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Abstract: The paper develops a multi-objective planning framework for distribution network
expansion with electric vehicle charging stations. Charging loads are modeled in the first place,
and then integrated into the optimal distribution network expansion planning. The formulation
is extended from the single objective of the economic cost minimization into three objectives
with the additional maximization of the charging station utilization, and maximization of the
reliability level. Compared with the existing models, it captures the interactive impacts between
charging infrastructures planning and distribution network planning from the aspects of economy,
utilization, and reliability. A multi-stage search strategy is designed to solve the multi-objective
problem. The models and the strategy are demonstrated by the test case. The results show that
the proposed planning framework can make a trade-off among the three objectives, and offer a
perspective to effectively integrate the network constraints from both the transportation network and
distribution network.

Keywords: charging station; distribution network expansion planning; multi-objectives; multi-stage
search strategy; traffic flow

1. Introduction

Driven by low-carbon targets and the development of the smart city, the growing number of
electric vehicles (EVs) is becoming a matter of concern not only in the transportation system but
also in the smart grid [1,2]. The integration of EVs into the distribution network with an uncertain
pattern increases peak loading on feeders, power loss, voltage deviations, and the need for network
reinforcements [3–5]. In addition, large-scale adoption of EVs would also have a significant impact on
the transportation network [6]. The availability of EV charging infrastructures is a crucial factor in
increasing the adoption of EVs in the transportation and distribution system. Therefore, it is important
to understand how distribution planning can be adjusted when EV charging loads penetrate into the
distribution system; it will also be necessary to adjust the charging infrastructure plan to suit such
penetration not only at the distribution but also at the transportation level.

Charging stations (CSs) should be placed at appropriate locations and be scaled correctly such that
an EV can easily access a CS within its driving range. Several studies have already been carried out to
deploy CSs. Inspired by the base station towers’ placement to communicate with all mobile nodes, an
allocation approach was proposed for deploying the CSs in [7]. A Voronoi diagram was introduced and
integrated with the economic planning model for CSs placement in [8]. In [9], the criteria performance
of different alternatives and criteria weights were proposed and judged by five groups of expert panels
in the environmental, economic, and social criteria associated with a total of sub-criteria, which could
help make an assessment of the performance of the system with the charging load from the CSs in
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the corresponding deployment. In [10], a two-step screening method considering the environmental
factors and the service radius of EV charging stations was presented to identify the optimal sites of EV
charging stations, and then a mathematical model for the optimal sizing of EV charging stations was
developed with the minimization of total cost associated with EV charging stations. In [11], based on
the concept of set covering and vehicle refueling logics, a model with dual objectives of maximum
coverage and minimum cost was proposed to determine the number and locations of fast-refueling
stations simultaneously serving intercity and intra-city travel. In [12], with the aim of maximizing the
number of vehicles served while staying within the budget constraints, a mathematical programming
model was developed to site the refueling stations. Joana Cavadas et al. proposed an improved model
for locating EV charging stations [13]. This model could avoid double counting the demand by taking
the successive activities of the travellers into account. Considering an EV charging network equipped
with different charging technologies, two frameworks were proposed in [14]: for large networks, the
first framework leveraged pricing dynamics in order to control the EV customer request rates and to
provide a charging service with the best level of quality of service (QoS), and for smaller networks,
the objective was to compute the minimum amount of resources required to provide certain levels of
QoS to each class.

Considering transportation effects on siting CSs, flow-capturing locational model (FCLM) was
investigated in [15]. All trips from the same origin-destination (OD) pair of traffic flow were assigned
to several paths, in which the site of CSs could be selected according to the travel habits or behaviors.
Therefore, the proposed model would choose the minimum number of CSs in areas that had high
levels of traffic flow. However, in that study, the effects on the distribution system were not considered,
so the deployment of CSs may not be fit for the capability of the corresponding distribution system.
Considering the above two aspects, optimal planning models for CS planning in the distribution
network were proposed and studied in [16]. Furthermore, load template profiles were introduced
to verify the CS planning result based on an integrated distribution and transportation constrained
model, which was presented in [17]. Considering the power distribution and traffic network topologies
and the EV owner’s driving behavior, a new multi-objective charging station planning method was
formulated in [18] to ensure charging service while reducing power losses and voltage deviations of
distribution systems.

