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Abstract: This paper proposes a new electric load forecasting model by hybridizing the fuzzy
time series (FTS) and global harmony search algorithm (GHSA) with least squares support vector
machines (LSSVM), namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS)
algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied
to model the resultant series, which is optimized by GHSA. Finally, a real-world example is
adopted to test the performance of the proposed model. In this investigation, the proposed model
is verified using experimental datasets from the Guangdong Province Industrial Development
Database, and results are compared against autoregressive integrated moving average (ARIMA)
model and other algorithms hybridized with LSSVM including genetic algorithm (GA), particle
swarm optimization (PSO), harmony search, and so on. The forecasting results indicate that the
proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.

Keywords: electric load forecasting; least squares support vector machine (LSSVM); global harmony
search algorithm (GHSA); fuzzy time series (FTS); fuzzy c-means (FCM)

1. Introduction

Load forecasting plays an important role in electric system planning and operation. In
recent years, lots of researchers have studied the load forecasting problem and developed a
variety of load forecasting methods. Load forecasting algorithms can be divided into three major
categories: traditional methods, modern intelligent methods and hybrid algorithms [1]. The traditional
method [1,2] mainly includes autoregressive (AR), autoregressive moving average (ARMA) [3],
autoregressive integrated moving average (ARIMA) [4], semi-parametric [5], gray model [6,7],
similar-day models [8], and Kalman filtering method [9]. Due to the theoretical limitations of the
algorithms themselves, it is difficult to improve the forecasting accuracy using these forecasting
approaches. For example, the ARIMA model is unable to capture the rapid changing process
underlying the electric load from historical data pattern. The Kalman filter model cannot avoid
the observation noise and the forecasting accuracy of the grey model will be reduced along with the
increasing degree of discretiin of the data.

The intelligent methods mainly include artificial neural network (ANN) [10], fuzzy systems [11],
knowledge based expert system (KBES) approach [12], wavelet analysis [13], support vector machine
(SVM) [14], and so on. Knowledge-based expert system combines the knowledge and experience
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of numerous experts to maximize the experts’ ability, but the method does not have self-learning
ability. Besides, KBES is limited to the total amount of knowledge stored in the database and it is
difficult to process any sudden change of the conditions [15]. The ANN has the ability of nonlinear
approximation, self-learning, parallel processing and higher adaptive ability, however, it also has some
problems, such as the difficulty of choosing parameters, and high computational complexity. SVM is
a new machine learning method proposed by Cortes and Vapnik [16]. It is based on the principle of
structural risk minimization (SRM) in statistical learning theory. The practical problems such as small
sample, nonlinear, high dimension and local minimum point could be solved by the SVM via solving a
convex quadratic programming (QP) problem. However, traditional SVM also has some shortcomings.
For example, SVM cannot determine the input variables effectively and reasonably and it has slow
convergence speed and poor forecasting results while suffering from strong random fluctuation time
series. Compared with SVM, the least squares support vector machine (LSSVM), proposed by Suykens
and Vandewalle [17], is an improved model of the original SVM. It has the following advantages, using
equality constraints instead of the inequality in standard SVM, solving a set of linear equations instead
of QP [13]. LSSVM has been widely applied to solve forecasting problems in many fields, such as stock
index forecasting [18], credit rating forecasting [19], GPRS traffic forecasting [20], tax forecasting [21]
and prevailing wind direction forecasting [22], and so on.

Fuzzy time series (FTS), as a significant quantitative forecasting model, has been broadly applied
in electric load forecasting. There are lots of literatures focused on FTS related issues that are also
involved in this paper [23–27]. Lee and Hong [23] proposed a new FTS approaches for the electric
power load forecasting. Efendi et al. [24] discussed the fuzzy logical relationships used to determine
the electric load forecast in the FTS modeling. Sadaei et al. [26] presented an enhanced hybrid method
based on a sophisticated exponentially weighted fuzzy algorithm to forecast short-term load. FTS is
often combined with other models for forecasting. For example, a new method for forecasting the
TAIEX is presented based on FTS and SVMs [28].

