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Abstract: When dealing with sustainable design concepts in new construction or in retrofitting
existing buildings, it is useful to define both economic and environmental performance indicators,
in order to select the optimal technical solutions. In most of the cases, the definition of the optimal
strategy is not trivial because it is necessary to solve a multi-objective problem with a high number of
the variables subjected to nonlinear constraints. In this study, a powerful multi-objective optimization
genetic algorithm, NSGAII (Non-dominated Sorting Genetic Algorithm-II), is used to derive the
Pareto optimal solutions, which can illustrate the whole trade-off relationship between objectives.
A method is then proposed, to introduce uncertainty evaluation in the optimization procedure. A new
university building is taken as a case study to demonstrate how each step of the optimization process
should be performed. The results achieved turn out to be reliable and show the suitableness of this
procedure to define both economic and environmental performance indicators. Similar analysis
on a set of buildings representatives of a specific region might be used to assist local/national
administrations in the definition of appropriate legal limits that will permit a strategic optimized
extension of renewable energy production. Finally, the proposed approach could be applied to similar
optimization models for the optimal planning of sustainable buildings, in order to define the best
solutions among non-optimal ones.

Keywords: sustainable buildings; multi-objective optimization; uncertainty analysis

1. Introduction

Buildings are the largest energy-consuming sector in the world, and account for over one-third of
total final energy consumption and an equally important source of carbon dioxide (CO2) emissions.
The International Energy Agency (IEA) defined, among the strategies and opportunities to 2050, energy
and emissions reduction in the buildings sector as an achievable policy goal. The field of sustainable
design seeks to balance these needs by using an integrated approach to create sustainable design
solutions [1].

When dealing with sustainable design concepts in new construction or in retrofitting existing
buildings, it is useful to define both economic and environmental performance indicators, in order
to select the optimal technical solutions. Generalized decision support models may be useful to
define design alternatives for developing energy-efficient building, by offering a ready reference to
generalized cases for both architects and engineers that allows them to zero in on a set of effective design
solutions. Among these efficient solutions, the definition of the optimal strategy is not trivial because it
is necessary to solve a multi-objective problem with a high number of variables subjected to nonlinear
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constraints. Classical optimization methods suggest converting the multi-objective optimization
problem to a single-objective optimization problem by emphasizing one particular Pareto-optimal
solution at a time. On a large scale, multi-criteria decision analysis (MCDA) methods have become
increasingly popular in decision-making for sustainable energy, mainly to define national or regional
strategies for the implementation of sustainable development policies [2]. However, the design of
sustainable buildings is a very complex issue because there are many physical processes that lead to
conflicting objectives. These challenges have made it advantageous to apply computational methods
of design optimization for large-scale building optimization problems [3,4]. In [5], a multi-objective
optimization model using a genetic algorithm (GA) and artificial neural network (ANN) is proposed
to quantitatively assess technology choices in a building retrofit project. Three objectives (energy
consumption, retrofit cost, and thermal discomfort hours) are optimized and the potential of GA for
the solution of multi-objective building retrofit is shown.

Here, a multi-objective optimization genetic algorithm, NSGAII, is used to derive the Pareto
optimal solutions of a five objective optimization problem of sustainable design of a new building.
The proposed method can be used to define an optimized strategy both in design of new buildings
and in defining optimal strategies for retrofitting existing buildings [6,7]. In the following, Section 2
formalizes the optimization method and describes controllable parameters, fixed parameters and
objectives. Then, the application to a case study is reported in Sections 3 and 4. Finally, Section 5
describes a method to introduce uncertainty evaluation in the optimization procedure. Conclusions
are reported in Section 6.

2. The Optimization Method

Classical optimization methods suggest converting the multi-objective optimization problem
to a single-objective optimization problem by emphasizing one particular Pareto-optimal solution
at a time. On a large scale, MCDA methods have become increasingly popular in decision-making
for sustainable energy [8], mainly to define national or regional strategies for the implementation of
sustainable development policies or to support decisions in sustainable energy fields [9,10].

In this study, a powerful multi-objective optimization genetic algorithm, NSGAII, is used to derive
the Pareto optimal solutions, which can illustrate the whole trade-off relationship between objectives.
The algorithm was selected because the simulation results of the constrained NSGAII showed the high
potential of this optimizer when compared with other constrained multi-objective optimizers [11].

