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Abstract: One of the most relevant challenges that have arisen in electricity markets during the
last few years is the emergence of extremely low prices. Trying to predict these events is crucial
for market agents in a competitive environment. This paper proposes a novel methodology to
simultaneously accomplish punctual and probabilistic hourly predictions about the appearance
of extremely low electricity prices in a medium-term scope. The proposed approach for making
real ex ante forecasts consists of a nested compounding of different forecasting techniques, which
incorporate Monte Carlo simulation, combined with spatial interpolation techniques. The procedure
is based on the statistical identification of the process key drivers. Logistic regression for rare events,
decision trees, multilayer perceptrons and a hybrid approach, which combines a market equilibrium
model with logistic regression, are used. Moreover, this paper assesses whether periodic models
in which parameters switch according to the day of the week can be even more accurate. The
proposed techniques are compared to a Markov regime switching model and several naive methods.
The proposed methodology empirically demonstrates its effectiveness by achieving promising
results on a real case study based on the Spanish electricity market. This approach can provide
valuable information for market agents when they face decision making and risk-management
processes. Our findings support the additional benefit of using a hybrid approach for deriving
more accurate predictions.

Keywords: electricity markets; medium-term electricity price forecasting; probabilistic forecasting;
extremely low prices; spikes; hybrid approach

1. Introduction

In the current global context of the growing complexity of electricity markets, trying to predict
electricity prices is essential for all market agents. However, this is not an easy task, since the price of
electricity is far more volatile than other commodities. The presence of extremely high prices has been
a recurrent phenomenon in markets worldwide. Nevertheless, the recent increasing deployment of
non-dispatchable generation is also leading to the appearance of extremely low prices (zero or even
negative prices depending on the considered regulatory framework).

This paper focuses on improving the understanding of the factors that contribute to the
occurrence of these extreme price events and also their accurate forecasting with a medium-term
scope. More specifically, the aim of this paper is to propose a novel methodology that allows one to
predict not only the expected number of hours with very low prices in the medium term, but also the
associated probability density function. The proposed methodology relies on a thorough in-sample
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analysis to adjust the models and an out-sample simulation approach to test its performance when
making real ex ante forecasts.

The covered time horizon is from one month up to one year. In general, retailers and
large consumers need reliable medium-term predictions to optimize their operation, as well as
to properly negotiate in the short-term market and accomplish beneficial bilateral contracts. In
addition, producers need medium-term predictions to optimize their generation programs and
negotiate favorable bilateral and financial contracts. On the other hand, it is essential to anticipate
the occurrence of these abnormally low priced hours, because this situation significantly increases
the exposure of industry participants to price risk. Even in extreme cases, these unanticipated large
changes in the spot price can lead to bankruptcies of energy companies if they are not prepared to
tackle such risks. For this reason, an effective risk management support for the operation of electrical
systems must also be able to foresee extremely low values.

The proposed methodology, which is currently in operation in one of the major Spanish
electricity companies, is tested in a real case: the Spanish electricity market. The Spanish electricity
market constitutes one of the most interesting cases in which the remarkable growth of renewable
energy production frequently pushes the most expensive thermal power stations outside the
generation program of the wholesale market. The consequent reduction in thermal production,
coupled with a decline in the demand curve (especially in off-peak hours) due to the financial
crisis and a low interconnection capacity to evacuate the surplus of non-dispatchableenergy, causes
at certain times a sharp reduction in the clearing price. Apart from the oversupply of generation
technologies with zero opportunity cost (renewable energy sources (RES), run-of-the-river hydro
and nuclear), an excess of gas (due to take or pay clauses) can make combined cycles have zero
opportunity cost. The conjunction of these events causes the emergence of a scenario in which the
matching of supply and demand is occurring at 0 e/MWh (note that in Spain, unlike other countries,
such as Australia and Germany, negative prices are not allowed).

The main contributions of this paper can be summarized as follows:

1. A general methodology has been developed to make real ex ante forecasts (point and
probabilistic) of extremely low prices for a mid-term horizon on an hourly basis. The
methodology combines different forecasting methods and spatial interpolation techniques
within a Monte Carlo simulation of multiple predicted scenarios for the considered risk factors.

2. The accuracy of a novel hybrid approach that integrates fundamental and behavioral
information, logistic regressions, decision trees and multilayer perceptrons has been compared
to the results obtained by means of a traditional Markov regime switching model and different
naive methods. This comprehensive comparison has been carried out in both in-sample and
out-of-sample datasets. It has also been examined if the use of periodic models helps to improve
prediction capabilities.

3. The performance of the proposed methodology has been tested in a real-sized electricity
system. Note that the empirical application presented in this paper is in a single price market
that does not incorporate distribution network constraints in the market clearance. In the
Spanish electricity market, the high complexity of the electricity price dynamics is mainly due
to the huge penetration of renewable energy sources in the generation mix and the limited
interconnection capacity with France. These aspects have been taken into account in all of the
forecasting models presented in this paper. However, in order to extend the methodology to
other markets, where locational marginal prices may exist, and for which this methodology
could be applicable, the impact of variables related to local distributed generation should be
taken into account (as [1] investigates in the electrical system in Italy). In this sense, another
paper that presents the influence of distributed generation (DG) on congestion and locational
marginal price (LMP) is [2].

The paper is structured as follows. After a state of the art review, Section 3 describes the
methodology developed in the paper. Section 4 introduces the proposed forecasting techniques,
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as well as the in-sample results obtained. In Section 5, the case study and the real ex ante
forecasting results are presented. Finally, the conclusions and the main contributions of the paper
are summarized in Section 6.

2. Previous Work

Diverse models have been proposed in the literature to forecast electricity prices with different
aims and time horizons. The wide number of forecasting techniques is likely to be grouped by various
criteria that have been proposed in several studies [3,4]. According to [5], electricity price forecasting
models include statistical and non-statistical models. The latter group, which is classified in more
detail in [6], comprehends simulation models and equilibrium analysis models [7]. These approaches
are preferred in a medium- to long-term horizon, as they can provide price predictions even when
there are structural or regulatory changes in the market. However, as they are highly demanding
computationally, they tend to group hours of similar characteristics. The latter makes that the
forecasts not be as accurate as data-driven methods [8]. On the other hand, statistical methods, which
rely on historical data, are useful for short-term price forecasting, but they degrade when are used
for medium- or long-term horizons [9]. They include time series models and artificial intelligence
techniques.

A great number of time series models has been successfully implemented. In this way,
the ARIMA (autoregressive integrated moving average) models are the most representative, with
different particularizations. Thus, there are references that accommodate the seasonality using the
same set of parameters for all hours of the day [10,11]; and others that perform ARIMA model
fitting (or its variants, AR or ARMA) for each time slot of the day [12,13]. Other generalizations
of the ARIMA models are the so-called linear transfer function or transfer function models with
ARIMA noise [14,15], which have the peculiarity of including past and present influence of other
series. Other kinds of time series are the multiple-input multiple-output models, which predict
the n-dimensional price vector in a single step [16]. Artificial intelligence techniques, which
can be classified into artificial neural networks (ANN) [17], fuzzy logic and their combination, the
neuro-fuzzy method [18], are more powerful for complex, nonlinear time series analysis than the rest
of the statistical models. The methods presented before show a considerable ability to forecast the
expected electricity prices under normal market conditions. So far, however, none of these techniques
can effectively deal with spikes or extreme prices in electricity markets [19]. Among the first
references that address these specific features of electricity prices is [20], where spikes are modeled by
introducing large positive jumps together with a high speed of mean reversion. Other authors model
spikes by allowing signed jumps [21]. According to [22], spike forecasting techniques can be classified
into traditional and non-traditional approaches. Traditional approaches fall, broadly speaking, into
three categories: (i) traditional autoregressive time series models; (ii) nonlinear time series models
with particular emphasis on Markov-switching models; and (iii) continuous-time diffusion or jump
diffusion models. Non-traditional approaches include artificial neural networks or other data-mining
techniques.