In addition, various optimization algorithms are widely employed in LSSVM to improve its
searching performance, such as genetic algorithm (GA) [29], particle swarm optimization (PSO) [30],
harmony search algorithm (HSA) and artificial bee colony algorithm (ABC) [31]. All the optimization
methods improve the efficiency of the model in some way. Although the single forecasting method
can improve the forecasting accuracy in some aspects, it is more difficult to yield the desired accuracy
in all electric load forecasting cases. Thus, via hybridizing two or more approaches, the hybrid
model can combine the merits of two or more models, as proposed by researchers. A new hybrid
forecasting method, namely ESPLSSVM, based on empirical mode decomposition, seasonal adjustment,
PSO and LSSVM model is proposed in [32]. Hybridization of support vector regression (SVR) with
chaotic sequence and EA is able to avoid solutions trapping into a local optimum and improve
forecasting accuracy successfully [33]. Ghofrani et al. [34] proposed a hybrid forecasting framework
by applying a new data preprocessing algorithm with time series and regression analysis to enhance
the forecasting accuracy of a Bayesian neural network (BNN). A hybrid algorithm based on fuzzy
algorithm and imperialist competitive algorithm (RHWFTS-ICA) is also developed [35], in which the
fuzzy algorithm is refined high-order weighted. In this paper, the global harmony search algorithm
(GHSA) is hybridized with LSSVM to optimize the parameters of LSSVM.

The rest of this paper consists three sections: the proposed method GHSA-FTS-LSSVM, including
FTS model, fuzzy c-means clustering (FCS) algorithm, GA, global harmony search and least squares
SVM, is introduced in Section 2; a numerical example is illustrated in Section 3; and conclusions are
discussed in Section 4.
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2. Methodology of Global Harmony Search Algorithm-Fuzzy Time Series-Least Squares Support
Vector Machines Model

2.1. Least Squares Support Vector Machine Model

LSSVM is a kind of supervised learning model which is widely used in both classification
problems and regression analysis. Comparing with SVM model, LSSVM can find the solution by
solving a set of linear equations while classical SVM needs to solve a convex QP problem. As for the
regression problem, given a training data set “ tpx1, y1q , px2, y2q , . . . , pxi, yiqu, xi P Rn and yi P R, and
the separating hyper-plane in the feature space will be as Equation(1):

y pxq “ wTϕ pxq (1)

where w refers to the weight vector andϕ pxq is a nonlinear mapping from the input space to the feature
space. Then the structural minimization is used to formulate the following optimization problem of
the function estimation as Equation (2):

min :
1
2

||w||2
`

1
2
γ

n
ř

i“1
εi

2

subject to : yi “ wTϕ pxiq ` b` εi, i “ 1, 2, . . . , n
(2)

where γ refers to the regulation constant and εi to the error variable at time i, b to the bias term.
Define the Lagrange function as Equation (3):

L pw, b, ε,αq “
1
2

||w||2
`

1
2
γ

n
ÿ

i“1

εi
2 ´

n
ÿ

i“1

αi

!

wTϕ pxiq ` b` εi ´ yi

)

(3)

where αi is the Lagrange multiplier.
Solving the partial differential of Lagrange function and introducing the kernel function, the final

nonlinear function estimate of LSSVM with the kernel function can be written as Equation (4):

Yi “ f pXiq “

n
ÿ

i“1

αiK pX, Xiq ` b (4)

As for the selection of kernel function, this paper used the Gaussian radial basis function (RBF) as
the kernel function, because RBF is the most effective for the nonlinear regression problems. And the
RBF can be expressed as Equation (5):

K pX, Xiq “ exp
´||X´ Xi||2

2σ2 (5)

Through the above description, we can see that the selection of the regulation constant γ
and Gaussian kernel function parameter σ has a significant influence on the learning effect and
generalization ability of LSSVM. But the LSSVM model does not have a suitable method to select
parameters, so we employ the global harmony search to realize the adaptive selection of parameters.

2.2. Global Harmony Search Algorithm in Parameters Determination of Least Squares Support Vector
Machines Model

In music improvisation, musicians search for a perfect state of harmony by repeatedly adjusting
the pitch of the instrument. Inspired by this phenomenon, HSA [36,37] is proposed by Geem et al. [36]
as a new intelligent optimization search algorithm. However, every candidate solution in the
fundamental HSA is independent to each other, which has no information sharing mechanism, thus,
this characteristic also limits the algorithm efficiency. Lin and Li [38] have developed a GHSA which
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borrowed the concepts from swarm intelligence to enhance its performance [39]. The proposed GHSA
procedure is illustrated as follows and the corresponding flowchart is shown in Figure 1.

