12). The positive sequence component of the short-circuit
current at the first step is given as:

Ip1q1si ptq “
rIp1q1si p∆tq´Ip1q1si p0qe

´∆t{Tri sIp1q1si p∆tq

Ip1q1si p∆tqp1´e´∆t{Tri q
`
rIp1q1si p0q´Ip1q1si p∆tqse´t{Tri

1´e´∆t{Tri
“ Ap1qi Ip1q1si p∆tq ` Bp1qi rIp1q1si p0q ´ Ip1q1si p∆tqse´t{Tri (21)
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The first point of RMS values cannot reflect the maximum value of instantaneous waveform in
simulation because the RMS computation has a time lag, while the calculation results of RMS currents
are widely used to identify the rating of electrical equipment, the selection of fuses and the setting
of protective devices. The RMS of the positive sequence short-circuit current at the first step can be
derived as follows: (the process is presentedin detail in Appendix A)

rIp1q1si srms “

g

f

f

f

e

rAp1qi Ip1q1si p∆tqs
2
`

Tri
T Bp1qi rIp1q1si p0q ´ Ip1q1si p∆tqs

!

4Ap1qi Ip1q1si p∆tq¨

r1´ e´T{p2Triqs ` Bp1qi rIp1q1si p0q ´ Ip1q1si p∆tqsp1´ e´T{Triq

) (22)

4.2. Short-Circuit CurrentSequence Components of IGs during Grid Faults

When a fault occurs in the network with multiple IGs, the short-circuit currents of IGs inject into
the sequence network in the form of a dynamic current source based on its terminal voltage. The
instantaneous electromagnetic power of IGs is made up of DC and double frequency components if the
terminal voltage and current of the IGs contain both positive and negative components. The average
of the double-frequency component in a half cycle is zero, and so the average of the electromagnetic
power at step k ´ 1 can be derived as Equation (23) by the terminal voltage and short-circuit current of
the ith IG:

Ppk´1q
ei “ U1pk´1q

1i rIpk´1q
1si srmscosϕpk´1q

1i `U1pk´1q
2i rIpk´1q

2si srmscosϕpk´1q
2i (23)

where ϕ1i
(k´1) is the positive power factor angle

.
U
1pk´1q
1i leading r

.
I
pk´1q
1si p∆tq `

.
I
pk´1q
1si p0qs/2, and

ϕ 2i
(k´1) is the negative sequence power factor angle

.
U
1pk´1q
2i leading

.
I
pk´1q
2si p0q. Solving the rotor

motion equation of IGs with the rectangular integral method can derive the slip of the ith IG at
step k as:

spkqi “ spk´1q
i ´

∆t
2Hi

r
Ppk´1q

ei

1´ spk´1q
i

´ Tmis (24)

According to the currents
.
I
pk´1q
1si p∆ tq and

.
I
pk´1q
2si p∆tq of IGi at the end of step k ´ 1, the node

voltage of the normal network at step k can be updated iteratively as:

.
U
pkq
1 “ Z1

.
I
pk´1q
1si p∆tq “ Z1r

.
I1,

.
I
pk´1q
1si p∆tq, ¨ ¨ ¨ ,

.
I
pk´1q
1spm`1qp∆tq, 0, ¨ ¨ ¨ , 0s

T

.
U
pkq
2 “ Z2

.
I
pk´1q
2si p∆tq “ Z2r0,

.
I
pk´1q
2si p∆tq, ¨ ¨ ¨ ,

.
I
pk´1q
2spm`1qp∆tq, 0, ¨ ¨ ¨ , 0s

T (25)

The multiple IGs are equivalent to the current sources, and Z1 and Z2 are the original impedance
matrixes of the distribution network. Owing to the negative short-circuit current of IGs injecting into
the network, the voltage at the fault node f in the normal network contains a negative sequence voltage
component. The sequence components of the short-circuit current at fault node f under a different
fault type can be derived using the boundary conditions at the fault node and the composite sequence
network with negative sequence voltage.