It is evident that the impact of EV charging on the distribution system could be significant as
penetration increases in the coming years. So, EV load demand needs to be included in the distribution
network expansion planning process. According to previous related studies, optimal distribution
network expansion planning (ODNEP) is formulated as a mixed-integer nonlinear programming
(MINLP) optimization problem, and used to determine the optimal site and size of feeders and
substations [19]. For example, considering the dynamic behaviours of the system parameters asset
management and geographical constraints, the developed imperialist competitive algorithm was
employed for the proposed multistage expansion planning in [20]. Integrated with EV charging
load, the siting and sizing of CSs would also be integrated into the distribution network planning
model. It was indicated from [21] that ODNEP with optimal siting and sizing of CSs could effectively
reduce investment and operation costs. Hu et al. proposed a mathematical model for distribution
network expansion planning, taking optimal siting and sizing of EV charging station into account [22].
Additionally, in the proposed model, the existing substation could be expanded, and the feeders could
be replaced or newly built. Integrated with the vehicle to grid (V2G) strategy, the coordinated planning
problem was also investigated in [23]. Additionally, a multi-objective formula was proposed in [24]
to determine the optimal EV penetration, generation units and feeder upgrades. The above studies
discussed the integrated planning of distribution network and CSs from several aspects. However,
the diversity of travel patterns and traffic flow aspects is not considered, which may lead to locating
CSs or the other distribution components at sites with a certain size favorable for electrical utilities but
not easy for drivers to access due to not including traffic flow aspects.
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The problem we need to solve in this study is that without detailed knowledge about EV travel
range, drivers’ travel habits, and accessibility at this area, it is difficult to a reasonable distribution
network expansion plan. Using the OD data from transportation departments and existing power
related data from electricity utility at hand, we must try to suit both power and charging demands.
Thus, the aim of this work is to present an integrated distribution network expansion planning
framework that takes into account the EV charging loads and network constraints from both the
distribution and transportation systems. The main contributions are listed as follows:

• A comprehensive distribution network expansion planning framework is proposed to determine
the optimal size, site, and period of operation of substations, feeders, and CSs.

• Multi-objectives are designed in the optimal model, in which the minimization of long-run and
short-run costs, the maximum of CS utilization, and the maximum of reliability are formulated
from three perspectives.

• A novel set of transportation and distribution operational constraints are included in the planning
framework to capture EV travel behaviour on the transportation network and charging effects on
the distribution network.

• A multi-stage search strategy is designed for the multi-objective optimization problem considering
the network constraints of the two geographical coupled systems.

The presented model will be a useful tool not only for planning purposes, but also for evaluating
the existing EV charging integrated network from the transportation and distribution perspectives.

Therefore, a brief organization and implementation of the integrated expansion planning
framework in the paper is presented as shown in Figure 1.
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Figure 1. Integrated expansion planning framework.

As depicted in Figure 1, the integrated expansion planning framework mainly includes three parts.
Firstly, the typical daily OD data are optimally assigned on the transportation system considering
traffic constraints based on our previous research [17], which are then used in the queuing model to
determine the candidate CS plans at the transportation network. In that way, the fast charging demands
of each CS are calculated at the corresponding distribution network, while the slow charging demands
of each bus can be obtained based on the conventional load and charging pattern statistics data.
Then, a multi-objective distribution network expansion planning model is developed, which considers
the cost, the CS utilization level, and the reliability level with the integration of EVs. Furthermore,
a multi-stage search strategy is designed for solving the proposed model, including the improved
topology generation algorithm for distribution network with several substations and a bargaining
function-based multi-objective decision method.

The rest of the paper is organized as follows. In Section 2, the network modeling is introduced,
as well as the basic data needed to prepare for the planning. The flowchart for determining the capacity
of the CSs in a candidate plan and the corresponding charging loads for planning are described
in Section 3. Then, a constrained multi-objective model, including objectives of the economic cost,
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CS utilization, and reliability level, is proposed in Section 4. A multi-stage search strategy for solving
the planning problem is given in Section 5. A test case is illustrated in Section 6 and conclusions are
given in Section 7.

2. Network Modeling

The EV charging infrastructures mainly include charging piles (CPs) and charging stations (CSs).
For simplicity, it is assumed that CPs for slow charging exist in residential and commercial areas with
conventional load. The fast charging is handled by the CSs whose siting and sizing are optimized
in the paper. The traffic flow could indicate the aggregated intensity of the EVs to the particular
location, which can be used as a reference for the charging infrastructure planning. Furthermore, the
charging demand of EVs would bring additional loads to the distribution network. Thus, the planning
for CSs should be integrated both with the distribution network (D-network) and the transportation
network (T-network), as shown in Figure 2. Let GD (ND, LD) denote the D-network, where ND and
LD are the sets of buses and lines, respectively. GT (NT, LT) denotes the T-network in the same urban
area that shares geographic information with GD, where NT and LT are the sets of nodes and links,
respectively. Assuming that travel demands originate from a set of origin nodes, and are destined for a
set of destinations S ∈ NT, which are defined as OD pairs, CSs are to be planned at the nodes of the
T-network and connected to the corresponding buses in the D-network through special transformers
and lines. Thus, it can be seen that a certain node in the T-network may overlap with a corresponding
bus in the D-network, which is defined as a “node–bus” pair. Without losing generality, it is assumed
that there is no more than one CS at each node.

Energies 2016, 9, 909 4 of 17 

 

2. Network Modeling 

The EV charging infrastructures mainly include charging piles (CPs) and charging stations (CSs). 

