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Abstract: Wind forecasting is critical in the wind power industry, yet forecasting errors often exist.
In order to effectively correct the forecasting error, this study develops a weather adapted bias
correction scheme on the basis of an average bias-correction method, which considers the deviation
of estimated biases associated with the difference in weather type within each unit of the statistical
sample. This method is tested by an ensemble forecasting system based on the Weather Research and
Forecasting (WRF) model. This system provides high resolution wind speed deterministic forecasts
using 40 members generated by initial perturbations and multi-physical schemes. The forecasting
system outputs 28–52 h predictions with a temporal resolution of 15 min, and is evaluated against
collocated anemometer towers observations at six wind fields located on the east coast of China.
Results show that the information contained in weather types produces an improvement in the
forecast bias correction.

Keywords: wind power; wind forecasting; statistical correction; weather classification;
ensemble forecasting

1. Introduction

As a kind of clean energy, wind power is receiving increasing attention and application in the
world, under the recent concern about energy crisis and global warming issues [1,2]. However, a wind
field’s output power strongly depends on local real-time wind speed and is thus uncontrollable.
The fluctuation of wind speed will inevitably lead to the fluctuation of the output power of the wind
farm. As a result, in order to stabilize the voltage in the power grid, the portion of wind power in the
regional power grid must be limited to a certain level, namely the wind power penetration limit [3].
This penetration limit severely restricts wind power’s extensive application.

One solution to this problem is to provide near surface wind speed forecasts with a high temporal
resolution, from which the predictions of wind fields’ output power can be obtained [4]. This method
has been proven effective in numerous practices [5]. However, because of imperfect models and
uncertain initial conditions, errors always exist in numerical weather prediction (NWP) output [6].
In this case, a statistical correction to NWP is an effective means to reduce prediction errors without the
potentially expensive cost to improve the model scheme and initial fields [7–10]. There has been a lot
of work testing and improving various statistical correction methods in order to improve the forecast
skill of NWPs [1]. Typical approaches include comparison and combination of different statistical
models [11–14] and NWP datasets [15], and incorporating more input parameters.

Generally speaking, statistical correction is to construct a statistical model between historical
prediction errors and single or multiple input parameters, in order to estimate the forecast error
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at the time to be corrected according to the values of these parameters. However, using a single
parameter, for example, the predicted value is insufficient in limiting the range of bias estimation.
Therefore, improvements have been made by adding more parameters for better estimation accuracy.
Previously, parameters to be added in statistical models mostly focus on day/night flag [16], the forecast
length [17] and seasonality, as these parameters are physically related to prediction errors and are able
to gain along with the prediction. On the other hand, predictions of other meteorological variables
besides the wind speed are often added in models. In some works, researchers have proven that the
combination of wind direction and wind speed is effective in reducing the error of prediction [18,19],
temperature and pressure can also improve the performance of statistical models [20,21], and the
spatial interdependency of different variables has been proven to be effective by some studies [22].
However, in many circumstances, especially under complicated weather conditions, these parameters
still cannot offer enough information for bias estimation and sometimes even worsen the forecast
results, which implies that some additional or more relevant parameters are needed to provide more
complete information.

As a summary of the entire regional meteorological field at a certain moment [23], weather type
is clearly related to the meteorological conditions and thus the wind field. This parameter not only
contains information of seasons, and day and night, but it also reflects environmental conditions in
both the local site and the nearby area. In this way, statistical correction models can be equipped
with more spatial information compared to those using merely local meteorological factors. While
weather classification has been widely used in many fields, such as climate analysis [24–26], wind
reconstruction [27] and weather prediction [28,29], it has not been conventionally applied or considered
in the wind energy field for the forecast bias correction.

In this paper, we define a variable named weather type based on the classification of the
meteorological field, and test its effect in improving the long-term wind forecasting skill in a business
forecasting system. Compared to traditional bias correction methods, this modified scheme considers
typical biases of NWP in different weather types, thus the prediction biases of sampling units can
be corrected to an expected value in the same weather type as the focus period. We will show that
the addition of weather types has a positive effect in the long-term wind forecasting, and it performs
better in ensemble average predictions than non-ensemble predictions due to the higher association
between prediction biases and weather types.