Traditional autoregressive time series models treat spikes through Poisson and Bernoulli
jump processes [23], the inclusion of thresholds [24] or the use of different multivariate error
distributions [16]. Meanwhile, regime-switching models are the nonlinear extension of traditional
time series. These models are capable of identifying the nonlinearities of the dynamics and
distinguish the normal chaotic motion from the turbulent and spike regime. One of the most
representative model of this class is the threshold autoregressive (TAR) one, which determines the
regime by the value of an observable variable corresponding to a threshold value. In the case of
including exogenous (fundamental) variables, TAR processes lead to the TARX model. An alternative
is the self-exciting threshold autoregressive (SETAR) model, which arises when the threshold variable
is taken as the lagged value of the price series itself [25]. Markov switching models are the most
prominent among those in which the switching mechanism between the states cannot be determined
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by an observable variable. For the treatment of spikes, they suggest different states in which at least
one is consistent with its appearance [26]. With regard to continuous-time diffusion processes, spikes
are essentially captured by the combination of a Poisson jump component and an intensity parameter.
This parameter can be constant [27] or can be driven by deterministic seasonal variables [28]. Recently,
in [22], a nonlinear variant of the autoregressive conditional hazard model has been used to estimate
the probability of a spike with a short-term horizon, and in [29], a spike component is predicted in
the short term using a linear approximation based on consumption and wind.

Some other approaches are based on the namely nontraditional techniques, which include:
decision trees and rule-based approaches; probability methods, such as Bayesian classifiers [30];
neural network (NN) methods, such as spiking NN [31]; example-based methods, such as k-nearest
neighbors [19,32]; and SVM (support vector machine) [33].

To the best knowledge of the authors, no references have been published dealing with the
problem of medium-term price spikes or extreme price forecasting. The proposed work is unique in
the sense that it proposes to use several forecasting techniques for making both point and probabilistic
medium-term prediction of extremely low prices with an hourly accuracy.

3. Methodology

Essentially, the steps of the methodology suggested in this paper are the following:

1. The choice of a threshold to define what is considered as an extreme low price event. This point
is discussed in depth in Section 3.2. It is important to point out that the methodology is not
materially affected by the choice of the threshold.

2. The selection of explanatory variables that contribute to explain the phenomenon of the
emergence of very low prices from a perspective that takes into account the market behavior
and their statistical significance. This is further discussed in Section 3.3.

3. The adjustment of a forecasting technique for predicting the occurrence of extremely low
variables in terms of a probability value from actual market data (in-sample dataset). In Section
4, we detail all of the forecasting techniques that have been used and calibrated for this purpose.
Due to the fact that in our study, the dependent variable (occurrence of extremely low prices) is
dichotomous in nature, the potential models to apply for the analysis are restricted to binary
choice models. The proposed models classify observations based on a cutoff value. If the
probability predicted by the model is greater than this cutoff value, the observation will be
classified as a normal price. Otherwise, it will be deemed as an extremely low price. The choice
of this cutoff point is discretional, and it will influence the sensitivity and specificity, which vary
inversely with the probability value chosen. These statistics, as well as the rest of the Cooper
statistics [34], can be calculated from a contingency table (Table 1) as shown in Table 2. In this
paper, the cutoff point was chosen so as to provide a balance between sensitivity and positive
predictivity (i.e., a failure to predict an actual extremely low price is penalized as heavily as
a false alarm). As a result of this step, the parameters and the optimal cutoff value for each
forecasting technique are obtained and will be used in the following stage.

4. The development of probabilistic real ex ante forecasts through cross scenario analysis, which
is the basis of Section 5. In order to use Monte Carlo simulation to tackle uncertainty in the
medium term, a large number of realizations of the model are needed, usually entailing a huge
computational time and effort. In order to cope with this inconvenience, we have adapted an
efficient method proposed in [35] for making market equilibrium models tractable (a practical
implementation can be also found in [7]) to other forecasting techniques. This method, which
is illustrated schematically in Figure 1, allows one to compute a huge number of simulations
by decreasing the computational time and without a major loss of accuracy. As can be seen
in the figure, the first step of the methodology consists of computing a reduced number of
executions (m simulations) of each of the proposed forecasting models. As a result, we obtain
m result matrices about the appearance or not of extremely low prices (the classification is
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made with the cutoff value previously estimated) in each specific hour of the simulation time
horizon. These initial m simulations of the model are spatially placed in a hypercube of N
dimensions according to the combinations of scenarios. More specifically, each dimension of
the hypercube corresponds to an uncertain variable. For the sake of clarity, N is equal to three
in Figure 1. Note that each risk factor is distinguished by its cumulative distribution function
(CDF), and a particular scenario is defined by the pertinent percentiles of the considered risk
factors. Latin hypercube sampling with correlation control techniques has been used with the
aim of having a well-sampled hypercube in which each scenario is used at least once in the m
executions of the statistical models. In the second stage, a vast amount (M >> m) of correlated
random scenario combinations of the risk factors is generated to establish those unobserved
areas of the hypercube. Here, the correlation structure between the variables is determined by
using historical data. In the third step, these unsimulated areas (M feasible matrices about
the appearance of extremely low prices) of the hypercube are interpolated from the initial
executions by means of an interpolator based on local regression that considers the spatial
structure of these initial executions. Finally, as the scenario definition is random and considers
the correlation structure between the uncertain variables, all of the scenarios can be considered
to be equally probable, and thus, it is possible to make both point and probabilistic forecasts of
the variables of interest.

Table 1. Contingency table.

Observed Price Predicted Price Marginal Totals
Extremely Low Rest

Extremely low a b a + b
Rest c d c + d

Marginal Totals a + c b + d a + b + c + d

Deterministic input variables 

N Uncertain input variables (CDF)  
• Latin hypercube sampling  

with correlation control First  

stage 

Second 

 stage 

Third 

 stage 

Combination of  

scenarios for 

Montecarlo 

simulation 

Spatial interpolation 

Forecasting Technique 

 Outputs: Appearance of 

 extremely low prices [0,1] 

Representative 

sampling 

m simulations 

M outputs to estimate 

Real out-of-sample forecasts 

Figure 1. Global overview of Monte Carlo simulation with spatial interpolation techniques.
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Table 2. Definitions of the Cooper statistics.