The proposed approach consists of applying an MCDA to obtain optimized strategies,
by evaluating their performance objectives.

The first step of this analysis is the description of the building through n controllable parameters:

x = x1; x2; ...; xn. (1)

A constrained multiobjective optimization problem (CMOP) consists of finding the minimum of
the function:

f : X −→ Z (2)

f : (x1; x2; ...; xn) −→ ( f1(x1; x2; ...; xn), ..., fm(x1; x2; ...; xn)), (3)

subject to:

• boundary constraints:
xmin

i ≤ xi ≤ xmax
i ; (i = 1, ..., n), (4)

• constraints on decision values:
gj(x) ≤ 0; (j = 1, 2, ..., k), (5)

• constraints on objectives:
hj( f (x)) ≤ 0; (j = 1, 2, ..., l), (6)
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The n controllable parameters are used to describe the configuration of the building relative to
the energy performances and the characteristics of the installations.

The controllable parameters considered here are:

• Building parameters: the results of the building energy simulations are used to define the building
energy demand depending on the characteristics of windows and building envelope. For each
building configuration, a relative cost and a comfort level are defined;

• Installation parameters: the configuration of installations is defined by a set of parameters that
describe the energy performances of each system, the relative costs and the comfort level. For a
specific site, only feasible solutions are evaluated, depending on the availability of the fuel
(i.e., natural gas, diesel fuel, etc.) and on specific constraints of the building (available space,
minimum noise level, etc.). The installations here considered are: energy generation system, fluid
distribution system, end devices and building automation control system;

• Renewables parameters: renewable energy technologies are described by their energy
performances (i.e., energy per year generated for each square meter of surface occupied by
a specific solar panel) and by their relative costs. Specific constraints can be added by imposing
minima and maxima depending on legal limits and on available space for the installation;

• Electric parameters: for each configuration (i.e., use of inverters, type of lighting, etc.) a specific
efficiency, a relative cost and a comfort level are defined.

In addition to the controllable parameters, a set of fixed parameters must be defined to evaluate
the performances of each configuration.

The fixed parameters considered here are:

• The minimum percentage of electric green energy: legal restrictions may impose that a minimum
percentage of the electric energy absorbed by a new building is generated by renewable sources.
If the renewable system installed on the building generates less energy than the required amount,
the purchase of the remaining renewable energy must be considered when evaluating the
energy costs;

• The costs of electric energy and fuels;
• The years and the rate of interest considered for the evaluation of the economic indicators;
• The pollutants corresponding to each kind of energy consumed (i.e., CO2 emissions for each kWh

of methane consumed).

Each combination of the controllable parameters describes a specific strategy, that must be
evaluated considering multiple objectives.

Five objectives are evaluated simultaneously:

OB1—Thermal energy consumption;
OB2—Electric Energy consumption;
OB3—Net present value of the investment;
OB4—Emissions of CO2;
OB5—Comfort level.

Once parameters and objectives are defined, the genetic optimization algorithm generates the
Pareto optimal solutions, from whose analysis it is possible to define the optimal strategy for the
specific building.

3. Case Study

The optimization method described above is applied to the design of a new university building
with an area of approximately 2500 m2 (Figure 1). The new building will replace the current Master of
Science in Sports and Sports Sciences facilities and Sports Medicine facilities of the University of
Perugia. There will be offices and classrooms and a specific area for the clinic of Sports Medicine.
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The building will incorporate also a multipurpose gym for both the university and the general public.
Outside of the building, an “energy” area will include the main heating and cooling systems and the
electrical substation.

Figure 1. The test building.

The site is in the city of Perugia, in the Center of Italy, in a suitable position for exploiting solar
energy because of the absence of higher buildings in the neighborhood. The maximum available area
for the solar systems is 2000 m2 on the roof of the new building. Eventually, extra areas can be found in
the adjacent car park, provided that ad hoc structures are built for the installation of the solar panels.

For the case study analysis, the following configurations are considered:

• Building parameters—building configuration (Table A1): the results of building modeling are
used to evaluate the energy demand of the building. Two different configurations were evaluated:

– BC1—base case scenario: standard insulation and standard windows characteristics;
– BC2—increased insulation: high insulation and high-performance windows.