The paper is organized as follows. Section 2 describes the weather classification system. Section 3
describes the ensemble forecasting system. Section 4 presents the principle of the correction method.
Section 5 shows results and the evaluation. Conclusions and some discussions are given in Section 6.

2. Weather Classification System

2.1. Weather Classification

Weather classification is a methodology that identifies several characteristic weather types by
analyzing specific meteorological variables, and then classifies the meteorology fields into these
weather types.

In the theory of classification, various cases are divided into several groups, or named clusters.
Members in the same group share similar features, while different groups have dissimilar ones [30].
Each group has a “core” showing the representative feature of members in this group. In the case of
weather classification, these cores are called characteristic weather types. A characteristic weather type
represents the typical distribution of meteorological elements among all of the members in its group.
In this way, weather fields are classified into different groups with distinct individual features.

As the background fields of local weather propagate, the weather type at larger scales is usually
correlated with local weather processes [23]. Therefore, weather classification can be used for the
identification and prediction of various weather processes, and to help improve weather forecast skills.
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There are two main approaches to realize weather classification, namely classification of air
mass and classification of circulation [30]. The air mass classification refers to the classification
typically based on surface variables such as pressure and temperature, which can reflect local weather
conditions. On the other hand, circulation classification depends on large-scale parameters such as
sea level pressure (SLP), geopotential height, or some other fields that can describe the atmospheric
circulation on a regular NWP grid. Compared to air mass classification, the performance of circulation
classification is generally superior in that it considers the influence of both large-scale circulation and
local meteorological variables [31]. In order to run a circulation classification method, it is necessary to
define a domain in advance, so that the algorithm will deal with the distribution of the variables only
within this domain, which is also called the “weather case” in this paper.

2.2. Cost733 System

In this research, the European Cooperation in Science and Technology Action 733 (COST733)
system [32] is applied to weather classification in China. The COST733 system is originally used to
achieve a general numerical method for assessing, comparing and classifying weather situations in
Europe, and has demonstrated good performance in previous research [33–35]. This system has also
been applied to weather classification in areas outside Europe [33], because it has high operability and
credibility, and contains plenty of classification schemes.

The clustering algorithm used in this research is the t-mode principal component analysis using
oblique rotation [36]. This method can avoid the “snowball effect” to a certain extent, which means
most of the sample units are classified as one same type in calculation, and few sample units in other
types [37]. This algorithm thus ensures that each type has a relatively comprehensive sample size.
The algorithm has already been realized in COST733 [32] (methods: PCT), and has been applied in
some published works [38].

2.3. The Operational Process

The operational process is divided into two steps. The first one is to build up characteristic
weather types according to historical data, and the second step classifies the cases used in the
statistical correction model. A circulation classification system is applied in this research. In this case,
a meteorological element called SLP is chosen as the variable considered in the algorithm. Therefore,
the word “weather type” in this paper means the distribution of SLP in the selected domain as shown
in Figure 1.

Since the characteristic weather types produced by the first step will be used as the classification
standard in the next step, it will be beneficial for weather types to be sufficiently representative and
stable. These weather types are desired to represent a sufficient number of cases, which naturally
requires a large enough historical sample dataset. Therefore, instead of using our NWP outputs,
the National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis
data from 2005 to 2012 is applied which contains ample weather cases in the prediction domain.

Considering that the aims of weather classification is to distinguish the difference between NWP
errors of different weather types, enough weather types should be created so that important samples
will not be ignored. On the other hand, the number of types should be limited to ensure that all the
types have enough samples to keep their representativeness. By testing different numbers of clusters,
an 18-weather type model well satisfies the above requirements and is thus applied. Figure 1 shows
the circulation patterns of these 18 types.