Step 1: Define the objective function and initialize parameters.
Firstly, f pxq is the objective function of the problem where x is a candidate solution consisting

of N decision variables xi and LBi ď xi ď UBi. LBi and UBi are the lower and upper bounds for each
variable. Besides, the parameters used in GHSA are also initialized in this step.

Step 2: Initialize the harmony memory.
The initialization process is done as:

‚ Randomly generate a harmony memory in the size of 2ˆ HMS from a uniform distribution in
the rangerLBi, UBis pi “ 1, 2, 3, . . . , nq.

‚ Calculate the fitness of each candidate solution in the harmony memory and sort the results in
ascending order.

‚ The harmony memory is generated by rx1, x2,, . . . , xHMSs.

Step 3: Improvisation.
The purpose of this step is to generate a new harmony. The new harmony vector X1 “

 

x,
1, x,

2, . . . , x,
n
(

is generated based on the following rules:
Firstly, randomly generate r1, r2 in a uniform distribution of the range r0, 1s.

‚ If r1 ă HMCR and r2 ě PAR, then x,
i “ x,

i. Palatino

‚ If r1 ă HMCR and r2 ă PAR, then x,
i “ Rnd

´

xgBest
i ´ bw, xgBest

i ` bw
¯

, where bw is an arbitrary

distance bandwidth (BW) and xgBest
i is ith dimension of the best candidate solution.

‚ If r1 ě HMCR, then x,
i “ Rnd pLBi, UBiq.

Step 4: Update harmony memory.
If the fitness of the new harmony vector is better than that of the worst harmony, it will take the

place of the worst harmony in the HM.
Step 5: Check the stopping criterion.
Terminate when the iteration is reached.

2.3. Fuzzy Time Series Generation

This paper proposes FCM model by using FCS algorithm with GA to process the raw data and to
generate FTS. The flowchart is shown as Figure 1. Firstly, the number of clustering k is computed as
the initial value. Secondly, the clustering center is obtained until the stop criteria of the algorithm are
reached. Finally, the time series fuzzy membership is determined.

2.3.1. Fuzzy Time Series Model

A FTS is defined [40,41] as follows:
Definition 1: Let Y ptq (t= 0, 1, 2, . . . ), a subset of real number, be the universe of the discourse on

which fuzzy membership of fi pi “ 1, 2, . . . , nq are defined. If F(t) is a collection of f1, f2, . . . , then F(t)
represents a FTS on Y(t).

Definition 2: If F ptq is caused by Fpt ´ 1) only, the FTS relationship can be expressed as
F pt´ 1q Ñ F ptq . Then let F pt´ 1q “ Ai and F ptq “ Aj, so the relationship between F pt´ 1q and F ptq
which is referred to as a fuzzy logical relationship can be denoted by Ai Ñ Aj.

We present the general definitions of FTS as follows:
Suppose U is divided into n subsets, such as U “ tu1, u2, . . . , unu. Then a fuzzy set A in the

universe of the discourse of U can be expressed as Equation (6):

A “
fA pu1q

u1
`

fA pu2q

u1
` . . .`

fA punq

un
(6)
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where fApuiq
denotes the degree of membership of ui in A with the condition of fApuiq

P r0, 1s.

2.3.2. Fuzzy C-Means Clustering Algorithm

Fuzzy c-means (FCM) [42] is a common clustering algorithm which could make one piece of
data to cluster into multiple classes. Let X “

 

xj
ˇ

ˇj “ 1, 2, . . . , n
(

be the observation data set and
C “ tci|i “ 1, 2, . . . , ku be the set of cluster centers. The results of fuzzy clustering can be expressed by
membership function U “

 

uij
ˇ

ˇi “ 1, 2, . . . , k; j “ 1, 2, . . . , n
(

where uij P r0, 1s and uij is also limited by
Equations (7) and (8).

Clustering calculation

gen>MAXI ?
or

Current change<MINC?