Taking a phase B to phase C fault through the impedance zf at the fault node f as an example, as
shown in Figure 9, the sequence components of the short-circuit current at fault node f at step k can be
expressed as:

.
I
pkq
1 f “ ´

.
I
pkq
2 f “

.
U
pkq
1 f ´

.
U
pkq
2 f

Z1 f f ` Z2 f f ` z f
(26)

The post-fault voltage phasors of each node in the positive and negative sequence fault component
network at step k are as follows:
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∆
.

U
pkq
1 “ rZ11 f , ¨ ¨ ¨ , Z1i f ¨ ¨ ¨ , Z1n f s

T
p´

.
I
pkq
1 f q

∆
.

U
pkq
2 “ rZ21 f , ¨ ¨ ¨ , Z2i f ¨ ¨ ¨ , Z2n f s

T
p´

.
I
pkq
2 f q

(27)

The positive and negative sequence components of node voltages in the distribution network at

step k can be calculated as
.

U
1pkq
1 “

.
U
pkq
1 ` ∆

.
U
pkq
1 and

.
U
1pkq
2 “

.
U
pkq
2 ` ∆

.
U
pkq
2 by combining Equations (25)

and (27). Subsequently, the sequence components of the short-circuit current at step k can be obtained

using
.

U
1pkq
1i , si

(k), and
.

U
1pkq
2i .
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Figure 9. Composite sequence network of two-phase short-circuit with negative sequence voltage. Figure 9. Composite sequence network of two-phase short-circuit with negative sequence voltage.

4.3. Procedure of Short-Circuit Calculation

When a fault occurs at node f, the procedure for the short-circuit calculation of the distribution
network is summarized as follows:

Step 1: Form the original matrixes Z1 and Z2 of the pre-fault network without IGs, determine the
pre-fault voltage

.
Usi and stator current

.
Isi of each IG according to the mechanical torque during normal

operation, and solve Equation (16) to obtain
.
E
1

si.

Step 2: Add Z11si and Z12si to Z1 and Z2 to form the matrixes Z1
1 and Z2

1, obtain
.

U
p1q

by Equation (17)

and
.

U
p1q
“

.
U
p0q

, and then determine
.
I
p1q
1 f and

.
I
p1q
2 f according to the fault node and type.

Step 3: Solve Equation (19) to obtain ∆
.

U
p1q
1 and ∆

.
U
p2q
2 , determine

.
U
1p1q
1 and

.
U
1p2q
2 , and solve

Equation (20) to obtain
.
I
p1q
1si p0q and

.
I
p1q
2si p0q.

Step 4: Solve Equation (8) for a fixed-speed IG, Equation (12) for a variable-speed IG with
.

U
1p1q
1i and

si
(1) to obtain

.
I
p1q
1si p∆ tq, determine the RMS of the positive and negative sequence components rIp1q1si srms

and rIp1q2si srms, set
.

U
1pk´1q
1i =

.
U
1p1q
1i ,

.
U
1pk´1q
2i =

.
U
1p1q
2i ,

.
I
pk´1q
1si =

.
I
p1q
1si and

.
I
pk´1q
2si =

.
I
p1q
2si , and then go to Step 5.

Step 5: Solve Equation (24) by calculating of Ppk´1q
ei using Equation (23) to obtain the slip vector s(k).

Step 6: Solve Equation (25) with Z1 and Z2 to obtain the voltage
.

U
pkq
1 and

.
U
pkq
2 of the normal network,

calculate
.
I
pkq
1 f and

.
I
pkq
2 f , substitute them into Equation (27) to obtain ∆

.
U
pkq
1 and ∆

.
U
pkq
2 of the fault

component network, and determine the voltages
.

U
1pkq
1 and

.
U
1pkq
2 of each IG.

Step 7: Solve Equations (8) and (9) for a fixed-speed IG, Equations (12) and (13) for a variable-speed

IG with
.