Statistic Definition

Sensitivity: a/(a + b) Proportion of the extremely low prices that the model predicts
to be extreme

Specificity: d/(c + d) Proportion of the normal prices that the model predicts correctly

Accuracy: (a + d)/(a + b + c + d) Proportion of prices that the model classifies correctly

Positive predictivity (Pos. Pred.): a/(a + c) Proportion of the prices predicted to be extremely low prices by
the model that give positive results in observed prices

Negative predictivity (Neg. Pred.): d/(b + d) Proportion of the prices predicted to be normal prices by the
model that give negative results in observed prices

False positive rate: c/(c + d) Proportion of the normal prices that are falsely predicted to be
extreme by the model

False negative rate: b/(a + b) Proportion of the extreme prices that are falsely predicted to be
normal by the model

3.1. The Times Series Dataset

In this paper, a dataset from the Spanish day-ahead market, which comprises the period ranging
between 1 January 2009 and 31 March 2012, is used. This period has been chosen because it is the
moment that marked the inflexion point in relation to the appearance of extremely low prices in
the Spanish market. However, the methodology would be equally extrapolated to other subsequent
time periods. The complete data consisted of hourly spot prices and the actual production for each
technology. The data corresponding to the Spanish market are available from the Iberian Energy
Market Operator (OMIE [54]).

In order to thoroughly investigate the forecasting capability of each model, the data were divided
into in-sample and out-of-sample datasets. The former set, which includes the training and testing
sets, encompasses from 1 January 2009–30 November 2011. Thus, in Section 4, the generalization
capabilities of the models with the actual data of the exogenous variables are carried out. In Section 5,
an out-of-sample analysis for the period ranging between 1 December 2011 and 31 March 2012 with
estimated scenarios of the explanatory variables is conducted. As no major structural or regulatory
changes occurred during this period, it can be possible to capture the price dynamics by using a
common statistical model.

A more detailed statistical analysis of the in-sample dataset is presented in Table 3. As noted,
the distribution of electricity prices is not normal, presenting excess kurtosis and negative skewness.
This means that excessively high or low prices have a higher probability of occurrence than in the
case of a normal distribution. Moreover, prices below the average are more likely to occur than prices
above the mean value.

Table 3. Statistical summary of market spot price.

Average Standard Deviation Skewness Kurtosis Min. Quartile 1 Quartile 2 Quartile 3 Max.

41.041 13.280 −0.521 1.479 0.000 34.450 41.170 50.230 145.000

3.2. Extremely Low Prices Threshold

Due to the fact that market agents are not only interested in trying to model the incidence of
zero prices, the objective of this section is the choice of a threshold for distinguishing extremely low
prices from the rest. There are several approaches in the literature to classify whether an observation
is extreme or not [36,37]. In fact, the choice of a reasonable threshold is still a subjective choice. In
Spain, for instance, the threshold defining an extreme low price event is generally regarded between
10 and 15 e/MWh. In this article, a point of the characteristic modes of the distribution function
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has been used. In order to estimate the probability density function, the Epanechnikov kernel, which
minimizes the asymptotic mean integrated squared error, has been used.

Figure 2 illustrates a graphical representation of the distribution function. This representation
enables one to derive a threshold of 14.2 e/MWh. This point, which lies below the 5th percentile of
the the unconditional distribution of the price series, fulfills two features. On the one hand, it is an
inflection point of the density function on the left tail. On the other hand, it is a point that is away
from the average a distance of more than two standard deviations. The last premise is consistent with
that adopted in [19]. It should be noted that the methodology is not restricted by the choice of the
threshold. The resulting indicator variable is coded 0 for extremely low prices and 1 for the remainder
prices.

Figure 2. Density estimation

3.3. Explanatory Variables

Several studies have been conducted in order to detail the explanatory variables affecting
spot market prices [28,38–40] and price spikes [41]. However, none of these references focus on
the appearance of extremely low priced hours in the medium term. Therefore, in this paper, a
critical point is not only the choice of the variables that help to better explain the aforementioned
phenomenon, but also those factors that allow one to operationalize the forecasting model in a feasible
way. This entails that it is possible to use only those variables that can be characterized with a
reasonable accuracy at this medium-term time horizon. This is, for instance, the case of technologies
that usually behave as price takers.

In the particular case of Spain, where most of the electricity is priced at the day-ahead hourly
market, the price is set by the marginal generator bid. Among the power plants with the lowest
short-opportunity costs are renewable energy sources (RES), nuclear and run-of-the-river hydro.
On the contrary, the plants with the highest opportunity costs are gas, coal, head-dependent hydro
and fuel oil. During the horizon of the study, RES were legislated under what was referred to as a
special regime, promoted through a feed-in tariff system. Thus, apart from the special regime, the
technologies that usually behave as price takers are run-of-the-river hydro and nuclear. Due to the
zero variable cost of the former and the inflexibility of the latter, both of them usually bid at low prices
to collect then the marginal price. It should be noted that it is well known that hydro conditions are
one of the most important sources of uncertainty in the Spanish market. In this study, run-of-the-river
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hydro production has been considered as a reasonable approach for hydro conditions. This is because,
run-of-the-river hydro production, unlike head-dependent hydro, behaves as a price taker, and
therefore, it is expected to be relevant for the appearance of extremely low prices.

The selection of explanatory variables, which has been done taking into account the principle of
parsimony, was based on backward elimination methods, which evaluate different statistics in order
to control the exit of variables. Thus, the adjusted coefficient of determination and several model
selection criteria (such as AIC and BIC) were measured.

Before constructing the proposed models, the presence of unit roots in the candidates for
exogenous variables has been tested. To this end, augmented Dickey–Fuller has been used. For
all considered explanatory variables, the absence of stationarity was strongly rejected beyond a 5%
significance level. The absence of multicollinearity between the regressors has also been confirmed
by applying the variance inflation factor.

4. Forecasting Techniques

The main target of this section is to compare several novel models with one of the most
prominent models used in the prediction of spikes: Markov regime-switching models. In order to
estimate their generalization capabilities, the in-sample data were divided into two different sets:
80% for training and 20% for testing. The validation set comprises the training and testing sets
(from 1 January 2009–30 November 2011). Note that this section analyzes the models’ generalization
capabilities with actual data of the exogenous variables.

It is well known that electricity prices exhibit seasonal fluctuations, which can be collected by
including relevant explanatory variables. Still, despite a well-specified inclusion of demand in the
models that could explain the weekly effects, a separate modeling for (1) working days, (2) Saturdays
and (3) Sundays and holidays has also been carried out with the aim of testing if the forecasting
performance is improved. The main benefit of this approach, which uses periodic models, is that it
allows the model parameters to switch according to the different behaviors identified in the course of
the week. Moreover, the construction of separate models has the advantage of selecting an optimum
and specific threshold value for classifying an observation as a very low price or not depending on the
predicted likelihood given by the statistical technique used in each case. This could be particularly
relevant for the accuracy of the forecasts.

4.1. Logistic Regression

Logistic regression is a well-known supervised learning algorithm that can allow us to estimate
the probability of the occurrence of extremely low prices, which is a dichotomous outcome. This
technique is very useful to analyze the potential impact of the independent variables on the
dependent variable. For each constructed model, the estimated coefficients of the explanatory
variables are also shown. The Wald test was utilized to check their validity. The models
goodness-of-fit is checked by means of the Cox and Snell R square and the Nagelkerke R square.