Parameters initialization
MAXI,MINC,gen =1

FCM  finished

Yes

LSSVM
Calculate the fitness function

Final fuzzy
 time series

A new candidate solution

X'=Rnd(xi
gBest-bw,xi

gBest+bw)

Xi'=Rnd(LBi,UBi)

Rnd(0,1)<HMCR?

Rnd(0,1)
<PAR?

No

Randomly select a solution 
in harmony memory

Initialize the harmony 
memory  

Parameters initialization
Num, HMS, HMCR,

PARmax, PARmin, bwmax,
bwmin,cnt,LB1,LB2,

UB1,UB2,NI

Update harmony memory

cnt>NI?

GHSA finished

Yes

No
cnt=cnt+1

The optimal parameter

LSSVM

Finished

Yes

Yes

Final fuzzy 
time series

Data normalization

Membership degree
evaluation

No

gen = gen+1

 

Figure 1. Global harmony search algorithm-fuzzy time series-least squares support vector machines
(GHSA-FTS-LSSVM) algorithm flowchart.

n
ÿ

j“1

uij P p0, nq (7)
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k
ÿ

i“1

uij “ 1 (8)

The objective function of FCM can be express as Equation (9):

J
`

uij, ck
˘

“

k
ÿ

i“1

n
ÿ

j“1

`

U
`

xj, ci
˘˘m ||xj ´ ci||2

pm ą 1q (9)

The cluster centers and the membership functions U are calculated by Equations (10) and (11):

ci “

řn
j“1

`

uij
˘m
¨ xj

řn
j“1

`

uij
˘m (10)

U
`

xj, ci
˘

“ uij “

`

||xj ´ ci||
˘´2{pm´1q

řk
l“1

`

||xj ´ cl||
˘´2{pm´1q

(11)

where m is any real number named weight index, uij represents the membership of xj in the ith cluster
center and ||xj ´ ci|| refers to the Euclidean distance between the real value xj and the fuzzy cluster
center ci.

3. Numerical Example

3.1. Data Set

The experiment employs electric load data of Guangdong Province Industrial Development
Database to compare the forecasting performances among the proposed GHSA-FTS-LSSVM model,
GHSA-LSSVM model, GA-LSSVM, PSO-LSSVM and GHSA-LSSVM. The detailed data used in this
paper is shown in Table 1. Among these data, the electric load data from January 2011 to December 2013
were used for model fitting and training, and the data from April to December 2014 were used
to forecast.

Table 1. Monthly electric load in Guangdong Province from January 2011 to November 2014 (unit:
thousand million W/h).

Date Load Date Load Date Load

January 2011 284.1 May 2012 351.6 September 2013 372.3
February 2011 263.2 June 2012 353.1 October 2013 375.6

March 2011 339.8 July 2012 386.5 November 2013 386.4
April 2011 325.7 August 2012 376.1 December 2013 410.9
May 2011 336.2 September 2012 338 January 2014 384.5
June 2011 341 October 2012 343 February 2014 322.1
July 2011 371.7 November 2012 356.1 March 2014 389.2

August 2011 366.4 December 2012 362.4 April 2014 373.3
September 2011 329.8 January 2013 331 May 2014 387.6

October 2011 326.9 February 2013 278.1 June 2014 393.4
November 2011 331.4 March 2013 368.3 July 2014 429.8
December 2011 362.3 April 2013 357.2 August 2014 416.7

January 2012 341.5 May 2013 368.1 September 2014 379.9
February 2012 328.3 June 2013 373.3 October 2014 385.3

March 2012 358.7 July 2013 419.4 November 2014 398.2
April 2012 335.2 August 2013 426.6 December 2014 374.8

The procedure of data preprocessing is illustrated as follows:
Step 1: Data normalization
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Before FCM, we normalized the original data by Equation (12):

X piq “
T piq ´ Tmin

Tmax ´ Tmin
(12)

where T piq pi “ 1, 2, . . . , nq is the set of time series which contains n observations, Tmin and Tmax

refer to the minimum and maximum values of the data, X piq pi “ 1, 2, . . . , nq is the normalized set of
time series.