For example, Types 02 and 03 are two of the most frequently occurring weather types in East
China in Figure 1. Type 02 mostly occurs in winter, and it is obvious to see a cold high pressure air
mass (red area) over the mainland. In contrast, Type 03 occurs in summer, where the land area is heated
and covered by low pressure air masses (blue area), and the West Pacific Ocean is controlled by the
well-known subtropical high pressure. The model predictions also have distinguishable performances
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for these two weather types. For example, the average prediction error of the first type is 2.26 m/s,
whereas in another one it is 1.19 m/s.

Once the weather types are established, they will not change in the operational process. When
weather cases in either the training set or correction set are input into the statistical model, each of
them will be classified and assigned to one of these 18 weather types.Energies 2016, 9, 894 4 of 20 
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3. The Ensemble Forecasting System

This study is based on the Weather Research and Forecasting (WRF) model [39], which is widely
used in research and practical applications. As a meso-scale meteorological model, the WRF model is
able to predict weather processes with a resolution of kilometers, and simulates sub-scale processes by
parameterization. Vertically, the WRF model uses eta levels to describe pressure layers depending on
local surface pressure.

3.1. Ensemble Forecasting

In practice, various uncertainties exist in numerical predictions, including inevitable errors of
weather elements in initial prediction fields, differences between physical schemes used and real
cases, and defects in forecasting models. In a chaotic systems, such as the atmosphere, any initial
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uncertainties would lead to a complete loss of forecasting skill. Thus, it is necessary to express the
random properties of the atmosphere caused by these uncertainties in predictions [6].

Different from traditional single forecasting, ensemble forecasting makes prediction by using a
group of ensemble members to obtain multiple predictions. The idea of ensemble forecasting proposes
that by estimating uncertainties of initial values, it will be possible to simulate these errors through
the addition of a group of random perturbations to initial values. In this way, we obtain a group of
distinct initial values, and each of them will be separately used to run a prediction. Finally, we will get
a group of prediction results containing various possibilities in the real case.

There have been several methods to get a single prediction result from ensemble predictions.
In this paper, ensemble members are produced by the addition of random perturbations. Therefore,
these members should be equal, i.e., it will be unfair to assume any one of the members performing
better than the others. In this case, we use the ensemble mean prediction as the final deterministic
prediction, which is calculated as the mean value of predictions from all of the ensemble members at
the same grid point and the same time.

3.2. Ensemble Member Production

The forecasting system uses the NCEP Global Forecasting System (GFS) data as the initial field.
In subsequent processes, by adding random perturbation into the initial field and using multi-physical
schemes, an ensemble containing 40 members is produced.

The multi-scheme is a prediction skill that uses different physical parameters and schemes for
different members in the ensemble forecasting. In this research, we chose different schemes from
four physical processes, which produce 40 different combinations. The multi-scheme includes three
microphysics (MP) process schemes (Lin scheme [40], WRF single moment (WSM) three-class simple ice
scheme [41], WSM six-class scheme [42]), four land surface (SFC) schemes (thermal diffusion scheme
(from Mesoscale Model 5), unified Noah land-surface model [43], the Rapid Update Cycle (RUC)
land-surface model [44], and Pleim-Xu scheme [45]), three cumulus (CU) schemes (Kain–Fritsch [46],
Betts–Miller [47], and Grell–Devenyi [48]), and two planet boundary layer (PBL) schemes (the Yonsei
University [49], and the Mellor–Yamada–Janjić [50]). The Table A1 in the appendix lists the combination
of physical schemes for each ensemble member.

3.3. Forecasting System Design

The wind farms chosen in this research are located on the east coast of China, which are shown in
Figure 2. The local observational data comes from anemometer towers in these wind farms, which
is average wind speed with a 15 min temporal resolution, in accordance with the requirements of
the State Grid Corporation of China (Beijing, China). The height of the wind tower is 70 m, which is
consistent with the hub height of wind turbines.