4.1.1. Model 1

As has been shown previously, the addressed classification problem is unbalanced with a
proportion of hours with very low prices only accounting for 4.32%. For this reason, a model based
on the traditional logistic regression procedures could sharply underestimate the probability of this
rare event, and therefore, it could lead to erroneous results. One of the most popular techniques to
correct these effects when the occurrence of the events is less than 5% was the bias correction method
proposed in [42]. This procedure estimates the same logit model as the traditional one, but with an
estimator that provides lower mean square error in the presence of rare events data for coefficients,
probabilities and other quantities of interest.

Model 1 uses the explanatory variables referred to in Table 4 without taking into account the
effects of work activity in a specific way. Table 5 and Table 6 show that the overall accuracy of
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the model is acceptable. Note that a naive model, for simple chance, would have a specificity and
sensitivity of 50%. For example, the statistic R square is 65.6%, which is quite acceptable in predictive
terms. According to Table 4, the estimated coefficient of the dependent variables, as shown by the
Wald test, are significant from a statistical point of view.

Table 4. Variables in the equation: Model 1. ND, net demand.

Variable Coefficient S.E. Wald Signification

ND 0.0005860 0.0000176 1113.7107 0.000
H −0.0016148 0.0000422 1463.4780 0.000
N −0.0003917 0.0000587 44.5235 0.000
W −0.0007231 0.0000226 1023.5278 0.000

CONST 1.7120790 0.4079335 17.6144 0.000

Table 5. Contingency table with a cutoff value of 0.65: Model 1.

Observed Price Predicted Price Correct Percentage
Price [0,14.2] Price > 14.2

Price [0,14.2] 752 350 68.24
Price > 14.2 361 24,070 98.52

Global percentage 97.22

Table 6. Summary of Model 1.

−2 Log of the Likelihood Cox and Snell R Square Nagelkerke R Square

3501.401 0.196 0.656

4.1.2. Model 2

This model is an extension of the previous one. The novelty is that the effect of the working
patterns in prices has been incorporated by using a periodic logistic regression model. Thus, a
regression model is estimated for weekdays, another one for Saturdays and a different one for the
holidays. Table 7 shows that the model goodness-of-fit is better, and the variation explained by the
model is slightly higher than the previous one.

In accordance with Table 8, the explanatory variables are significant from a statistical point of
view (except the constant term in the case of the working days). Table 9 shows the performance of the
three models separately and for the global model. Furthermore, the optimal cutoff points that have
been calculated are presented in parenthesis. As seen, this model presents a power for prediction
slightly higher than Model 1.

Table 7. Summary of Model 2.

−2 Log of the Likelihood Cox and Snell R Square Nagelkerke R Square

WORK SAT HOL WORK SAT HOL WORK SAT HOL

1954.41 464.10 981.57 0.18 0.22 0.23 0.69 0.70 0.59
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Table 8. Variables in the equation: Model 2.

Variable
Coefficient (×10–4) Signification

WORK SAT HOL WORK SAT HOL

ND 6.45 5.15 6.14 0.00 0.00 0.00
H −16.41 −18.55 −16.55 0.00 0.00 0.00
N −2.26 −6.16 −5.62 0.01 0.00 0.00
W −7.50 −4.69 −7.99 0.00 0.00 0.00

CONST −5531 38,342 32,099 0.33 0.00 0.00

Table 9. Cooper statistics of Model 2.

(%) WORK (0.66) SAT (0.66) HOL (0.61) Global

Sensitivity 69.85 78.31 61.54 68.97
Specificity 98.87 98.97 97.06 98.60

Positive Predictivity 70.06 78.31 61.11 68.97
Negative Predictivity 98.86 98.97 97.12 98.60

Accuracy 97.81 98.03 94.59 97.32

4.1.3. Model 3

This particular case is a variant of Model 2, not considering the correction proposed in [42].
Instead, it was decided to reduce the data with the aim that the number of low prices had a greater
significance in the sample. In this way, according to Table 10, those intervals of data in which
it is guaranteed the absence of extremely low prices in the dataset were eliminated. Hence, the
sample was reduced by 42.3%. The model, although still slightly better than Model 1, cannot
overcome the suitability of Model 2. Table 11 presents Cooper statistics broken down individually
and globally. Note that there are categories with two values. The values on the left side refer to those
corresponding to the simplified model, while the values on the right side refer to the correction made
taking into account that the removed values of the training set have been successfully predicted.
Meanwhile, Table 12 confirms the goodness-of-fit of each one of the regression models. Furthermore,
Table 13 presents the coefficients associated with each explanatory variable, as well as the statistical
significance of each one of them. As in Model 2, the constant term for weekdays is not significant.

Table 10. Intervals without very low prices.

Variable WORK SAT HOL

ND >32,500 >28,000 >26,000
ND’ >28,000 >23,000 >21,000
ND” >13,000 >16,000 >9000

Table 11. Cooper statistics of Model 3.

(%) WORK (0.66) SAT (0.66) HOL (0.62) Global

Sensitivity 70.00 74.70 60.84 68.33
Specificity 97.53–98.84 98.73–98.98 95.45–96.73 97.44–98.57

Positive Predictivity 69.57 75.61 61.27 68.33
Negative Predictivity 97.58–98.86 98.67–98.93 95.37–96.67 97.44–98.57

Accuracy 95.48–97.78 97.53–98.00 91.79–93.91 95.26–97.27
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Table 12. Summary of Model 3.

−2 Log of the Likelihood Cox and Snell R Square Nagelkerke R Square

WORK SAT HOL WORK SAT HOL WORK SAT HOL

1948.50 460.18 972.42 0.26 0.23 0.27 0.64 0.70 0.55

Table 13. Variables in the equation: Model 3.

Variable
Coefficient (×10–4) Signification

WORK SAT HOL WORK SAT HOL

ND 6.34 4.90 5.77 0.00 0.00 0.00
H −16.32 −18.55 −16.55 0.00 0.00 0.00
N −2.18 −5.98 −5.48 0.01 0.00 0.00
W −7.44 −4.53 −7.88 0.00 0.00 0.00

CONST −4721 41,169 36,893 0.41 0.00 0.00

4.1.4. Comparison between the Models

As seen, the three models have a quite acceptable predictive accuracy. Note that Model 1 showed
slightly worst global performance than the other models. However, it presents the advantage that it
is a much simpler model. The results obtained in this comparison demonstrate that the inclusion
of weekly seasonality slightly improves the predictive capabilities of the forecasting methods. A
remarkable fact is that there are discrepancies regarding the significance of the explanatory variables
depending on the day of the week under consideration. Another finding to note is that the correction
proposed in [42] is an effective tool when dealing with unbalanced problems. Finally, a greater
difficulty in achieving effective predictions on Sundays and holidays has been found. This may be
explained by a different market behavior during these days.

4.2. Decision Trees

Decision trees classify observations based on a set of decision rules, applied in a sequential
manner. The probability of occurrence of extremely low prices is allocated to each end of a branch in
the tree. The way of estimating probabilities does not require the assumption of specific probability
distributions for the variables, which is an advantage of this methodology. In order to not over-fit
the data, stopping rules control the growing process, and the over-fitted parts were pruned. In this
paper, an ID3 (Iterative Dichotomiser 3) algorithm has been used, with splitting criteria based on the
entropy [43].