Step 2: Clustering calculation.
The number of clustering k is calculated by Equation (13) [43]:

k “
„

pTmax ´ Tminq ¨ pn´ 1q
řn

t“2 |X piq ´ X pi´ 1q|



(13)

where ‘[]’ represents the rounded integer arithmetic. According to Equation (13), k “ 8.
Step 3: Parameters initialization
We determine the maximum iteration MAXI “ 200 and the minimum change of membership

MINC “ 10´7. The performance of the algorithm depends on the initial cluster centers, so we need to
specify a set of cluster centers at random.

Step 4: Update operator
If the objective function is better than the previous ones, the membership functions and cluster

centers will be updated by Equations (10) and (11) after each iteration.
Step 5: Termination operator
In this paper, we use the iteration number and change of memberships as the termination

operators. If the current iteration is larger than MAXI or the current change of membership is smaller
than MINC, the FCM finish its work and we can get the cluster centers.

After FCM, we got a set of clustering centers (set = {0.6115, 0.4595, 3949, 0.6668, 0.9491, 0.0732,
0.7485, 0.5416}), and the final time series fuzzy membership we got is shown in Table 2.

Table 2. The final fuzzy time series (FTS) (partly).

Date FTS

11 January 0.0104 0.0220 0.0338 0.0084 0.0036 0.9013 0.0063 0.0142
11 February 0.0128 0.0227 0.0307 0.0108 0.0053 0.8928 0.0085 0.0163

11 March 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
11 April 0.0064 0.0506 0.9181 0.0042 0.0011 0.0039 0.0026 0.0130
11 May 0.0115 0.7581 0.1842 0.0066 0.0013 0.0026 0.0036 0.0322
11 June 0.0026 0.9743 0.0106 0.0014 0.0002 0.0004 0.0007 0.0099
11 July 0.1255 0.0054 0.0030 0.8256 0.0022 0.0006 0.0210 0.0165

11 August 0.9547 0.0024 0.0012 0.0272 0.0006 0.0002 0.0037 0.0101
11 September 0.0005 0.0064 0.9911 0.0003 0.0001 0.0002 0.0002 0.0011

11 October 0.0029 0.0256 0.9604 0.0019 0.0005 0.0016 0.0011 0.0060
11 November 0.0046 0.0747 0.9032 0.0028 0.0006 0.0017 0.0016 0.0107
11 December 0.8419 0.0127 0.0058 0.0449 0.0019 0.0009 0.0098 0.0821

3.2. Global Harmony Search Algorithm-Least Squares Support Vector Machines Model

3.2.1. Parameters Selection by Global Harmony Search Algorithm

Before the GHSA we need to determine parameters. The parameters include the number of
variables, the range of each variable rLBi , UBis the harmony memory size (HMS), the harmony
memory considering rate (HMCR), the value of BW, the pitch adjusting rate (PAR) and the number of
iteration (NI).

In the experiments of GHSA, the larger harmony consideration rate (HMCR) is beneficial to the
local convergence while the smaller HMCR can keep the diversity of the population. In this paper, we
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set the HMCR as 0.8. For the PAR, the smaller PAR can enhance the local search ability of algorithm
while the larger PAR is easily to adjust search area around the harmony memory. In addition, the
value of BW also has a certain impact on the searching results. For larger BW, it can avoid algorithm
trapping into a local optimal and the smaller BW can search meticulously in the local area. In our
experiment, we use a small PAR and a large BW in the early iterations of the algorithm, and with the
increase of the NIs, BW is expected to be reduced while PAR ought to increase. Therefore, we adopt
the following equations:

PAR “
pPARmax ´ PARminq ˚ currentIteration

NI
` PARmin (14)

BW “ BWmax ˚ expp
logpBWmin{BWmaxq ˚ currentIteration

NI
q (15)

In swarm intelligence algorithms, the global optimization ability of algorithm will be ameliorated
by increasing the population size increase. However, the search time will also increase and the
convergence speed will slow down as the population size becomes larger. On the contrary, if the
population size is small, the algorithm will more easily be trapped in a local optimum. The original
data consists of 48 sets. Combined with the relevant research experiences and a lot of experiments, we
divided the number of data by the number of parameters and the quotient we got is 24, which is set to
be the HMS. After continuous optimization experiments, we determined 20 as the HMS in GHSA.