• Installation parameters—energy generation systems (Table A2): typical values of efficiencies of
different heating/cooling generation systems are adopted to define four possible configurations:

– EGS1—base case scenario: standard gas boiler for heating, standard electric chiller for cooling;
– EGS2—first upgrade: condensing gas boiler for heating, standard electric chiller for cooling;
– EGS3—second upgrade: condensing gas boiler for heating, high efficiency electric chiller

for cooling;
– EGS4—third upgrade: multi-function electric heat pump for heating and cooling.

• Installation parameters—fluid distribution system (Table A3): two different configurations are
defined, considering standard and increased insulation on main pipes connecting the “energy”
area with the building and the substation with the air handling units:

– FDS1—base case scenario: standard pipe insulation thickness;
– FDS2—increased insulation: increased pipe insulation thickness.

• Installation parameters—end devices (Table A4): two different systems are considered for the
end devices:

– ED1—base case scenario: standard end devices (low efficiency fan coils and air handling units);
– ED2—increased efficiency: high efficiency end devices (high efficiency fan coils and air

handling units).

• Installation parameters— building automation control system (Table A5): The impact of building
automation control systems (BACS) and technical building management (TBM) systems on the
energy performance of the building is evaluated analogously with what is proposed in [12]. For the
estimation of the impact of BACS and TBM systems on the energy performance of the buildings,
the BAC factors method proposed by the European Norm EN 15232 is used. The European
Standard EN 15232 introduces four different efficiency classes for buildings according to BACS
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and TBM systems installation. Because the case study is a new building, class D (Non-energy
efficient BACS ) is not considered feasible. Thus, three different configurations are evaluated:

– BA1—base case scenario: Class C—Standard BACS;
– BA2—first upgrade: Class B—Advanced BACS and TBM systems;
– BA3—second upgrade: Class A—High energy performance BACS and TBM systems.

• Renewable parameters—photovoltaic system (Table A6): two different technologies are considered
for the photovoltaic panels

– PS1—base case scenario: low efficiency photovoltaic panels;
– PS2—increased efficiency: high efficiency photovoltaic panels.

• Renewable parameters—solar thermal system (Table A7): two different technologies are
considered for the solar thermal panels

– ST1—base case scenario: low efficiency solar thermal panels;
– ST2—increased efficiency: high efficiency solar thermal panels.

• Electric parameters—electric system (Table A8): three different configurations are considered:

– ES1—base case scenario: standard electric installation;
– ES2—first upgrade: inverter installation + standard lighting system;
– ES3—second upgrade: inverter installation + low consumption lighting system.

The interventions described above also result in an improvement of the comfort of building
occupants. For example, upgrading the efficiency of the generation and distribution systems involve
both benefits in terms of service continuity and uniformity of temperature and relative humidity, and
an increased insulation of the building reduces discomfort due to radiant surfaces (radiant ceilings,
floors, etc.). Thus, for each intervention proposed, a qualitative analysis of the expected level of
comfort is made and a score from zero to three is assigned, where zero is no effect on comfort level and
three is a high effect on comfort level. The costs of the interventions are estimated through parametric
evaluations made for the test building and based on the price list adopted by the administrator
of the building. The fixed parameters (Table A9) are defined considering the specific case study.
The minimum percentage of electric green energy, the costs of electric energy and fuels, the number of
years and the rate of interest considered for the evaluation of the economic indicators depend on the
building administrator and on legal limits. The CO2 emissions corresponding to each kind of energy
consumed is obtained by the ISPRA (the Italian National Institute for Environmental Protection and
Research) database [13].

The controlled and fixed parameters are summarized in the annexed tables.
Because the test building is a new construction, the Italian Law (Italian Legislative Decree

No. 28—3 March 2011) imposes limits for the renewable energies. The minimum photovoltaic peak
power is then calculated as (variables are defined in Table 1):

PVmin =
BF
65

. (7)

The minimum solar thermal energy is calculated as:

ETmin = kDHV ∗ ETDHV , (8)

and another limit is imposed to all renewables:

ERmin = kt ∗ (ETDHV + ETh + EC). (9)

The minimum percentage of electric green energy is set to 50%, following the regulations of
the Administration.
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Table 1. List of variables mentioned in Section 3.