4.2.1. Model 1

A global model ignoring the effects of weekly patterns has been built. According to Figure 3,
the most representative variable is the hydro production. Note that under a scenario below the 88th
centile, there is a negligible probability of occurrence of very low prices. Another interesting aspect
is that nuclear production is not representative in this case. Table 14 shows the classification success
rate of the tree. As seen, the model is able to accurately predict an acceptable number of the events
that occurred during this period of time.
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H<2632.75?yes no

ND<23643.51?yes

H<4155.55?yes

W<4685.737?yes no

ND<20472.12?
yes

H<2667.35?

yes no

no

no

W<4657.686?
yes no

no

H<5971.45?yes no

ND<28426.18?
yes

W<4956.731?

yes no

no

Low prices

Normal prices

Figure 3. Decision tree: Model 1.

Table 14. Contingency table with a cutoff value of 0.85: Model 1.

Observed Price
Predicted Price

Correct Percentage
Price [0,14.2] Price > 14.2

Price [0,14.2] 657 445 59.62
Price > 14.2 401 24,030 98.36

Global percentage 96.69

4.2.2. Model 2

In this case, the weekly seasonality has been taken into account by building three different
trees. If we analyze the constructed trees in comparative terms, we can observe clear similarities
and differences between them. First, it is clear that hydro production is the most relevant variable.
Moreover, the scenarios that lead to hours with very low prices are similar. However, a more detailed
individual analysis of each tree allows one to establish significant differences in the representativeness
of the explanatory variables and characteristic values of the selected splits.

Figure 4 shows the tree for Saturdays. As can be seen in the figure, those hourly scenarios of
hydro production that fall below 3767.2 MW have a negligible probability of occurrence of very low
prices. One of the most remarkable facts is that, from a statistical point of view, hydro production
seems to be even more important than in the other types of days, such as Sundays and holidays.
Furthermore, nuclear production is irrelevant. The typical behavior of Sundays and holidays is
reflected in Figure 5. An interesting aspect is that wind power is not significant. In contrast, nuclear
production itself is useful in explaining the output’s behavior. Finally, Figure 6 corresponds to
working days. According to the figure, the main factors influencing the appearance of low priced
hours are the hydro production and the system net demand.
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Figure 4. Decision tree: Saturdays.

H<2632.75?yes no

ND<23895.42?yes

N<7303.35?yes

H<2645.85?
yes no

ND<19169.41?

yes

N<5410.65?
yes no

H<5145.25?

yes no

no

H<5971.45?

yes no

no

H<3592.75?
yes no

no

Low prices

Normal prices

Figure 5. Decision tree: Sundays and holidays.

H<2667.35?
yes no

ND<24300.99?yes

W<5961.384?yes

H<4155.55?yes

N<7051?
yes no

no

H<5971.45?
yes no

no

H<4155.55?yes

ND<20491.79?
yes no

no

no

H<5971.45?
yes no

ND<28826.55?yes no

Low prices

Normal prices

Figure 6. Decision tree: working days.

Table 15 shows the global performance of the model derived from each of the trees, which has
been constructed separately. As the optimal cutoff value was set independently for each tree, it is not
possible to achieve a balance between positive and negative predictivity.
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Table 15. Contingency table: Model 2.

Observed Price
Predicted Price

Correct Percentage
Price [0,14.2] Price > 14.2

Price [0,14.2] 669 433 60.71
Price>14.2 308 24,123 98.74

Global percentage 97.10

4.2.3. Comparison between the Models

Table 16 shows a comparison between the proposed models. The percentages of success in
the training, test and validation sets are shown, as well as the optimal cutoff value for each tree.
In general, both models are acceptable, since the overall accuracy is superior to that obtained by
chance (95.68%). The second model performs slightly better. A remarkable aspect is that the tree
constructed for Sundays and holidays is only able to identify 50% of the hours with very low prices.

Table 16. Comparison among the different decision trees.

Strategy Decision Tree Percentage of Success (%) Cutoff
Training Test Validation

Without weekly effect FULL 96.671 99.001 97.137 0.85

Weekly effect
WORK 97.449 99.353 97.830 0.75

SAT 97.875 100 98.246 0.8
HOL 95.427 96.590 95.660 0.76

Decision Tree Cooper Statistics (%)

Sensitivity Specificity Pos. Pred. Neg. Pred. Accuracy

FULL 59.619 98.359 62.098 98.182 96.687

WORK 62.923 98.815 66.830 98.597 97.503
SAT 70.482 99.397 84.783 98.604 98.081
HOL 50.000 97.800 62.996 96.309 94.465

4.3. Multilayer Perceptron

Multilayer perceptrons constitute a useful tool for regression and classification [44]. In this
case, its use is justified because we expect that there could exist a nonlinear relationship between
the proposed inputs and output.

There are several problems associated with local minima and decisions over the size of the
network to use. Thus, the use of this technique usually implies experimenting with different
architectures, as the determination of the number of hidden layers and the number of hidden neurons
in each hidden layer. It has been shown in practice that one hidden layer configuration is enough for
most applications. For this reason, a topology with two layers of adaptive weights (a hidden layer
and an output layer) has been selected.

The activation function of neurons is the hyperbolic tangent, both for the hidden and the output
layer. With the aim of providing a probabilistic interpretation, the outputs have been scaled to the
interval [0,1].

Regarding the proper number of hidden neurons to be used, a sweep computing the validation
error was carried out to find its optimal value. As said, one of the main problems in the multilayer
perceptron is getting stuck in local minima. This problem has been solved by initializing the weights
with random values and by repeating the process several times. Before training, the inputs were
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normalized by a simple linear rescaling. The fitting criterion was the quadratic error minimization,
as it penalizes large errors more than small ones.

Using this technique, two models were constructed: a single MLP for the whole set of data and
three different MLP to take into account the weekly seasonality. In Table 17, the structure of the
proposed models is summarized. In order to evaluate the forecast performance, the Cooper statistics
are displayed for the optimal cutoff value that has been computed. It is evident that the prediction
ability of this model is significantly improved if the weekly seasonality is included. In any case,
each of the models based on MLP is clearly superior in terms of prediction performance to the other
proposed techniques. Curiously, this model demonstrates a better ability to capture the dynamics of
the very low prices on Sundays and holidays.

Table 17. Comparison of proposed models: MLP.

Strategy MLP Network Size Cutoff
Cooper Statistics (%)

Sensitivity Specificity Pos. Pred. Neg. Pred.

Without weekly effect FULL 4-25-1 0.65 78.131 98.993 77.778 99.013

Weekly effect
WORK 4-24-1 0.64 82.308 99.311 81.930 99.329

SAT 4-28-1 0.78 92.169 99.627 92.169 99.627

HOL 4-28-1 0.59 91.259 99.318 90.941 99.345

4.4. Hybrid Approach

The hybrid approach presented in this section is a novel forecasting methodology that combines
a fundamental market equilibrium model with the logistic regression approach implemented in
Section 4.1.1, with the ultimate objective of benefiting from the advantages that each of them offers
separately. Fundamental models, which are preferred in a medium- and long-term horizon, can
provide useful insights for the analysis of the strategic behavior in electricity markets and constitute a
valuable tool to represent the electricity market with its main technical and economic characteristics,
especially when there are structural or regulatory changes in the market. However, as stated
in [7], market equilibrium models fail when the aim is to capture the high-order moments of the
probability distribution functions compared to the data-driven methods. This is because in the tails
of the distribution, fundamentals are less important than behavioral factors. This naturally leads
to complementing the fundamental approach with some of the statistical methods discussed before,
which is one of the ultimate goals of this paper.