In the LS-SVM model, the regularization parameter, γ, is a compromise to control the proportion
of misclassification sample and the complexity of the model. It is used to adjust the empirical risk and
confidence interval of data until the LS-SVM receiving excellent generalization performance. When the
kernel parameter, σ, is approaching zero, the training sample can be correctly classified, however,
it will suffer from over-fitting problem, and in the meanwhile, it will also reduce the generalization
performance level of LS-SVM. Based on authors previous research experiences, the range of parameters
γ and σ we determined in this paper are [0, 10000], [0, 100]. The parameters we select in GHSA are
shown in Table 3.

Table 3. Parameters selection in GHSA.

Parameter Value Comment

num num “ 2 Number of variables
γ γ P r0, 10000s Range of each variable
σ σ P r0, 100s Range of each variable

HMS HMS “ 20 Harmony memory size
HMCR HMCR “ 0.9 HMS considering rate

PAR PARmax “ 0.9, PARmin “ 0.1 Pitch adjusting rate
bw bwmax “ 1, bwmin “ 0.001 Bandwidth
NI NI “ 200 Number of iteration

3.2.2. Fitness Function in Global Harmony Search Algorithm

Fitness function in GHSA is used to measure the fitness degree of generated harmony vector.
Only if its fitness is better than that of the worst harmony in the harmony memory, it can replace the
worst harmony. The fitness function is given Equation (16):

f it “ 100ˆ

řn
i“1

ˇ

ˇyi ´ y1

i

ˇ

ˇ

yi
n

(16)

where n refers to the number of test sample, yi refers to the observation value and y1

i to the predictive
value in LSSVM.
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Then we calculate the fitness function in GHSA by Equation (16). After finishing the GHSA, we
have determined the optimal parameter γ “ 9746.7 and σ “ 30.4, then we establish LSSVM model to
train historical data for forecasting the next electric load and get a set of output of LSSVM. At last, we
denormalize the output of LSSVM.

3.2.3. Denormalization

After the GHSA we have determined the optimal parameter γ and σ, then we establish LSSVM
model to train historical data for forecasting the next electric load. The outputs of LSSVM are
normalized values, so we need to denormalize them to real values. Denormalization method is
given by Equation (17):

vreal “ vi ˆ pmax´minq `min (17)

where max and min refers to the maximum and minimum value of the original data.

3.2.4. Defuzzification Mechanism

As indicated by several experiments that there are some inherent errors between actual values
and fuzzy values. Therefore, it's necessary to estimate this kind of fuzzy effects to provide higher
accurate forecasting performance. In this paper, we proposed an approach to adjust the fuzzy effects,
namely defuzzification mechanism, as shown in Equation (18):

d ft “ AVG
ˆ

Y1t

FY1t
,

Y2t

FY2t
, . . . ,

Yit
FYit

, . . . ,
Ynt

FYnt

˙

(18)

where t “ 1, 2, . . . 12 for the twelve months in a year, n is the total year number of data set, i “ 1, 2, . . . , n
refers to the number of year and Yit, FYit is the actual value and fuzzy value of the ith year respectively.
Thus, the final forecasting result can be expressed as Equation (19), and the defuzzification multipliers
are shown in Table 4.

y1

i “ y1

i ˚ d fi (19)

Table 4. Defuzzification multiplier of each month.

Month Multiplier Month Multiplier

January 1.00244 July 1.00612
February 0.98222 August 1.00567

March 0.99931 September 1.00069
April 0.99522 October 0.99932
May 0.99772 November 1.00937
June 1.00493 December 0.99996

3.3. Performance Evaluation

We compare these proposals in different respects. First the proposed GHSA efficiency is compared
with other optimization algorithms like HSA, PSO and GA. These appropriate algorithms are utilized
to optimize the parameter γ and σ.