For simplicity, it is assumed that CPs for slow charging exist in residential and commercial areas with 

conventional load. The fast charging is handled by the CSs whose siting and sizing are optimized in 

the paper. The traffic flow could indicate the aggregated intensity of the EVs to the particular location, 

which can be used as a reference for the charging infrastructure planning. Furthermore, the charging 

demand of EVs would bring additional loads to the distribution network. Thus, the planning for CSs 

should be integrated both with the distribution network (D-network) and the transportation network 

(T-network), as shown in Figure 2. Let GD (ND, LD) denote the D-network, where ND and LD are 

the sets of buses and lines, respectively. GT (NT, LT) denotes the T-network in the same urban area 

that shares geographic information with GD, where NT and LT are the sets of nodes and links, 

respectively. Assuming that travel demands originate from a set of origin nodes, and are destined for 

a set of destinations TS N , which are defined as OD pairs, CSs are to be planned at the nodes of the 

T-network and connected to the corresponding buses in the D-network through special transformers 

and lines. Thus, it can be seen that a certain node in the T-network may overlap with a corresponding 

bus in the D-network, which is defined as a “node–bus” pair. Without losing generality, it is assumed 

that there is no more than one CS at each node. 

 

Figure 2. Geographically coupled networks. 

The following objectives are going to be included in the distribution network expansion: 

 New substation construction or an expansion: A medium-voltage distributed network is 

considered in this paper, so the size of the new substation should not be too large, and can be in 

the form of a photovoltaic (PV) based storage substation or distributed generation (DG). 

 New line (feeder) construction: It follows the close-loop design and open-loop operation rule. 

Moreover, the normal open interconnection lines should be determined. 

 The siting and size of the CSs: The site is selected from the candidate nodes and the size reflects 

the number of deployed charging devices. 

Therefore, the coordinated expansion planning can be actually implemented on the two 

networks respectively, i.e., siting and sizing determination for the CSs in the T-network, and the 

further ODENP with the estimated charging load in the D-network. Before starting to plan, basic data 

need to be collected, such as the distribution of the residential area and the commercial area with the 

typical load profile [25], typical parking demand profiles [26], the scale evolution, and daily charging 

times H, which could be estimated based on multi-factor including the EV scale in the area, the 

statistical proportion of EVs, the charging frequency per vehicle [27], the typical ratio of fast charging 

and slow charging (let ω (0 < ω < 1) be the ratio of charging times in CSs in the typical day, while that 

for CPs would be (1 − ω)) [28], and so on. 

  

D-network

T-network

Bus

Node

“node-bus” 

pair

Figure 2. Geographically coupled networks.

The following objectives are going to be included in the distribution network expansion:

• New substation construction or an expansion: A medium-voltage distributed network is
considered in this paper, so the size of the new substation should not be too large, and can
be in the form of a photovoltaic (PV) based storage substation or distributed generation (DG).

• New line (feeder) construction: It follows the close-loop design and open-loop operation rule.
Moreover, the normal open interconnection lines should be determined.

• The siting and size of the CSs: The site is selected from the candidate nodes and the size reflects
the number of deployed charging devices.

Therefore, the coordinated expansion planning can be actually implemented on the two networks
respectively, i.e., siting and sizing determination for the CSs in the T-network, and the further ODENP
with the estimated charging load in the D-network. Before starting to plan, basic data need to be
collected, such as the distribution of the residential area and the commercial area with the typical
load profile [25], typical parking demand profiles [26], the scale evolution, and daily charging times
H, which could be estimated based on multi-factor including the EV scale in the area, the statistical
proportion of EVs, the charging frequency per vehicle [27], the typical ratio of fast charging and slow
charging (let ω (0 < ω < 1) be the ratio of charging times in CSs in the typical day, while that for CPs
would be (1 − ω)) [28], and so on.
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3. Charging Load Modeling

In this paper, traffic flow data is used to help deploy the CSs and estimate the corresponding
charging demand. According to the daily trip OD data obtained from a transportation survey, the traffic
flow on each road of the T-network, which is used for planning, can be obtained. The details of the
process can be found in [17].

According to the ratio of the traffic flow captured by different candidate nodes in the T-network,
we can similarly estimate the ratio of vehicles or the number of EVs that drive pass the node and
would have a larger probability of going for a fast charge. Therefore, the approximate average number
of EVs arriving at the CS located at node j could be estimated as:

λj,t = Hωεt
f nj,t

∑j∈ΩT
f nj,t

/∆t (1)

The mobility and randomness of EVs in a CS are simulated based on the queuing model [29].
Assuming the arrival of EV in a certain CS is described as a Poisson process, the average arrival rate is
reflected by λj,t and the average service rate of a charging device is formulated as:

β j,t =
λj,t

sjµ
(2)

Besides λj,t and β j,t, other performance indices of the CS service system based on the queuing
model can also be calculated as follows:

ρ =
λ

µ
(3)

p0 = 1/[∑s−1
n=0

ρn

n!
+

ρs

s!
1

1− β
] (4)

Wq =
sρs+1 p0

λs!(s− ρ)2 (5)

In theory, more charging devices require more investment, but it may not be an economical
solution. So the minimum number of devices is designed based on the average waiting time Wq,
which is used to indicate customers’ patience when charging in the CS. That is to say, if the waiting time
exceeds a given criteria, the customer will leave, i.e., Wq ≤Wmax

q is used to determine the minimum
number of charging devices. However, it is difficult to get the inverse functions of Equation (5) and
obtain the appropriate result directly, thus an enumeration method is used as follows. For the candidate
CS at node j, according to the maximum λj among time periods, initialize s, calculate Wq, compare it
with the given Wmax

q , and let new s equals to (s+1) till Wq ≤Wmax
q . Then the corresponding s would be

the cost-effective number of charging devices.
After the number of charging devices in a candidate CS plan is obtained, the charging load of the

CS at bus j can be estimated as:

PCS
j,t = β j,tsjPCDv (6)

Regarding CPs, assuming they are aggregated at each load bus, the number of CPs at bus i can
be similarly estimated according to the load demand ratio and the fast charging times, as shown
in Equation (7). Then the equivalent aggregated charging load from the CP at bus i, as shown in
Equation (8), can be added into the final load demand of bus i in the time period t for the coordinated
planning in the next step.

NCP
i =

⌈
H × (1−ω)×∑T

t=1 PLi,t

κ × (1− γ)×∑ND
i=1 ∑T

t=1 PLi,t

⌉
(7)



Energies 2016, 9, 909 6 of 17

PCP
i,t = PCPχi,tNCP

i (8)

where d e is the round up function and χi,t is quantified by the normalized parking demand coefficient,
which can be obtained by surveys at the corresponding residential or business area of bus i in time
period t.

4. Multi-Objective Planning Modeling

After the candidate plans for CSs and the corresponding charging load are obtained,
a multi-objective model for ODNEP is built. It captures the features from both the T-network and
D-network, and can achieve a balanced trade-off between three objectives, which are made up as
shown in Figure 3.
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Figure 3. Three objectives for planning.

The economy of the plan is reflected by FC, which is the total cost in the target year; the utilization
is represented by the average annual captured traffic flow FT; and the average annual unsupplied
demand after outage FR indicates the reliability. Then the comprehensive objective is formulated as:

FC → min

FT → max

FR → min

. (9)

4.1. Economic Cost

The cost in the target year can be optimized by comparing a suitable set of alternative plans using
the following economic model, which includes long-run investment and short-run operation cost for
the substations, lines, CSs, and operation cost for the power loss:

FC = Csub + Cline + CFCS + Closs (10)

Csub = Csub_new + Csub_exp + Csub_op

=
r0(1 + r0)

mS

(1 + r0)
mS − 1

( ∑
i∈ψS_N

CS_N
i xS_N

i + ∑
j∈ψS_E

CS_E
j xS_E

j ) + DδS ∑
t∈T

∑
k∈ψS

PS
k,tx

S
k

(11)

Cline = Cline_new + Cline_maint =
r0(1 + r0)

mL

(1 + r0)
mL − 1 ∑

(ij)∈ψL_N

CLLenijx
L_N
ij + δL ∑

(dp)∈ψL

LendpxL
dp (12)

CCS = CCS_fix + CCS_var =
r0(1 + r0)

mC

(1 + r0)
mC − 1 ∑

i∈ψC

xCS
i (CCS_fix

i + siC
CS_var
i ) (13)
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Closs = Dδloss ∑
t∈T

∑
(ij)∈ψL

xL
ijgij(V2

i,t + V2
j,t − 2Vi,tVj,tcosθij,t) (14)

where Fc is the total cost in the target year, including four parts. Csub is the total cost of the substations,
made up of the new installation investment Csub_new, the expansion investment Csub_exp, and the
operation cost Csub_op. Cline is the total cost for the lines, made up of the new installation investment
Cline_new and the operation and maintenance cost Cline_maint. CCS is the total cost for the CSs, made up
of the fixed investment CCS_fix and the variable investment CCS_var. Closs is the total cost of the
power loss.

4.2. CS Utilization

The utilization of the CSs is reflected by the captured equilibrium traffic flow in the T-network,
and the average annual captured traffic flow FT is formulated as:

FT = D ∑
j∈ΩT

∑
t∈T

f nj,tx
CS_T
j (xCS

j∗ ) (15)

The proposed CS utilization index is used to describe the service capability of the candidate
CS planning.