4.4.1. Fundamental Market Equilibrium Model

In the first step of the methodology, the operation and the behavior of the Spanish electric power
system are fairly represented using a fundamental market equilibrium model based on conjectural
variations as stated in [45,46]. The model, which is equivalent to the one used in [7], is formulated
as a traditional cost-based optimization problem where each generation company i tries to maximize
its own profit. In this model, the strategic behavior of each generation company i is represented by
means of a parameter known as the conjectured-price response θi. This exogenous positive parameter
has been valued by using historical data following [47,48]. This parameter, which measures the
market power of the various companies taking part in the market, is the minus derivative of the
electricity market price λ with respect to the production qi of the generation company (Equation (1)).

θi = −
∂λ

∂qi
≥ 0, ∀i (1)

As was shown in [45], the market equilibrium (note that under game theory, the market
equilibrium is the point in which each market agent maximizes its own profit, but bearing in mind
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that the rest of the agents also maximize their profits) can be calculated by solving an equivalent
quadratic optimization problem (Equations (2)–(4)):

min
qi

∑
i

Ci (qi) (2)

s.t.

∑
i

qi = D : (λ) (3)

H (qi) ≥ 0 (4)

The term Ci (qi) is the so-called effective cost function of agent i, which is defined as:

Ci (qi) = Ci (qi) + θi ·
q2

i
2

, ∀i (5)

As seen, the effective cost function takes into account a linear or quadratic cost function Ci (qi)

and a term that models the strategic behavior of the company i. Therefore, the minimization
problem Equations (2)–(4) is a quadratic optimization problem that can be effectively solved using
readily available commercial software. The decision variables of this problem are the dispatch of
the generators, subject to the demand-balance equation (Equation (3)) and the technical constraints
(Equation (4)) of the operation of all hydro and thermal groups (emission limits, variable costs,
minimum and maximum power, efficiency, etc.).

Since in medium-term market equilibrium models, an hourly representation is not often used
in practice because the size and resolution times increase considerably for a real-sized electricity
systems, the hours within each month have been grouped into l = 1,2,. . . ,16 net demand levels
(denoted as ND in this paper), or system states, by means of a k-means clustering process, as
explained in [49]. System states consist of a number of hours in which market conditions are
considered to be the same.

The use of system states as proposed in [49] is an alternative approach to the traditional
representation based on load levels, which prevents the loss of chronological information between
individual hours. This is very important for decision variables, such as the starting-up and the
shutting-down of thermal groups. It should be noted that load levels, unlike system states, are
only defined based on system demand. The consideration of the net demand for the computation
of system states allows us to better represent the operation in power systems with a high penetration
of renewable energy sources. Furthermore, as stated in [7], this novel approach based on system
states enables one to reach a better forecasting accuracy and allows one to successfully capture the
so-called stylized facts [50] of electricity prices. However, even in this complex model, there are many
difficulties to properly account for the occurrence of extreme events, and that is why a complementary
approach with a statistical model is needed.

4.4.2. Communication between the Models

For the hybridization of the models, the system marginal price for each state λ is firstly
estimated by computing the dual variable of the power-balance constrain (Equation (3)) of the market
equilibrium model. Hereinafter, the price is allocated to the hours that belong to the corresponding
state, and it is used as an explanatory variable in the logistic regression model for rare events, which
was detailed above in Section 4.1.1. As stated in Table 18, the market price λ shows the statistical
significance thereof. Another factor to highlight is that the sign of the considered variables coincides
with what would be expected a priori. The fact that the fundamental model seems not to add very
much to the logistic model implies, as was expected, poor fundamental specification at low prices.
However, as can be seen in Table 19, the obtained results suggest that this approach performs slightly
better than the individual models presented in Section 4.1. This finding suggests that λ, which
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simultaneously captures the production cost and the strategic behavior of market agents, can provide
useful insights to predict extremely low prices.

Table 18. Variables in the equation: hybrid model.

Variable Coefficient S.E. Wald Signification

ND 0.0007084 0.0000618 131.3093 0.000
H −0.0007399 0.0004128 3.2121 0.073
N −0.0003914 0.0002106 3.4540 0.063
W −0.0008067 0.0000741 118.4120 0.000
λ 0.0510856 0.0111722 20.9082 0.000

CONST 2.5112069 1.5278314 2.7015 0.100

Table 19. Contingency table with a cutoff value of 0.66: hybrid model.

Observed Price
Predicted Price

Correct Percentage
Price [0,14.2] Price > 14.2

Price [0,14.2] 796 306 72.23
Price >14.2 306 24,125 98.75

Global percentage 97.60

It should be stressed that the hybridization may also be performed with the rest of the
techniques that have been previously presented. The major reasons why logistic regression
has been used are based on the commitment between accuracy, transparency and simplicity of
implementation that this technique has demonstrated. This is of great importance, since, as will
be explained ahead in Section 5, the implementation of the methodology to make real predictions in
the medium term requires simulating multiple scenarios of the variables subject to uncertainty, which
is computationally highly intensive in real-sized electricity systems. Note that although the problem
size using system states is much lower than the hourly representation, the model for the Spanish
electricity market consists of more than 300,000 equations and 800,000 variables. The optimization
problem is formulated in GAMS (General Algebraic Modeling System) and is solved using CPLEX
12.4. The resolution time is almost two minutes for just one realization of the risk factors using a PC
with Intel Core Duo i7-4790 CPU @3.6 GHz CPU and 32.0 GB RAM.

4.5. Markov Regime-Switching Model

Markov regime-switching models (MRS) assume the existence of an unobserved variable
representing the state or regime, which governs a given dataset at each point in time. The usefulness
of MRS models for power market applications has already been recognized. However, their
effectiveness for forecasting has been vaguely proven, and only lately has this issue been approached
in the literature [39,41,51].

Markov switching models do not require a previous dating of which periods are considered
extreme. Therefore, fixed imposed thresholds are not needed. The model is able to capture changes
in the mean and the variance between state processes. The motions of the state variable between the
regimes are governed by an underlying Markov process.

In this paper, one of the most popular specifications of MRS models in the energy economics
literature is followed. Specifically, as proposed in [51,52], the specification includes two independent
regimes (R1 and R2) and a mean-reverting heteroskedastic process for the base regime dynamics.
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In Equation (6), where the base regime is described, εt is supposed to be N(0,1)-distributed. On the
other hand, a Gaussian distributed spike regime is assumed (Equation (7)).