In Section 2.3, the process of classification has been divided into two steps, namely, creating
weather types and classifying some other data into these types. This research uses NCEP FNL
Operational Global Analysis data from 2005 to 2012 to obtain 18 characteristic weather types. Then in
the second step, the WRF ensemble average forecasts from September 2013 to August 2014 are classified
into the 18 weather types obtained from the NCEP data. A statistical association is established between
forecast biases and weather types for this period, which is subsequently applied to the correction
procedure. Ensemble forecasts from September 2014 to January 2015 are used to test the weather
adapted correction method.

According to the requirement of the State Grid Corporation of China, the forecasting system
needs to publish the prediction of wind speed of the second day at 8:00 am LST (Local Standard Time,
Beijing, UTC + 8). Considering the delay in the publishing and receiving of GFS data, and the time
cost of simulation, the forecasting system chooses the 12:00 GMT (Greenwich Mean Time) GFS global
field to be the initial field, therefore the output prediction is 28–52 h ahead.
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In this research, a single domain is constructed with a horizontal resolution of 13.5 km. This
domain in Figure 3 contains 409*341 grid points, covering the entire land area of China. Considering
the requirement of near surface predictions, the eta levels in the model are set with an increasing
density near surface, with four levels located below 100 m above the ground. The time step in the
simulation is set to be 60 s in order to increase the stability of model.
Energies 2016, 9, 894 6 of 20 
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Finally the system output field is the ensemble mean of the 40 members. The 70 m wind speed of
target wind farms is extracted by spatial interpolation from the output field to be the NWP primary
deterministic product, followed by the statistical correction presented below.

4. Statistical Correction

In numerical simulation, the error of prediction comes from two aspects, namely the error of the
initial field and the defects of numerical models. Generally speaking, the model error can be divided
into the systematic error and the random error [51]. Comparing with random errors, the systematic
error can be estimated and reduced through statistical methods, by comparing with historical data.
This method is called the statistical correction to numerical predictions, through which the prediction
errors could be reduced, and the forecasting result could be improved. In fact, model defects are
unavoidable, thus it is effective and necessary to develop statistical correction methods that are based
on historical experience to improve model prediction skill.

The statistical correction methods can be generally divided into two categories [51]. The first is
posterior correction, which means to make correction to the final output after the numerical integration
of the model; the second is to periodically modify the variables along the model integration. In this
research, the posterior correction method is applied in the forecasting system.

In this paper, the statistical correction model includes two parts. In this model, the prediction
error is processed in the form of average error in 6 h-periods, which is defined as the bias. Here the
word “bias” refers to the average value of errors during one period, according to the conventional
usage in the field of wind energy forecasting [52]. Firstly, the model estimates the typical biases of
wind predictions in different weather types, according to the historical predictions from September
2013 to August 2014. Then in the next step, real-time prediction biases are estimated, which are finally
used to correct the prediction results. Typical biases produced by the first part are applied here to
improve the bias estimation. This correction method is tested by the forecasts from September 2014 to
January 2015.

4.1. Average Bias Correction

The correction method in this research is based on the average bias correction method, a low-cost,
widely used method in wind energy predictions. It uses 15 days before the focus day as the training
data, or namely, the statistical sample. The method equally divides each day into four segments with
6 h in each, defined as a “period”, and then calculates the average forecast errors for each period.
In each of the four periods of the focus day, the forecasting biases are separately estimated as the
average error of the historical periods in the same segment of the sample. For the ith segment, we have:

biasi =
15

∑
N=1

( f cti,N − reali,N)/15 (1)

where f cti,N and the reali,N are, respectively, the average value of the predictions and the observations
of wind speed in the ith period of the previous Nth day. The value biasi is regarded as the estimation of
bias in the ith period of the focus day, and the real-time prediction f cti in this period will be corrected
by the value of biasi.

f cti,new = f cti − biasi (2)

4.2. Combined Correction Method

In this brief correction method, a group of historical predictions are used to estimate the biases
of focus predictions. However, the NWP model may have different prediction biases in each of the
18 weather types. Considering that the historical data usually contains different weather types from
the focus period, it would lead to a deviation of the estimation.
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Besides the wind speed forecasting, the prediction data also include the SLP fields, which makes
it possible to link them with the NCEP SLP data and get them classified into the same clusters. When
these predictions get classified according to their SLP fields, their wind speed forecasts are also
clustered at the same time. In the assumption of sufficient association between the performance of
wind predictions and the SLP weather types, the distribution of wind speed prediction biases will be
dissimilar in different weather types. In this case, it will be reasonable to add weather types into the
wind bias estimation method to further improve forecasting results.