4.3. Reliability Level

The reliability level is presented to assess the power supply capability of the system dealing with
faults from the view of structure connection, load demand, and others. It can quantify the impacts of
the charging demand on the D-network besides the power balance or other network constraints, as well
as the deployments of the generation units and the network reinforcement. The reliability is reflected
by using the average annual unsupplied demand after outage, as given in the following equation:

FR = D ∑
t∈T

∑
m∈ψa(xS

i )

ENSm,t (16)

The detailed connection conditions of a certain sub-area depend on the candidate plan. ENSm,t is
the unsupplied power demand of sub-area m in time period t according to information including
the failure rate, the repair time, etc. It is noted that the load transfer capability of the sub-area is
determined by both the transmission capacity of the interconnection line and the generation margin of
the sub-area that provides the load transfer in the time period t.

4.4. Constraints

(1) Power balance equations:

PS
i,tx

S
i − PLi,t − PCP

i,t − PCS
i,t xCS

i = Vi,t ∑
j∈ND

Vj,t(Gij(xL
ij)cosθij,t + Bij(xL

ij)sinθij,t) (17)

QS
i,tx

S
i −QLi,t = Vi,t ∑

j∈ND

Vj,t(Gij(xL
ij)sinθij,t − Bij(xL

ij)cosθij,t) (18)

(2) Voltage magnitude:

Vmin ≤ Vi,t ≤ Vmax (19)

(3) Power flow of the lines: ∣∣∣Pij

∣∣∣≤ Pmax
ij (20)
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(4) Power output for the substations:

0 ≤ PS
k,t ≤ xS

k (PM_0
k xS_0

k + PM_N
k xS_N

k + PM_E
k xS_E

k ) (21)

(5) The number of charging devices:

sminxCS
i ≤ sixCS

i ≤ smaxxCS
i (22)

(6) The geographical distance between any CS pair:

dm−n ≥ dmin (23)

where dm−n = ξ

√
(Xm − Xn)

2 + (Ym −Yn)
2, while Xm and Ym represent the horizontal

and vertical axis, respectively, of node m in T-network, and ξ is the distance modification
coefficient [30].

(7) Radial topology in operation:

nL = nV − nS(xS
i ) (24)

Equations (17), (18), and (24) constitute the radiality constraints.

It is worth noting that some other constraints during the calculation of charging demand, such as
the traffic flow constraints of the transportation network and the consumer waiting time constraint for
charging in CS, are integrated in the transportation network framework described in Section 3 and [17]
as well.

5. Multi-Stage Search Strategy

According to the models in the previous sections, a multi-stage search strategy is designed for
solving the ODNEP problem, as shown in Figure 4.
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Stages I–II are used to generate the candidate network structure (topology). The interconnection
paths should be determined in the first place according to the connection between the candidate
substations, as shown in Stage I. According to the original topology and candidate substations
information, the Floyd-Warshall algorithm [31] is used to find the shortest path with the minimum
sum of line impedances between each generation bus (site of the substation). The reason for this is that,
generally, the larger the impedance of a line is, the greater the investment; also, the power loss will be
greater a larger current passes through the line. So, taking the shortest path can effectively reduce the
investment and power loss. In that way, the lines in the paths can be included in the final plans as line
set ψFW.

After the interconnection paths are determined, at least one line would normally be open
in real operation to connect the four tree structure sub-areas. In Stage II, to avoid loops in each
sub-area, a modified Prim algorithm [32] is used to generate the possible topology for the distribution
network. Three rules need to be addressed in the random generating based on the Prim algorithm:
À The constraint in Equation (24) needs to be satisfied; Á each generation bus (substation) should
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connect with one load bus at least; Â in the real operation of the distribution network with multiple
substations, one line along the path between each generation pair in set ψFW would be open, which is
defined as the normal open interconnection line. Repeat the algorithm to generate a number of
candidate network structure plans.

Figure 5 shows simple examples of the proposed topology generation algorithm. Bus 1 and
Bus 5 are generation buses, while the rest are load buses. The number in the bracket is the weight of
the corresponding line. For example, the weight of line 1–4 is 1. So, according to the shortest path
algorithm, line 1–4 and line 4–5 are selected into ψFW, as shown in Figure 5a. Then, based on the
designed three rules, the final candidate topology plans can be seen in Figure 5b–e.
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In Stage III, the candidate network structure plans, candidate substation plans, and candidate
CS plans are combined to obtain “mixed” combination plans. Then power flow calculation and
constraints verification would be implemented. If it failed to pass the verification, then the plan would
be abandoned. Otherwise, the “effective” combination plans would be filtered. Then the performance
(objectives) corresponding to each “effective” plan would be calculated. In terms of the calculation for
the reliability level objective, the bus–bus connections matrix, interconnection line, and load transfer
capability between each substations and other information should be cleared up first according to
the network structure data in each effective plan, the label for each bus in each sub-area should be
re-numbered, and a feeder matrix will be prepared for the ENS calculation based on the analytical
method [33].