Xt,R1 = αR1 + βR1 Xt−1 + σR1 | Xt−1 |γR1 εt (6)

Xt,R2 ∼ N(αR2 , σR2) (7)

Following the recommendations provided in [51], the prices themselves instead of the log-prices
are modeled. Moreover, the deseasonalization of prices is conducted in a similar way as was stated
in [51]. Thus, an additive model is considered. Equation (8) represents that the hourly spot price
Yt can be decomposed into a stochastic part Xt and a predictable component (trend and seasonal
component). On the one hand, for estimating the trend Tt, a wavelet filtering-annual-smoothing
technique is used. On the other hand, weekly periodicity is considered for the seasonal component
St. This component is removed by applying a variation of the moving average technique, using the
median instead of the mean value. The reason is that the median is more robust than the mean
in the presence of outliers. Figure 7 graphically shows the decomposition process, which has been
performed.

Yt = Tt + St + Xt (8)
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Figure 7. Decomposition of the price series using an additive model.

Next, MRS models are fitted to deseasonalized prices Xt. The calibration of parameters is
accomplished by an iterative procedure based on the application of the expectation-maximization
algorithm proposed in [53]. The estimated model parameters are given in Table 20. As can be
seen, the parameters obtained for the base regime suggest a high speed of mean-reversion (which
is represented by the parameter βRi ) and that extremely low prices increase volatility more than
extremely high prices (this is captured by the parameter γRi ). Regarding the probabilities qii of staying
in the same regime, high values in both regimes are observed. This suggests that several consecutive
observations in each regime will be appreciated, which represent an advantage in comparison to jump
diffusion models.
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Table 20. Parameter estimates and descriptive statistics of the Markov regime-switching (MRS) model.

Ri
Parameters Statistics

αRi βRi σRi
2 γRi E (Xt,Ri ) qii P (R = i)

Base 4.59 0.91 11,654.67 −0.96 50.62 0.98 0.84

Spike 47.38 259.01 47.372 0.89 0.16

Figure 8 shows the deseasonalized prices Xt and the spikes that have been identified. The lower
picture displays the probabilities of being in the spike regime. The deseasonalized series has been
shifted so that its minimum coincides with that of the original series Yt.
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Figure 8. Calibration results for the MRS model.

In order to test the ability of the model to predict extremely low prices in the in-sample
dataset, 5000 price trajectories have been simulated. The performance of the model is analyzed
with two measures typically used in spike classification: sensitivity (85.75%) and positive predictivity
(45.88%). Although the model is able to predict many of the extremely low prices correctly, this
technique tends to classify many non-spikes as spikes. Therefore, it seems that this model has no
advantages over the other proposed models.

5. Real Ex Ante Forecasts

This section is aimed at making real ex ante forecasts in a probabilistic way by using predicted
scenarios of the risk factors and the parameters that have been estimated for the forecasting
techniques presented in Section 4. On the one hand, Section 5.1 presents a description of how the
last stage of the methodology explained in Section 3 is actually implemented with the proposed
forecasting techniques. On the other hand, in Section 5.2, we briefly discuss the simulation with the
MRS model, which is used as a benchmark. Finally, the presented case study is presented in Section 5.3.

It is important to highlight that the medium-term horizon is referred here to a forecasting scope
that varies from one to two months. More specifically, if the primary objective is the prediction of
extreme hourly prices for month m, the simulations are carried out in a single step in the first hour of
month m-1.
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5.1. Simulation with the Proposed Models

In order to make simulations with the proposed models, a multi-scenario analysis has been
conducted. Therefore, the first step of this methodology is to generate scenarios for those random
variables based on historical data. As was stated in Section 3, all risk factors are represented by their
corresponding cumulative distribution function (CDF) in such a way that each scenario corresponds
to a percentile. Different strategies have been used for the hybrid approach and the remaining
techniques. This is because in the market equilibrium model, it is also important to incorporate the
uncertainty related to fuel prices and the unavailability of thermal plants.

5.1.1. Logistic Regression, Decision Trees and Multilayer Perceptrons

In the presented case study, possible hourly realizations for water inflows (five scenarios),
power demand (five scenarios) and wind production (55 scenarios) have been generated. In order
to obtain a well-sampled spatial structure, representative percentiles ranging from the 1st to the
99th of its CDF have been chosen. Meanwhile, it is assumed that the international exchanges, as
well as the production of the rest of the technologies belonging to the special regime are completely
determined by their expected values. It should be noted that it is out of the scope of this work to
understand how the prediction errors in the generation of scenarios contribute to the error of ex
ante forecasts. Taking into account all of the possible combinations of the generated scenarios, a
total of 1375 simulations have been performed with each forecasting technique. For each scenario
and for each hour, the likelihood of the appearance of low priced hours has been computed. If
this value is lower than the optimal cutoff value defined for each particular model in Section 4, the
observation is classified as an extremely low price. Because of its practical interest, an additional
variable that indicates the number of extremely low prices per month has also been constructed
for every simulation on the basis of the sum of all hourly indicator variables. In the next step,
a huge amount (more specifically, 100,000) of random scenario combinations of the percentiles of
the well-known uncertain variables is generated in order to establish the unobserved areas of the
hypercube, which have to be estimated by means of the spatial interpolator. Finally, probabilistic
forecasts are calculated taking into account that all of the 100,000 scenarios are equiprobable.

5.1.2. Hybrid Approach

In the specific case of the hybrid approach, we have taken into account as medium-term
risk factors, in addition to the three variables considered in Section 5.1.1, the natural gas prices
(11 scenarios), the CO2 emission allowance prices (11 scenarios), the coal prices (11 scenarios) and
the unplanned unavailability of thermal power plants (three scenarios). As a result, there are
5,490,375 possible combinations of uncertain variables. In the initial stage, a representative sample
of 1375 uncorrelated scenario combinations has been defined by means of Latin hypercube sampling
as stated in Section 3. The next step is to perform 1375 simulations of the hybrid approach by
including the well-sampled scenario combinations of the uncertain variables and the deterministic
inputs. Finally, probabilistic forecasts are computed in a similar way to what is done in the previous
section. The main difference is that in this case, the 100,000 random scenario combinations that have
been generated for the Monte Carlo simulation present a correlated structure. This is particularly
important, since it is well established that commodity prices are correlated, and it would be unrealistic
to consider certain combinations when making the spatial interpolation. For the sake of clarity, a
general outline of the methodology followed is provided in Figure 9.
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Figure 9. Global overview of the out-of-sample simulation with the hybrid approach.

5.2. Simulation with the Markov Regime-Switching Model

Several price trajectories are simulated in order to guarantee the stability of the results.
Specifically, 5000 different paths have been used for each month. Then, using the simulated forecasts
for the spot price, the corresponding probabilistic forecasts have been determined. Forecasting based
on decomposition methods has been performed by extending each of the predictable components.
The trend is the component that presents major problems, since wavelets are functions that are quite
localized in time and space. In order to extend the signal, polynomial extrapolation or a spline
fit might be utilized. In this case, as this component is closely related to expectations about fuel
price levels, climate and consumption conditions, an adjusted linear model based on futures prices
information being traded is used. This approach is suitable to properly internalize the expectations of
all market agents. Regarding the seasonal component, it has been extended through the duplication
of the last seasonal period. This can be considered as appropriate, since the seasonal component does
not vary with time.