U
1pkq
1 , s(k) and

.
U
1pkq
2 to obtain

.
I
pkq
1si p∆ tq and

.
I
pkq
2si p∆tq, substitute

.
I
pkq
1si p0q =

.
I
pk´1q
1si p∆tq and

.
I
pkq
1si p∆tq

into (22) to obtain rIpkq1si srms, and rIpkq2si srms =
.
I
pkq
2si p∆tq.

Step 8: If k ď N (N = 20), set k = k + 1 and go to Step 5; otherwise, stop the iteration and output the
RMS of sequence components of the short-circuit current of each IG.

5. Simulation Studies

The proposed method is applied to two 50 Hz distribution networks. The short-circuit currents
for different fault locations are calculated. The results obtained from the proposed method are
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verified by the simulation using PSCAD/EMTDC. In the simulation, the model of the fixed-speed
and variable-speed IGs is described by the stator and rotor voltage equations in the d-q axes reference
frame, which rotates at a synchronous speed, as well as the rotor swing and the converter control
equations. The 10 kV system with four 3 MW, 0.69 kV IGs is shown in Figure 10. The test system
parameters are shown in Appendix B.
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Figure 10. Four-IG test system. 

5.1. Three-Phase Short Circuit of Fixed-Speed IGs 

When four IGs in Figure 10 are fixed-speed IGs, the short-circuit currents and slips of IG1 to IG4 

when a three phase fault occurs at node 4 are shown in Figure 11, where the mechanical torques of 

IGs are Tm2 = Tm3 = Tm4 = −1.0. The short-circuit currents rise to the peak value after the fault that 

Figure 10. Four-IG test system.

5.1. Three-Phase Short Circuit of Fixed-Speed IGs

When four IGs in Figure 10 are fixed-speed IGs, the short-circuit currents and slips of IG1 to IG4
when a three phase fault occurs at node 4 are shown in Figure 11, where the mechanical torques of IGs
are Tm2 = Tm3 = Tm4 = ´1.0. The short-circuit currents rise to the peak value after the fault that occurrs
at t = 1.0s, and then transition to the steady state with the change of terminal voltages and slips. The
simulation results are clearly accordant with the calculated results using the analytical method.
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Figure 11 shows that the peak value I1sp occurs at the second point of calculated results because
I1s is the RMS short-circuit current for a half cycle. The peak value I1sp and steady-state value I1ss
can be given both by simulation and calculation, as shown in Table 1, where the short-circuit current
value of the 10th cycle is selected as the steady-state value. The proposed method has a relative error
within ˘6%. The voltages of IG3, IG2, IG1, and IG4 increase in turn while their currents decrease in
turn because of the increasing electrical distance from IG to the fault node. Given that the voltage
drop of IG4 at the adjacent feeder is the smallest, the peak value and steady-state value of IG4 are near
each other.
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Table 1. Short-circuit currents of fixed-speed IGs when three-phase short circuit occurs at bus 4.

Induction Generators IG1 IG2 IG3 IG4

Analytical I1sp (pu) 1.642 2.079 2.605 1.317
I1sp Simulation I1sp (pu) 1.745 2.187 2.716 1.369

Relative error (%) ´5.90 ´4.93 ´4.09 ´3.80

Analytical I1ss (pu) 1.426 1.363 1.297 1.308
I1ss Simulation I1ss (pu) 1.434 1.414 1.321 1.361

Relative error (%) ´0.56 ´3.61 ´1.82 ´3.89

Figure 12 shows the calculation and simulation results of the short-circuit current with the variable
mechanical torque of one IG and a 0.1 change step under the assumption that the mechanical torques
of the other three IGs remain unchanged. The simulated and calculated results with the proposed
method are basically similar in the figure. The short-circuit currents calculated with zero mechanical
torque are the same as the results with zero slips, which do not depend on the torque. The errors of the
short-circuit currents with zero slips to the currents with different torques are shown in Figure 13. The
relative errors of the peak and steady state value increase with the increase of ´Tm.Energies 2016, 9, 277 15 of 20 
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Figure 12. Three-phase short-circuit current of fixed-speed IGs when the torque is varying.