This experimental procedure is repeated 20 times for each optimization algorithm, and the
performance comparison for different algorithms is represented in Figure 2, and the comparison of
average fitness curves is presented in Table 5. We can see from Figure 2 and Table 5 that the values
of the γ´1 obtained by the four algorithms are close to 0.0001, that is, all the search algorithms can
achieve similar optimization, but the values of parameter, σ, as optimized by the different algorithms
are not the same and this directly affects the fitness. The convergence speed of PSO is the fastest,
however, due to the algorithm complexity, its running time is long. The execution time of HSA is
the shortest, but the fitness is the worst. The running time of GHSA is equivalent to HSA, and the
fitness of GHSA is optimal among four algorithms. In second group, the forecasting accuracy of the
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proposed algorithm is compared with ARIMA, GA-LSSVM [29], PSO-LSSVM [30] and the first group
models. We take the mean absolute percentage error (MAPE), mean absolute error (MAE) and root
mean squared error (RMSE) to evaluate the accuracy of the proposed method. The MAPE are shown
in Equations (20)–(22):

MAPE “ 100ˆ

řn
i“1

ˇ

ˇyi ´ y1

i

ˇ

ˇ

yi
n

(20)

MAE “
řn

i“1
ˇ

ˇyi ´ y1

i

ˇ

ˇ

n
(21)

RMSE “

d

řn
i“1

`

yi ´ y1

i
˘2

n
(22)

where n refers to the number of sample, yi is the observation value and y1

i is the predictive value.
According to the optimal value in Table 5, forecasting results of GHSA-FTS-LSSVM, HSA-LSSVM,
GA-LSSVM and PSO-LSSVM models as shown in Table 6.Energies 2016, 9, 70 
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Table 5. Performance comparison for different algorithms. Particle swarm optimization: PSO; harmony
search algorithm: HAS; genetic algorithm: GA.

Algorithm Fitness γ´1 σ Running Time/s

GHSA 0.0397 0.00010 30.3977 9.2977
HSA 0.0489 0.00010 52.8422 8.2681
GA 0.0439 0.00010 52.8422 68.6248
PSO 0.0451 0.00011 22.3965 69.9352

Table 6. Forecasting results of GHSA-FTS-LSSVM, GHSA-LSSVM, GA-LSSVM, PSO-LSSVM and
autoregressive integrated moving average (ARIMA) models (unit: thousand million W/h).

Time Actual GHSA-FTS-LSSVM GHSA-LSSVM GA-LSSVM [29] PSO-LSSVM [30] ARIMA

15 January 384.5 388.5989 387.094 387.066 393.205 399.142
15 February 352.1 379.4326 372.661 372.65 373.62 381.038

15 March 349.2 368.1298 355.006 355.01 352.864 359.864
15 April 373.3 359.5839 353.429 353.434 351.189 377.003
15 May 387.6 380.1802 366.55 366.545 366.026 362.173
15 June 393.4 392.6603 374.353 374.341 375.799 361.905
15 July 429.8 387.9569 377.522 377.506 379.962 399.488

15 August 416.7 395.6517 397.452 397.409 408.614 432.612
15 September 379.9 395.7048 390.271 390.239 397.814 423.027

15 October 385.3 376.4279 370.15 370.142 370.449 404.338
15 November 398.2 391.7981 373.098 373.086 374.179 390.129
15 December 374.8 380.8968 380.146 380.127 383.494 385.307

MAPE (%) - 3.709 4.579 4.579 4.654 5.219
MAE - 14.358 18.035 18.035 18.215 20.153
RMSE - 18.180 21.914 21.921 21.525 23.0717
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The excellent performance of the GHSA-FTS-LSSVM method is due to following reasons: first
of all, we use FCM to process the original data, making the accurate load value become a set of
input variables with fuzzy feature. Thus, the defects of the original data can be overcome and the
implicit information is dug up. Secondly, the proposed algorithm employed the GHSA to improve the
searching efficiency. Finally, LSSVM reduces the time of equation solving and improves the accuracy
and generalization ability of the model.

4. Conclusions

Traditional electric load forecasting methods are based on the exact value of time series, but the
electric power market is very complex, and the functional relations between variables are too difficult
to describe, so this paper adopts the FTS model, and load values are defined as fuzzy sets. Then we
compare the four algorithms GHSA, HSA, PSO and GA. According to the experimental results, it
is obvious that GHSA which can find the optimal solution quickly and efficiently, is the best search
algorithm in the LS-LSVM model. For the prediction accuracy, the MAPE of GHSA-FTS-LSSVM model
is better than that of the GHSA-LSSVM which has no fuzzy processing. Also, our method has a better
performance than the corresponding methods with GA and PSO.
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