5.3. Case Study and Results Analysis

This section firstly assesses the capabilities of the proposed techniques to provide real ex ante
point forecasts. The number of hours with very low prices per month has been selected, due to its
interest in practical applications, as accuracy measure to evaluate the performance of the different
approaches. For this assessment, a comparative study with two naive methods has been conducted.
On the one hand, Naive 1 makes forecasts for month m by taking into account the proportion of
extreme low prices that have taken place from 1 January 2009 to the last hour of month m-2. On the
other hand, Naive 2 considers the proportion of events in similar months of the in-sample dataset.

In Table 21, the values of these measures are provided. Comparing the predictions of each
proposed model with those that actually occurred, it can be concluded that the hybrid approach
seems to be superior to the rest of models. This result suggests that the inclusion of the prediction of
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the market equilibrium price as an input of logistic regression in each scenario can provide useful
information about the economic and technical characteristics of the market. This is even more
important when possible structural changes can occur in the market. As can be seen, models based
on logistic regression are able to achieve high levels of accuracy and slightly outperform multilayer
perceptrons. Furthermore, note that MLP models perform significantly worse in the out-of-sample
test. Regarding decision trees, it seems that they do not provide satisfactory results from the
constructed scenarios. In turn, Markov regime-switching models show acceptable results. However,
they have the well-known disadvantage of being very sensitive to the predictable component
estimation. As seen, all models are successful when facing the naive test. It is also interesting that,
unlike in the in-sample dataset, the prediction ability is not improved when periodic models are used.

Table 21. Number of hours with very low prices expected per month.

Month
Logistic Regression Decision Trees MLP

Hybrid MRS Naive 1 Naive 2 Actual
M1 M2 M3 M1 M2 M1 M2

December 3.92 3.87 3.81 0.00 0.00 0.77 9.84 4.14 3.31 31.81 69.00 6

January 8.81 7.44 7.51 0.00 0.05 9.67 16.99 7.89 3.50 32.11 77.33 9

February 10.04 9.94 10.14 0.00 0.10 9.13 14.27 11.59 2.48 29.24 43.85 11

March 20.96 18.65 18.56 0.00 0.13 21.06 23.07 15.38 4.53 30.65 98.14 11

Since probabilistic forecasts are crucial for an adequate risk management, the proposed
methodology has also been used to compute the probability of an extremely low price for each hour
in the forecast period. Figure 10 shows the probability of the appearance of extremely low prices,
which has been estimated on an hourly basis during a representative month.
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Figure 10. Probability of the appearance of extremely low prices predicted by the Logistic Regression
M1 for January 2012.

Similarly, the proposed methodology has been applied to estimate the probability density
function (PDF) associated with the number of hours with very low prices throughout the projection
period. An illustrative example of the forecasted PDF for February 2012 by using the hybrid approach
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appears in Figure 11. In this figure, the dashed line represents the actual number of hours that
occurred in the market. As shown, the distribution is unimodal and right-skewed. In this particular
case, it is evident that the actual value always falls under the range of the most likely values. The real
value (11 h) is near the mode value (8 h) and the expected value (11.59 h).
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Figure 11. Probability density function for the number of hours with extremely low prices that has
been predicted by the hybrid model for February 2012.

In order to compare the forecast quality of the proposed models, the Brier Score (BS) has been
used. The BS is probably the most commonly-used verification measure for assessing the accuracy
of binary probabilistic predictions. It is the mean squared error of the probability forecasts over the
verification sample and it is expressed as:

BS =
1
S

S

∑
i=1

(pi − oi)
2 (9)

where S is the sample size, pi is the predicted probability of the event occurring according to the i-th
hourly forecast and oi is equal to one or zero, depending on whether the event subsequently occurred
or not during that hour. The BS ranges from zero for a perfect forecast to one for the worst possible
forecast.

With the objective of making it easier to interpret the results, two naive models have also been
used as benchmarks. Naive 3 is based on the previous similar month, while Naive 4 relies on taking
the historical values of month m-2 as forecasts of future prices for month m. A comparison of the
results for the probabilistic estimates for all specifications is reported in Table 22. As can be seen,
the obtained results suggest that the proposed hybrid methodology produces superior probabilistic
forecasts than the rest of the alternative techniques. Naive techniques are clearly outperformed by all
of the proposed procedures, which demonstrates the practical interest of the developed methodology.
In this case, a slight increase in accuracy was obtained when considering different dynamics for each
day of the week through the periodic models.

Table 22. Comparison of the proposed models in terms of the Brier Score (BS).

Logistic Regression Decision Trees MLP
Hybrid MRS Naive 3 Naive 4

M1 M2 M3 M1 M2 M1 M2

0.01239 0.01213 0.01205 0.01264 0.01261 0.01246 0.01241 0.01195 0.01258 0.04611 0.03005
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6. Conclusions

In this paper, a novel methodological approach to analyze and make real ex ante forecasts
of the occurrence of extremely low prices in electricity markets with a medium-term horizon has
been presented. The proposed methodology, which is a mixture of different forecasting techniques
with a Monte Carlo simulation that integrates a spatial interpolation tool, is able to simultaneously
perform punctual and probabilistic predictions with an hourly basis. The methodology has been
specifically applied to the Spanish wholesale market, but may be extended equally to other electricity
markets worldwide.

Logistic regression for rare events, decision trees, multilayer perceptrons and a novel hybrid
approach, which is able to incorporate both fundamental and behavioral information, have been
compared to a Markov regime switching model and several naive methods. Further research has been
undertaken in order to evaluate whether periodic models, in which parameters switch according to
the day of the week, can provide better prediction capabilities.

Overall, all of the proposed models present reasonable errors taking into account the complex
nature of the phenomenon and substantially outperform naive techniques in both the in- and
out-of-sample datasets. Encouraging results have been obtained from real ex ante forecasts of the
distribution function of the exogenous variables used to predict the phenomenon. The results reveal
that the integration of a market equilibrium model and logistic regression in a hybrid approach
provides a significant improvement in the prediction accuracy in comparison to the individual
models. We also found that the inclusion of a prior estimation of the market equilibrium price
can provide valuable information when used as an input in a statistical technique, such as logistic
regression, especially when there are structural or regulatory changes in the market. Logistic
regression with the correction for rare events data has proven to be a simple, but effective tool
enabling one to outperform multilayer perceptrons and decision trees in terms of forecasting accuracy.
When the real explanatory variables are used, it is clear that MLP performs better than the other
models, but it behaves significantly worse when making real ex ante forecasts. However, still, MLP
is superior to decision trees. With respect to decision trees, they have shown that they can provide
valuable information and offer great interpretability for probabilistic approaches.

Another interesting conclusion is that a meaningful improvement of the prediction capability is
reached when considering different dynamics for working days, Saturdays, Sundays and holidays.
Open research lines may include the extension of this methodology to extremely high priced hours
and to other markets, where locational marginal prices may exist and for which the impact of
variables related to local distributed generation should be taken into account.
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Nomenclature

D Electric demand
H Run-of the-river hydro production
HOL Sundays and holidays
IE Difference between exports and imports
N Nuclear energy production
ND Net demand (D-SR)
ND’ Net demand (ND + IE-N)
ND” Net demand (ND-W-N-H)
SAT Saturdays
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SR Special regime energy production
W Wind energy production
WORK Working days
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