Figure 13 shows that the larger the electrical distances from IG to the fault node, the more
significant the rotor speed changes affect the short-circuit currents, and the smaller the peak and
steady-state values calculated with zero slip. Even when taking the variation of terminal voltages is
taken into account, the error of the short-circuit current may still exceed ˘10% when constant speed
sequence models are adopted in the iterative calculation. Such an effect may be due to the effect of slip
variation on the positive sequence component of the short-circuit current. The errors of the peak value
are mainly caused by different initial slips, whereas the errors of the steady-state value are decided by
slip variations. Hence, the errors of steady-state values with zero slips are considerably bigger than
the errors of peak values.
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5.2. Two-Phase Short Circuit of Fixed-Speed IGs

The positive and negative sequence components of the short-circuit current of fixed-speed IGs
with a phase B to phase C fault at node 6 are shown in Figure 14, where the mechanical torques of IGs
are Tm1 = Tm2 = Tm3 = Tm4 = ´0.5. The simulated and calculated results of the peak and steady-state
value shown in Table 2 are almost same. Owing to the half-cycle lag of the real maximum value of I1s
has a half cycle lag compared with that of I2s in the instantaneous current waveforms, the peak values
of I1s and I2s are the third and second points in the calculation results respectively.Energies 2016, 9, 277 16 of 20 
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occurs at bus 6.

Similar with the three-phase short circuit, the difference between the steady-state and peak values
of the positive and negative sequence components for IG4 is at the minimum with a two-phase fault
occurring at node 6. The negative sequence components of short-circuit currents are determined
only by the negative sequence terminal voltage, whereas the positive components of short-circuit
currents depend upon the rotor flux attenuation associated with the slip and terminal voltage. Thus,
the attenuation degrees of the negative sequence short-circuit currents of IG1, IG2, and IG3 are less
than the degrees of their positive sequence components.
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Table 2. Short-circuit currents of fixed-speed IGs when two-phase short-circuit occurs at bus 6.

Induction Generators IG1 IG2 IG3 IG4

Analytical I1sp (pu) 0.727 0.911 1.116 0.582
I1sp Simulation I1sp (pu) 0.765 0.947 1.151 0.587

Relative error (%) ´4.97 ´3.80 ´3.04 ´0.85

Analytical I1ss (pu) 0.645 0.712 0.789 0.573
I1ss Simulation I1ss (pu) 0.644 0.712 0.789 0.575

Relative error (%) 0.16 0 0 ´0.35

Analytical I2sp (pu) 0.813 1.042 1.283 0.55
I2sp Simulation I2sp (pu) 0.822 1.052 1.292 0.552

Relative error (%) ´1.09 ´0.95 ´0.70 ´0.36

Analytical I2ss (pu) 0.790 1.012 1.244 0.537
I2ss Simulation I2ss (pu) 0.793 1.021 1.248 0.538

Relative error (%) ´0.38 ´0.88 ´0.32 ´0.19

Figure 15 shows the relative errors of the proposed method with a two-phase fault at different
nodes in the distribution network. With the slip variation, the coupling relation between terminal
voltages, and the sequence networks during the fault considered, the absolute values of the relative
errors for the steady-state value are observed to be less than the absolute value of the relative errors for
the peak value. The relative errors of the proposed method for short-circuit calculation are within ˘5%.Energies 2016, 9, 277 17 of 20 
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Figure 15. Relative errors of short-circuit currents of fixed-speed IGs when two-phase short circuit
occurs: (a) Positive sequence component, (b) Negative sequence component.