In this section, we refine the average bias correction by considering the association between
prediction biases of sample units and corresponding weather types, and attempt to reduce the bias
caused by using units with different weather types to estimate the target forecasting bias.

Firstly, we use the FNL analysis data from 2005 to 2012 to build up the classification model.
The FNL data are published four times each day with a six-hour interval. Thus, it is possible to classify
the target wind fields in each 6-hour period, and the statistical sample volume is large enough to
support a classification of 18 weather types. In the next step, the ensemble average predictions from
September 2013 to August 2014 are classified according to the weather types produced by the FNL
SLP data. Then, for each weather type, we calculate the bias distribution of the ensemble average
predictions. The probability density function (PDF) is applied to display the distributions of biases in
different weather types. The PDFs of the data come from the kernel density estimation, and most of
them show a clear monomodal property, which will be shown in the next section. The value where the
highest frequency occurs, called the peak value, is used as the “typical bias” of model predictions in
this weather type.

In the original correction process, the average bias of each sampling unit is used as the final
estimation of the target bias in this period, which is shown in Equation (1). In the refined method,
this average bias is further corrected according to the difference between the typical bias of the unit’s
weather type and the target period’s weather type.

For example, here we define the variable b to be the typical bias, which is determined by the
period’s weather type. Thus, the focus period in the ith segment has a typical bias bi, f according
to its weather type. Then we choose 15 days before this day of interest as the training data, and
collect 15 periods as the statistical sample which belongs to the same (ith) segment as the focus period.
The Nth corresponding period in the sample (named the Nth unit) has a typical bias of bi,N , and its
prediction bias has been known as the difference between f cti,N and reali,N . The updated estimated
bias biasi,new has:

biasi,new =
15

∑
N=1

( f cti,N − reali,N − (bi,N − bi, f ))/15 (3)

and is then applied in the same way as the biasi in Equation (2). Here the value of typical biases,
namely bi,N and bi, f , only depend on their weather types.

In this way, the prediction bias of a sample unit is corrected to be an estimation of the forecasting
bias of this unit in the same weather type of the focus period, thus the weather types of both historical
units and the target unit are consistent, and the effectiveness of considering weather types in the
correction methods will be directly checked through correction results.

5. Results

5.1. Weather Classification

In order to evaluate the effect of weather classification, we choose the ensemble average forecasting
data of 6 costal wind farms during the period from September 2013 to August 2014. We calculate the
DF of prediction biases for each weather type.

Instead of focusing on the specific performances of predictions in each weather type, it is more
important to focus on some overall properties in this correction method. Firstly, we check whether
most of them follow a monomodal distribution, which serves as an important basis of using the peak
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values as typical biases. Then, we check if these peak values have obvious differences from the others,
which reflects the effectiveness of this correction method.

According to the prediction bias distributions shown in Figure 4, the majority of weather types
has a monomodal distribution, although a few have distributions with multiple peaks or no obvious
peak. On the other hand, although these curves display an overall common distribution, there are still
several discernable groups with different peak values. In other words, the distributions can reflect the
impact of weather types on statistical correction, and thus the peak value of the distribution can be set
as the typical bias of predictions in the corresponding weather type. The typical biases of six wind
fields and 18 weather types have been listed in Appendix A.