Variable Definition

BF building footprint (m2)
PVmin minimum photovoltaic peak power (kW)
ETmin minimum solar thermal energy production
ERmin minimum renewable energy production
kDHV law coefficient (0.55)
EDHV thermal energy for domestic hot water production

kt law coefficient (0.385)
ETh thermal energy for hot water production
EC cooling energy for cold water production

4. Discussion and Results

The analysis of the Pareto front can be done by looking at the configurations that generated
each point of the front. To observe the five objectives (thermal energy consumption; electric energy
consumption; Net Present Value of the investment; emissions of CO2; comfort level), a representation
of the Pareto front on a diagram that can represent all the objectives at the same time is useful.
By analyzing this diagram, an optimized strategy for the specific building may be defined. In Figure 2,
a diagram that represents the five objectives at the same time is proposed. The diagram is easily
readable: the tradeoff between the Net Present Value of the investment and the other four objectives is
clear. By interrogating each point, it is possible to select the best compromise to reach high standards
in sustainability and energy efficiency. The procedure for selecting the optimized strategy can be
customized depending on the needs of the user. In this specific case study, the following procedure
is adopted:

• prefer solutions with low thermal energy conpsumption, in order to reduce localized emissions;
• avoid low comfort solutions, considering the use of the new building;
• minimize the Net Present Value of the investment;
• minimize emissions of CO2.

When analyzing more complex cases, multiple criteria sorting based methods may be used to
select the optimized strategy [14]. Figure 2 shows how the selected strategy permits obtaining a
building characterized by high energy and environmental performances, with an investment that can
be feasible for the Administration.

It is also possible to represent the effects of a specific strategy with respect to the Pareto front.
This can be useful when dealing with external constraints that were not considered in the modelling
(for example architectural constraints), or when analyzing the performances of a base case scenario in
an existing building. The method also permits observation of the effects of the limits imposed by the
Law for the renewable energies and those imposed by the Administration on the minimum percentage
of electric green energy, as described in Section 4. In Figure 3, the simulations with and without
those limits are shown. It can be observed that imposing legal limits slightly modify the Pareto front,
thus legal limits are well defined for the case study. This conclusion is not trivial because the limits
imposed by the Law do not consider the characteristics of the building and of the site. For example,
Equation (9) imposes calculation of the photovoltaic peak power as a function of the building footprint.
It is clear that this parameter cannot describe both the characteristics of the building and those of the
site, as shown in Figure 4, where a different layout of the building, with an increase of the building
footprint, highly modify the Pareto front, with a corresponding limited number of feasible strategies,
with respect to the ones obtained without imposing legal limits.
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Figure 2. Strategy selection from Pareto front. (a) five objective representation; (b–d) views of figure (a).
Parameters and objectives of the selected strategy are described in Table 2.

Table 2. Selected strategy: parameters and objectives.

PARAMETERS

Building configuration BC2
Energy generation system EGS4
Fluid distribution system FDS2

End device ED2
Building automation control system BA3

Photovoltaic system PS2
Photovoltaic area (m2) 255
Solar thermal system ST2

Solar thermal area (m2) 208
Electric system ES3

OBJECTIVES

OB1—thermal energy consumption (GWh) 0.000
OB2—electric energy consumption (GWh) 0.249

OB3—net present value of the investment (M euro) 2.278
OB4—emissions of CO2 (t) 81

OB5—comfort level 17
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Figure 3. Effects of legal limits on the generation of the Pareto front for the case study building.

Figure 4. Effects of legal limits on the generation of the Pareto front for the case study building with an
increase of the footprint.

5. Uncertainty Evaluation

Currently, building energy modeling may give good average energy use over populations of
buildings, but, for individual buildings, there can be large discrepancies between modeled and
actual use [15]. Disagreement between simulated and metered energy consumption represents a
common issue in building simulation [16]. When dealing with existing buildings, models are usually
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calibrated in order to obtain low values of the Coefficient of Variation of Root Mean Squared Error
(CV (RMSE)) and of Normalized Mean Bias Error (NMBE) for the whole building’s monthly use [17,18].
Those standard metrics are usually applied to compare the outputs from the calibrated model with
observed values of energy consumption:

CV(RMSE) =
∑n

i=1
(Mi−Si)

2

n
∑n

i=1 Mi
n

, (10)

MBE =
∑n

i=1 (Mi − Si)
2

∑n
i=1 Mi

, (11)

where: Mi= measured data; and Si= simulation results.
The so-called calibrated simulation (CS) is required for operational optimization of existing

buildings in order to obtain energy savings, and a properly calibrated model may accurately simulate
the building energy process at multiple levels [19]. Probabilistic outputs can be straightforwardly
translated to quantify risks of under-performance associated with retrofit interventions. A calibrated
model should reach the minimum values of the metrics described above according to [20,21].