5.3. Two-Phase Short Circuit of Variable-Speed IGs

Figure 16 shows the positive and negative sequence components of the short-circuit current of
variable-speed IGs with a phase B to phase C fault at node 6 when four IGs in the test system are
variable-speed IGs. The short-circuit currents of the four variable-speed IGs decay rapidly after rising
to the peak value, and the descent rate of the negative components are slower than that of the positive
components. The calculated results of the short-circuit currents by the analytical method are basically
consistent with the dynamic simulation results in Table 3.
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Figure 16. Short-circuit current sequence components of variable-speed IGs when two-phase short
circuit occurs at bus 6.

Table 3. Short circuit currents of variable-speed IGs when two-phase short circuit occurs at bus 6.

Induction Generators IG1 IG2 IG3 IG4

Analytical I1sp (pu) 0.856 1.093 1.196 0.715
I1sp Simulation I1sp (pu) 0.937 1.104 1.308 0.765

Relative error (%) ´8.62 ´1.03 ´0.81 ´6.53

Analytical I1ss (pu) 0.418 0.444 0.489 0.395
I1ss Simulation I1ss (pu) 0.412 0.439 0.485 0.396

Relative error (%) 1.37 1.09 0.86 ´0.21

Analytical I2sp (pu) 0.436 0.596 0.746 0.278
I2sp Simulation I2sp (pu) 0.456 0.634 0.806 0.307

Relative error (%) ´4.39 ´5.99 ´7.44 ´9.45

Analytical I2ss (pu) 0.159 0.185 0.219 0.102
I2ss Simulation I2ss (pu) 0.158 0.183 0.208 0.103

Relative error (%) 0.36 1.22 5.29 ´0.65

The relative errors of the proposed method for variable-speed IGs are shown in Figure 17. The
interactive process of the short-circuit current of variable-speed IGs with the distribution network is
simplified by ignoring the delaying influence of the crowbar activation and the dynamic responses
of the converter and its controller, factors that lead to relatively large calculation errors of the
variable-speed IGs. According to the test results of variable-speed IGs, the maximum relative error of
the method ranges from 10% to 15%.
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6. Conclusions 

This paper proposes an improved analytical method to calculate the sequence components of 

the short-circuit currents of multi-IG systems. The short-circuit calculation problem is formulated 

based on the transient response, slip variation of fixed-speed and variable-speed IGs, and 

parameters of distribution network, and is solved using the iteration technique. The results show 
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Appendix A 

The amplitude of positive sequence short circuit currentin step k decays exponentially 

according to Equation (21) can be written as: 
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where the t = T/2 (T = 0.02 s). The RMS value i1s(t) is given as: 
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Figure 17. Relative errors of short-circuit currents of variable-speed IGs when two-phase short circuit
occurs: (a) Positive sequence component, (b) Negative sequence component.
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6. Conclusions

This paper proposes an improved analytical method to calculate the sequence components of
the short-circuit currents of multi-IG systems. The short-circuit calculation problem is formulated
based on the transient response, slip variation of fixed-speed and variable-speed IGs, and parameters
of distribution network, and is solved using the iteration technique. The results show that the
coupling relationship among the short-circuit currents, slip variations and terminal voltages should
be considered for the short-circuit calculation of IGs when the SCR is small. The proposed method
is verified using dynamic simulation. Comparisons show that the analytical results are very close
to the simulation results. Therefore, the proposed technique is an effective tool to determine the
short-circuit currents of multi fixed-speed and variable-speed IGs, which are very useful for the fault
analysis and protection of distribution networks. However, the simulation software requires additional
computational burden and time to find the short-circuit currents. The analytical method can likewise
provide more information to better understand the transient responses of IGs during grid faults and
the related effects of IG and network parameters. Accordingly, an improved protection system for the
distribution network can be designed.
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Appendix A

The amplitude of positive sequence short circuit currentin step k decays exponentially according
to Equation (21) can be written as:

i1siptq “
?