In Stage IV, a multi-objective decision would be implemented for each effective combination
plan. Each objective has its own expected value and optimal trend. In terms of the minimum
problem, the minimum value of F(x) is called the best value, which is shown as F(x*) where x* is the
optimal solution. Conversely, the worst value of F(x) is the maximum value, defined as FW. Then the
normalization is formulated as shown in Equation (25), which gives 0 as the minimum value and 1 as
the maximum value:

FN
i,j (x) =

Fi,j(x)− Fi(x∗)

FW
i − Fi(x∗)

(25)

where Fi,j(x) is the value of the ith objective function in the jth candidate plan.
For the purpose of comparing the relative efficiencies of the various multi-objectives, a super

criterion also known as the bargaining function is applied and formulated:

MaxBIj =
R

∏
i=1

(1− FN
i,j (x))

τi j = 1, . . . , N (26)

where N is the number of the candidate plans and R is the number of the objectives, e.g., R = 3 in
the designed model of this paper. BIj(x) is the bargaining function, which is used to describe the
distance from the solution point to the one with the worst value of all the objectives. The larger BIj is,
meaning the further the distance is, the better the comprehensive performance of the corresponding
solution will be.
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Finally, the optimal plan can be determined by selecting the one from the frontiers with the largest
bargaining criterion, according to Equation (26).

6. Test Cases

6.1. Case Description

Sioux-Falls network [34] is used as the T-network in the test case, which contains 24 nodes,
as shown in Figure 6. Bi-direction roads connect two neighboring nodes. Detailed daily trip 552 OD
pairs traffic data can be found in [34]. A 54-bus distribution network is used as the D-network, as shown
in Figure 6. It is a 15-kV system; the detailed systems data can be found in [19,35]. The solid lines are
existing ones, while the dotted line are candidates. The “node–bus” pair of the coupled network can
also be seen in Figure 6. The bus in the shadow space belongs to the commercial area while the others
belong to residential area. The typical normalized daily parking demand, typical normalized daily
load demand, and typical normalized daily traffic flow coefficient for planning [16,26,28] are given in
Figure 7. The goal of this test is planning a distribution system with four substations, two existing
substations (one can be expanded), two candidate new substations, 5 CSs (11 candidate locations),
and the line reinforcement from the candidate ones. Link lengths of the road network are set and scaled
by 10−4 (km) based on the given node coordinates [34]. Programs are implemented in the MATLAB
environment using Celeron E3300 2.5 GHz/1.96 GB computers.
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The main parameters for the planning framework are given based on the real data and also the
related settings in some studies, such as [17,19,36–38], which are set as follows for the case study:
Let H = 3600, r0 = 0.1, b = 0.15, mS = mL = mC = 15, dmin = 10 km, µ = 0.5, Wmax

q = 10 min, ω = 0.2,
v = 1, PCP = 3 kW, PCD = 30 kW, γ = 0.75, κ = 4 vehicles/day, smin = 4, smax = 10. CL = 1 × 105 USD/km,
δloss = 60 USD/MWh, δS = 60 USD/MWh, and δL = 1000 USD/km per year. The voltage magnitude
varies within [0.95, 1.05] p.u. The transmission power limit for each line is set as 10 MW. The rest of
the unit cost information for substations and CSs can be found in Tables 1 and 2.

Table 1. Substation expansion or new construction options.

Station Location Capacity Options (MW) Investment (×106 USD)

Bus 52 (expansion) 0 0
5 8

Bus 53 (new)
5 7

10 14
15 21

Bus 54 (new)
5 6

10 12
15 18

Table 2. Unit fixed and variable investment for candidate CS (×104 USD).

Bus 6 26 33 31 30 13 15 27 28 47 14

CCS_fix
i 35 27 45 38 25 20 40 45 45 35 35

CCS_var
i 11.5 10.7 12.5 11.8 10.5 10 12 12.5 12.5 11.5 12.5

6.2. Simulation Result and Analysis

Based on the OD analysis and assignment method in [17], 19 available plans (sites and sizes) for
the CSs can be obtained in the T-network. In each candidate CS plan, the corresponding hourly EV
charging load profile can also be estimated and prepared for the coordinated planning.

Then, the interconnection paths between each generation bus (substation) pair are determined
based on the proposed strategy in Stage I, as shown in Table 3.

Table 3. Lines in set ψFW.