When dealing with design of a new building, the model cannot be calibrated with measured
data [22], thus the uncertainties and the bias of the simulations must be defined based on previous
experiences of modeling similar building. Moreover, climate data of a test reference year are usually
applied to the energy simulation of a building, but new reference years should be considered for
future time horizons and carbon scenario assumptions. Even using last generation probabilistic
weather generators [23], an uncertainty must be associated with climate data used for the energy
simulations and for renewable energy production estimation, which is also characterized by other
uncertainties that can be estimated, for example, by using measurement performed during long-term
monitoring of photovoltaic plants with different technologies and architectures [24,25]. In addition,
the other parameters (for example, the fixed parameters described above) used for the evaluation of
the objectives may also be characterized by their uncertainties. When the uncertainties described above
are taken into account in multi-objective optimization problems, the set of optimal solutions may be
defined to reduce the amount of uncertainty. Many approaches can be applied to perform optimization
under uncertainty. The uncertainty may be explicitly taken into account when defining the domination
between sets [26], or by evaluating user defined metrics for the generation of the Pareto front.

In order to evaluate the goodness of the optimization process, the effects of uncertainty associated
with the building energy simulation on the evaluation of the objectives, and thus on the generation
of the front of Pareto, should be analyzed. In the following, a method is proposed to introduce
uncertainty evaluation in the optimization procedure, in order to obtain a comprehensive analysis
tool, which permits not only identifying the optimal strategy, but also assessing the uncertainty of the
objectives analyzed.

Let us consider a set of objective functions [ f1(x, ξ), f2(x, ξ), ..., fm(x, ξ)], where x ∈ X represents
a vector of design variables and ξ ∈ Ω a vector of random variables.

The multi-objective problem can be defined as

min
X

[ f1(x, ξ), f2(x, ξ), ..., fm(x, ξ)], (12)

where [ f1(x, ξ), f2(x, ξ), ..., fm(x, ξ)] is a vector of m independent objectives.
Each fi(x, ξ) is a random quantity induced by fi(x, ξ) . It is possible to introduce an operator Φ,

applied to fi(x, ξ) in order to obtain a deterministic attribute of it, reducing the problem as

min
X

[Φ( f1(x, ξ)), Φ( f2(x, ξ)), ..., Φ( fm(x, ξ))]. (13)
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Different definitions for Φ might be used—for example, Φ( fi(x, ξ)) can be the statistical moments
of fi. When applying this method to define the optimal design of a new building, a prudential approach
may be used, in order to avoid underestimation of the energy demand and thus overestimation of the
energetic performance of the system. This can be done by using:

Φ( fi(x, ξ)) = µi(x) + σi(x), (14)

where σi(x) is the standard deviation of fi(x, ξ) and µi(x) is the mean value of fi(x, ξ). In this case, the
optimization under uncertainty seeks to minimize the mean plus standard deviation. The problem can
be formulated as:

min
X

[µ1(x) + σ1(x), µ2(x) + σ2(x), ..., µm(x) + σm(x)], (15)

and the resulting non-dominated solutions are the Pareto front in design under uncertainty.
To show how this method affects the results of the optimization process, the effects of the