2
"

Apkqi Ipkq1si p∆tq ` Bpkqi rIpkq1si p0q ´ Ipkq1si p∆tqse
pk´1q∆t´t

Tri

*

cosp
2πt
T
q (A1)

where the ∆t = T/2 (T = 0.02 s). The RMS value i1s(t) is given as:

rIpkq1si srms “

c

2
T
şT{2`pk´1q∆t
pk´1q∆t ri1siptqs

2dt

“

g

f

f

f

e

2
T
şT{2

0 2

$

&

%

rApkqi Ipkq1si p∆tqs
2
` 2Apkqi Bpkqi Ipkq1si p∆tqrIpkq1si p0q ´ Ipkq1si p∆tqse´t{Tri

`rBpkqi pIpkq1si p0q ´ Ipkq1si p∆tqqs
2
e´2t{Tri

,

.

-

cos2p2πt{Tqdt
(A2)

The first part F1 of Equation (A2) as:

F1 “
2
T

ż T{2

0
2rApkqi Ipkq1si p∆tqs

2
cos2p2πt{Tqdt “ rApkqi Ipkq1si p∆tqs

2
(A3)

The second part F2 of Equation (A2) can be given as:

F2 “
2
T
r T{2

0 4Apkqi Bpkqi Ipkq1si p∆tqrIpkq1si p0q ´ Ipkq1si p∆tqse´t{Tri cos2p2πt{Tqdt

“
8Tri

T Apkqi Bpkqi Ipkq1si p∆tqrIpkq1si p0q ´ Ipkq1si p∆tqs
"

pT2`8π2T2
riqre

T{p2Triq´1s
pT2`16π2T2

riqe
T{p2Triq

*

«
4Tri

T Apkqi Bpkqi Ipkq1si p∆tqrIpkq1si p0q ´ Ipkq1si p∆tqsr1´ e´T{p2Triqs

(A4)

The third part F3 of Equation (A2) can be given as:
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F3 “ 2
T
r T{2
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2
e´2t{Tri cos2p2πt{Tqdt
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2Tri

T rB
pkq
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2
p1´ e´T{Triq

(A5)

Substituting Equations (A3), (A4) and (A5) into Equation (A2), The RMS value of the half wave
short circuit current can be derived as:

rIpkq1si srms “
?

F1 ` F2 ` F3

“

c

rApkqi Ipkq1si p∆tqs
2
`

Tri
T Bpkqi rIpkq1si p0q´ Ipkq1si p∆tqs

!

4Apkqi Ipkq1si p∆tqr1´ e´T{p2Triqs ` Bpkqi rIpkq1si p0q´ Ipkq1si p∆tqsp1´ e´T{Tri q

) (A6)

Appendix B

The voltage level of four IGs system is 10 kV and the local load of all induction generators are
also set to zero.

(1) The IG parameters:

(a) Rated power = 3 MW, Rated AC voltage = 0.69 kV;
(b) Rs = 0.004843 p.u., Xls = 0.1248 p.u.;
(c) Rr = 0.004347 p.u., Xlr = 0.1791 p.u.;
(d) Xm = 6.77 p.u., H = 5.04 s;
(e) Capacitor rated voltage = 0.69 kV, Rated power = 0.75 Mvar for a fixed-speed IG;
(f) Rated DC voltage = 1.5 kV, Crowbarresistance = 0.1043 p.u. for a variable-speed IG.

(2) Transformer T1, T2, T3 and T4 have the same parameters:

(a) Rated capacity = 3.5 MVA;
(b) VI/VII (Yn/∆) = 0.69/10.5 kV;
(c) XT = 0.06 p.u., RT = 0.02 p.u..

(3) The length of lines and impedance of per km are:

(a) L1 = L2 = L3 = L4 = 0.5 km, L5 = 3.5 km;
(b) ZL = j0.300 Ω/km.

(4) The parameters of substation:

(a) Rated Voltage = 10 kV, Es = 1.05 p.u.;
(b) Short circuit level = 240 MVA, X/R = 10.
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