Station Pair (Bus) Interconnection Path

Bus 51–Bus 53 Line 51–3, 3–4, 4–5, 5–6, 6–28, 28–53
Bus 51–Bus 54 Line 51–1, 1–9, 9–22, 22–54
Bus 52–Bus 53 Line 52–14, 14–15, 15–16, 16–40, 40–41, 41–53
Bus 52–Bus 54 Line 52–11, 11–12, 12–13, 13–43, 43–30, 30–54

After that, several feasible network structure plans are generated by the designed method with its
rules described in Stage II. Then, in the coupled networks, the “mixed” plans are formed and verified
with multiple time period power flow calculation and constraints. Thus, there are 244 “effective”
combination plans filtered, as scattered in Figure 8. In Figure 8, the feasible solution boundaries are
formed as a cube, which includes the best and the worst value of each objective in the generated feasible
solutions. When one objective achieves its best performance, there would be multiple combinations
of the other two, but none are made up of the three best values of the objectives together. Let τi = 1,
the bargaining criteria of each feasible solution after ranking as in Figure 9. According to the features of
the bargaining decision, i.e., a larger value of the solution achieves better comprehensive performance,
the best solution (0.3637) can be chosen as the final optimal result. Its performance in terms of the
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three objectives is comprehensively best and has the furthest distance from the worst values. The final
optimal planning result is as shown in Figure 10. The 50 lines in blue are deployed to guarantee the
radial operation of the distribution network, and the dotted lines 22–54, 6–28, 16–40, 13–43 in red are
also constructed as the normal open interconnection line for the generation of pairs of buses 51–54,
51–53, 52–53, and 52–54. The site and size of CSs can be also found in Figure 10, as well as the capacity
result of the substations. It can be seen that the substations in Buses 51 and 52 do not need to be
expanded, while 15 MW substations need to be planned at Buses 53 and 54.
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The results obtained with the proposed planning framework are compared with other results
obtained through similar procedures reported in the literature, which are based on different objectives.
The comparative results are shown in Table 4. The result obtained based on the proposed planning
framework in this paper is labeled as #6. In the majority of prior studies, economic cost is the only
concern, as in the method in [16]: FC reaches the lowest in #1 among all the effective combination plans,
which is indeed the most economic one. However, if larger investment is permitted, the reliability
of the plan stands at a comparative low level, as well as the ability to capture traffic flow. Thus the
bargaining value of 0.0396 is comparatively small. Plan #2 is obtained in view of the reliability of the
system, and the coordination of “generation-network-load” is considered. The interactive impacts
between the CS planning and distribution expansion are integrated into the reliability objective, but the
other two objectives are not satisfied. The bargaining value of #3 is close to that of #6. However,
the deployments for the network structure, CSs, and substations are quite different. The main reason
is that FT in #3 purely considers the performance of the CS plan on the T-network, and FC takes only
the economic factors into consideration. The two integrated objectives cannot reflect the optimal
solution to improve the performance of the couple networks besides power balance. However,
in the multi-objective modeling of #6, besides the two objectives, FR is introduced, which makes
a comprehensive assessment on the “coupled” networks and deeply strengthens the meaning of
“generation-network-load” coordination. The reliability objective is not a simple addition to the
model, but is integrated into the algorithms and solving strategy including status analysis for
the interconnection lines, distribution network partition, load transfer capability calculation, etc.,
which deepens the complexity compared with other studies, but gives better and more accurate
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planning results. The comparison between Plans #5 and #6 is similar to the discussion above. On the
other hand, in terms of the proposed solution, it is simple, without multiply optimization iterations.
Although the enumeration combination operation in the proposed multi-stage search strategy may
generate a large number of “mixed” plans in the first place, the designed rule in Stage II of the proposed
multi-stage search strategy can also help with dimension reduction. Besides, the network planning
problem is not a real-time problem; there is enough time for optimization in the planning phase, and
it is worth spending more time on optimization in the planning phase in order to get more accurate
optimal solutions rather than “fast” ones.

Table 4. Planning results comparison with different modeling methods.

# Description FC
(×107 $/Year)

FT
(×106 Vehicles/Year)

FR
(MWh/Year)

Bargaining Value in the
Three-Objective

Optimization

1 FC → min 2.5907 1.4436 0.068 0.0396

2 FR → min 2.7781 1.5935 0.0602 0.0403

3

{
FC → min

FT → max
2.688 1.7953 0.0639 0.3184

4

{
FC → min

FR → min
2.6662 1.3674 0.0607 0.0585

5

{
FT → max

FR → min
2.7932 1.7953 0.0625 0.0245

6


FC → min

FT → max

FR → min

2.6891 1.7953 0.0631 0.3637

7. Conclusions

In this paper, a coordinated planning framework for distribution network expansion, including
the siting and sizing of CSs, is proposed. Multi-objectives are designed in the optimal model, in which
the minimization of long-run and short-run costs, the maximum of CS utilization, and the maximum
of reliability are formulated from three perspectives. Moreover, a set of transportation and distribution
operational constraints are included in the planning framework to capture EV travel behavior on the
transportation network and charging effects on the distribution network. Furthermore, a multi-stage
search strategy is presented on the geographically coupled transportation and distribution network to
obtain the optimal planning solution.