uncertainties related to two of the main design variables of the energy modeling (annual heating
energy and annual cooling energy demand) are evaluated. Therefore, based on the results obtained
from similar simulations, the annual heating energy and the annual cooling energy required were
both characterized by a mean value error of ±10% and by a uniform probability distribution with
limits of ±35%. The mean value error effect is considered by increasing the annual heating and cooling
energy simulated by the model. Each objective is then characterized by a combined uncertainty that
must be estimated to properly evaluate the optimal strategy because high uncertainty could lead
to high probable objective values that can be very far from the mean value. The determination of
combined uncertainty is performed via Monte Carlo simulation, by considering only the uncertainties
associated with evaluation of annual heating and cooling energy values. The problem is solved
numerically, generating a large number “M” of values for the probability distribution of each variable
xi, and calculating each fi(x, ξ) with all combinations of the x1, ..., xm values obtained using, for the xi
variables, the “M” values previously generated. Using this Monte Carlo method of error propagation,
a distribution of fi values that corresponds to the distributions of the starting variables xi is obtained.
Then, the mean value and the standard deviation of fi(x, ξ) are calculated and used to evaluate the
solutions of Equation (15). The Monte Carlo simulation is thus performed inside the fitness function
used for the optimization. This leads to a high computational effort that is reduced by the use of
a simple parametric model for the evaluation of the objective functions.

The same procedure may be applied to more detailed simulation models, as in [27], where
it is shown how equation-based languages may be used to generate efficient codes for simulation
and optimization.

The results of the optimization under uncertainty are highlighted in Figure 5, where the Pareto
front is clearly shifted with respect to the one obtained without considering the uncertainties of the
design variables, as in Section 4. After the optimization process, an a posteriori analysis may be
performed, in order to evaluate the uncertainties of the optimized objective functions. Because each
objective is characterized by its uncertainty, the representation of all the objectives in the same diagram
is not feasible. The visualization of the Pareto front can be done by selecting a set of maximum three
objectives, whose confidence intervals are represented as a parallelepiped for each configuration.
For example, in Figure 6a , three objectives (thermal energy consumption; electric energy consumption;
Net Present Value of the investment) are represented: each side of the parallelepipeds represents the
standard deviation of the three variables.
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Figure 5. Uncertainty evaluation.

Figure 6. (a) uncertainty evaluation; (b) detail of Figure 6a.

Because only the uncertainties related to the annual heating and cooling energy values are
evaluated here, the size of the parallelepipeds is small, but it may happen that two volumes partially
overlap each other (Figure 6b). In that case, it is impossible to tell which of the two corresponding
strategies gives better results. When taking into account the uncertainties of other parameters,
the overall combined uncertainty, and thus the size of the parallelepipeds, will increase, eventually
showing infeasible solutions (for example, NPV (Net Present Value) too high for the Administration).
The procedure described above permits obtaining a comprehensive analysis tool, which allows not only
to identify the optimal strategy, but also to evaluate the uncertainty of the objectives. This is essential
to properly assess the effectiveness of the proposed interventions. The parameters corresponding to
the identified optimal solution may then be used to perform detailed simulations of the complete
building model, which can be also used for real-time simulations as proposed in [28].

6. Conclusions

A procedure for sustainable design concepts in new construction or in retrofitting existing
buildings has been presented. The design of a new test building has been taken as a case study
to describe the proposed method. A set of controllable and fixed parameters has been used to
represent the configuration of the test building and five objectives have been identified: minimization
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of thermal energy consumption, electric energy consumption, NPV of the investment, emissions of CO2

and maximization of the comfort level. A powerful multi-objective optimization genetic algorithm,
NSGAII, has been used to define the optimized configuration of the test building. The algorithm is
tested on the design of a new university building and a procedure is proposed for the selection of
the optimized strategy for the specific case study. This procedure may be customized depending
on the needs of the decision-makers and consists of a set of evaluation criteria that permit selection
of the optimal strategy among all of the strategies proposed by the algorithm. This is done by
analyzing, through multidimensional diagrams, the effects of all of the optimal strategies on all the
objectives simultaneously. Then, a method to evaluate the effects of external constraints (for example,
legal limits) has been presented. To show the potential of the proposed method, the test building
optimization has been performed with and without imposing legal limits. The comparison between
the performances with and without imposing these constraints has been allowed to evaluate the effects
of legal limits on the performance of the building. The low connection between parameters adopted
by the Administration and those affecting the performances of the building have been highlighted.
This suggests that a systematic use of such method may improve national or regional strategies for
the implementation of sustainable development policies. Finally, the effects of the uncertainty of the
parameters of the model have been simulated through the Monte Carlo method of error propagation.
The resulting effects modify the optimization process, as shown for the test building, where a clear shift
of the front of Pareto is the result of having considered the uncertainty of two of the main parameters,
the annual heating and cooling energy demand, used in the building model. Then, a representation
through 3D diagrams has been used to show the uncertainties of the objective functions. Through the
analysis of these diagrams obtained for the test building, it has been shown that, as a consequence of the
uncertainty assessment, for some of the objective function values on the front of Pareto, it is impossible
to tell which of the corresponding strategies leads to the best performance. These results have been
obtained for the test building considering only the uncertainties related to two of the main parameters.
When taking into account the uncertainties of all of the controlled and fixed parameters of the building
model, the overall combined uncertainty necessarily may show, in the worst case, infeasible solutions.
These evaluations have been used to point out how the uncertainty assessment is crucial for the entire
optimization process. The results achieved turn out to be reliable and show the sustainability of this
procedure to define both economic and environmental performance indicators, in order to select the
optimal technical solutions for new or existing buildings. Moreover, further similar analysis on a set of
buildings representative of a specific region, might be used to assist local/national administrations
in the definition of appropriate legal limits, which will permit a strategic optimized extension of
renewable energy production. Finally, the proposed approach could be applied to similar optimization
models for the optimal planning of sustainable buildings, in order to define the best solutions among
non-optimal ones.