The results of the test case are presented and compared with other modeling methods, which has
shown the feasibility and effectiveness of the proposed model and strategy. In addition, it is shown
that the multi-objective model can make a trade-off among minimization cost, maximization of CS
utilization, and maximization of reliability, which is valuable for decision-makers. Also, the proposed
distribution network expansion methodology can accommodate the integration of electric vehicles.
Moreover, the presented framework can be used by local power companies to quantify the impacts of
EV and the required expansion in the distribution network. Lastly, it also provides a way to evaluate
the existing EV charging integrated network from the transportation and distribution perspectives.
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Abbreviations

The following abbreviations are used in this manuscript:

ND the set of buses in D-network
LD the set of lines in D-network
NT the set of nodes in T-network
LT the set of links in T-network
ΩT the set of candidate CS nodes in the T-network
∆t the predicted time interval
H the typical daily charging times of vehicles in the planning area
ω the average ratio of daily charging in CS
εt the normalized traffic flow coefficient, in time period t, to reflect the daily charging ratio
µ the average service rate of charging device
v the working efficiency of the charging device (0 < v ≤ 1).
p0 the free probability of the CS that EV can get charged by a charging service
PCD the charging capacity of a charging device
PLi,t the conventional active load demand at bus i in time period t
PCP the charging capacity of a CP
κ the service ability of a CP (vehicles/day)
γ the vacant rate (0 ≤ γ ≤ 1)

χi,t
the normalized parking demand coefficient at bus i in time period t, to reflect the charging
demand from CPs

r0 the interest rate
mS, mL, mC the capital recovery coefficient for the substations, lines and CSs, respectively
CS_N

i the investment of new substation at bus i

CS_E
i the investment of the expansion substation at bus j

CL the investment of new lines per km
CCS_ f ix

i , CCS_var
i the fixed and variable investment of the CS at bus i, respectively

δS the unit operation cost for substations
δL is the operation and maintenance cost for lines per km per year
δloss is the unit cost for the power loss
D the days of the target year
gij the conductance of line ij

ΨS_N, ΨS_E, ΨS, ΨC
the bus sets for the candidate new substations, the candidate expansion substations, all the
substations, the candidate CSs in the D-network

ΨL_N, ΨL the line sets for the candidate new lines, all the possible lines

QS
i,t, QLi,t

reactive power of the substation and the conventional reactive load demand at bus i in
time period t, respectively

Vmin, Vmax the lower and upper limits for the voltage magnitude, respectively

PM_0
k

the initial capacity of the substation at bus k, while xS_0
k the binary variables for indicating

whether there is a substation at bus k before planning, is so xS_0
k = 1, otherwise 0, so is PM_0

k
PM_N

k the capacity of the new substation at bus k

PM_E
k the expansion capacity at bus k

Pmax
ij the limit of the power flow at line ij

smin, smax are the lower and upper limits for the number of the charging devices in each CS,
respectively

dm-n the distance between CSs at node m and n
dmin represents the allowed minimum distance between any CS pair
nV the total number of buses in the D-network
τi the weight factor for the i th objective

fnj,t
the traffic flow captured by the CS at node j in the time period t, which can be obtained
through the sum of the corresponding fra with the same injection direction

λj,t
approximate average number of EVs arriving at the CS located at the node j in the time
period t

sj the number of available charging devices at the candidate node j
ρ the average service rate of the CS
Wq the average waiting time
Wmax

q the maximum average waiting time
β the average service rate of a charging device
PS

k,t the power output of the substation at bus k in time period t
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Lenij the length of line ij
Vi,t the voltage magnitude at bus i in time period t
θij,t the phase angle deviation of line ij in time period t

xS_N
i , xS_E

i xS
i

the binary variables for indicating the state of substations. If a candidate new substation
exists at bus i and is included in the final solution, xS_N

i = 1, otherwise 0. If a candidate
expansion substation exists at bus i and is included in the final solution, xS_E

i = 1,
otherwise 0. If a substation exists at bus i in the final solution, xS

i = 1, otherwise 0

xL_N
ij , xL

ij

the binary variables for indicating the state of lines. If the candidate new line exists at line
ij and is included in the final solution, xL_N

ij = 1, otherwise 0. If line ij is in the final solution,

xL
ij = 1, otherwise 0

xCS
i

the binary variable for indicating the state of CSs in the D-network. If a candidate CS exists
at bus i and is included in the final solution, xCS

i = 1, otherwise 0

xCS_T
j

the binary variable for indicating the state of CSs in the T-network. If xCS_T
j∗ = 1 (j* is the

corresponding bus to node j in the coupled network), xCS_T
j = 1, otherwise 0

ψa
(

xS
i
)

the set of sub-areas of the D-network in operation, and determined by the value of xS
i

ENSm,t the energy not supplied in the sub-area m in the time period t

Gij(xL
ij), Bij(xL

ij)
the real and imaginary items of the nodal admittance matrix, respectively. The matrix is
closely affected and determined by the state of xL

ij
Pij the power flow at line ij
nS the number of substations in the final solution, determined by xS

i
nL the number of lines in operation
Fi,j(x) the ith objective value in the jth plan
BIj(x) the bargaining value for the jth plan
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