Author Contributions: Francesco Castellani, Alberto Garinei and Marcello Marconi conceived and formalized
the optimization method; Cristina Brunelli and Lorenzo Biondi applied the optimization to the case study;
Alberto Garinei defined the method to introduce uncertainty evaluation in the optimization procedure.
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Appendix A

Table A1. Building parameters—building configuration.

Building parameters BC1 BC2

Heating peak load (kW) 271 235
Heating energy required - winter (kWh/year) 223884 137466

Heating energy required - summer (kWh/year) 10133 10133
Cooling peak load (kW) 323 308

Cooling energy required (kWh/year) 77530 100440
Building envelope construction cost (euro) 715000 800000

Comfort level 1 3

Table A2. Installation parameters—energy generation systems.

Installation parameters EGS1 EGS2 EGS3 EGS4

Average annual heating system efficiency 92.7% 96.6% 96.6% 143%
Energy supply (heating system) gas gas gas electricity

Cost of the installation (heating system) (euro/kW) 10 30 30 325
Comfort level—heating 1 1 2 2

Average annual cooling system efficiency 164% 164% 270% 258%
Energy supply (cooling system) electricity electricity electricity electricity

Cost of the installation (cooling system) (euro/kW) 130 130 150 325
Comfort level—cooling 1 1 2 2

Table A3. Installation parameters—fluid distribution system.

Installation parameters FDS1 FDS2

Average annual energy savings (%) 0 3.6
Cost of the installation (euro) 52000 67000

Table A4. Installation parameters—end devices

Installation parameters ED1 ED2

Average annual energy savings (%) 0 1.5
Cost of the installation (cooling system) (euro) 56000 75000

Comfort level 2 3

Table A5. Installation parameters—building automation control system.

Installation parameters BA1 BA2 BA3

Efficiency factor for thermal energy 1 0.88 0.8
Efficiency factor for electrical energy 1 0.93 0.86

Cost of the installation (euro) 20000 50000 95000
Comfort level 2 3 4



Energies 2016, 9, 915 14 of 15

Table A6. Renewables parameters—photovoltaic system.

Renewables parameters ED1 ED2

Electric energy production (kWh/(m2 × year)) 162 224
Cost of the installation (euro/m2) 1700 1900

Table A7. Renewables parameters—solar thermal system.

Renewables parameters ED1 ED2

Solar heating production (summer) (kWh/(m2 × year)) 626 752
Solar heating production (winter) (kWh/(m2 × year)) 268 322

Cost of the installation (euro/m2) 600 700

Table A8. Electric parameters—electric system.

Electric parameters ES1 ES2 ES3

Electric energy required (except heating/cooling generation systems) (kWh/year) 405500 316000 291000
Cost of the installation (euro/m2) 238000 265000 295000

Cost of the installation (euro) 20000 50000 95000
Comfort level 1 2 3

Table A9. Fixed parameters.

Parameter Value

Cost of CH4 (euro/kWh) 0.100
Cost of electric energy (euro/kWh) 0.106

Emissions of CO2 (CH4) (tCO2/kWh) 1.979 × 10−4

Emissions of CO2 (electric energy) (tCO2/kWh) 3.267 × 10−8

Number of years 9
Rate of interest 0.043
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