Thus far, we have classified all the testing data points into 18 weather type clusters, according to
their predicted SLP distributions. For the purpose of bias estimation, we must further evaluate the
classification results by analyzing the forecasting biases, which have also been naturally categorized
into these clusters. We calculate the average characteristic radius of each weather type cluster and
the differentiation degree of the clusters. Here, we define the average characteristic radius radi,
the differentiation degree dis and their ratio K as follows:

radi =

√√√√ 1
N

N

∑
n=1

(ain − ki)
2 (4)

dis =

√√√√ 1
M

M

∑
i=1

(ki − ki)
2

(5)

K = dis/radi (6)

where for a cluster with the number i, the corresponding cluster element set is ain, the value of the
cluster center is ki, and M is total number of clusters.

As radi reflects the tightness of each cluster and dis indicates the separation among different
clusters, the value K can be used as an index of clustering validation. A higher K means higher
concentration level of single clusters, and the larger distance between different clusters, in other words
the effect of clustering is more significant [53].
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A control experiment is set here for the same period as ensemble forecasts, which had a single
member without perturbation and multi-scheme treatment. The result listed in Table 1 below shows
that the ensemble forecast biases have a more reasonable clustering structure. It means compared to
the single forecasts, the ensemble average predictions have a higher association between forecasting
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biases and weather types in weather classification, because when grouped into the previously defined
weather types, the biases among different groups become more distinguishable.

Table 1. Cluster index K of control predictions (K con) and ensemble forecasts (K ens).

Wind Field K con K ens

001 0.28 0.45
002 0.20 0.43
003 0.17 0.43
004 0.30 0.45
005 0.29 0.56
006 0.24 0.55

average 0.25 0.48

5.2. Ensemble Forecast Evaluation

To evaluate the ensemble forecasting, the sample comes from six wind farms on the east coast
of Chin, during September 2014 to January 2015. In this section, we examine the effect of ensemble
forecasts with weather adapted correction with 28–52 h lead time.

5.2.1. Deterministic Forecasting

When evaluating the deterministic forecasting of specific meteorological variables at a single site,
root mean square error (RMSE) is one of the metrics that are commonly used. The variable reflects the
overall level of prediction errors in the whole statistical sample. It can be calculated by the prediction
error ei, which is the difference between forecast value vi and observation value oi, with a sample size
of N.

RMSE =

√√√√ 1
N

N

∑
i

ei
2 (7)

In discussion of ensemble prediction errors, Hou et al. [54] made the following decomposition of
RMSE with the reference work by Takacs [55].

RMSE2 = mnbias2 + sde2 = mnbias2 + sdbias2 + disp2 (8)

where:
mnbias = ei (9)

sde = σ(ei) (10)

sdbias = σ(vi)− σ(oi) (11)

disp =
√

2σ(vi) ∗ σ(oi) ∗ (1 − r(vi, oi)) (12)

σ(vi) and σ(oi) are standard deviations of predictions vi and observations oi, and r(vi, oi) is the
correlation coefficient between predictions and observations.

In this operation, RMSE is divided into two parts: the mean bias of predictions mnbias and the
standard deviation of prediction biases sde. Here, the mnbias reflects a continuous overall deviation of
predictions, while the sde indicates the fluctuation of forecast errors around mnbias. Then, sde is further
decomposed into two parts: sdbias and disp. sdbias is the difference between the standard deviation of
predictions and observations, which refers to the bias of predictions with respect to the degree of wind
speed fluctuation. sdbias reflects the systematic error together with mnbias, which could be reduced by
posterior statistical correction. Dispersion error disp represents the part of forecast error that is more
difficult to be corrected, because this part of error comes from phase shifts instead of amplitude [55].
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In this test, control predictions with a single member (SINGLE) are compared with the ensemble
average predictions (ENS). The original forecasts (OF) from the two forecasting systems are corrected
by either the average bias correction method (AB) or the refined weather type adapted bias correction
method (WAB). All these six predictions are evaluated by daily averaged RMSE. The results are listed
in Table 2.

Table 2. Daily average RMSE (m/s) of six predictions, including original forecasts (OF), average bias
correction (AB), and weather adapted bias correction (WAB) results of the single member predictions
(SINGLE) and the ensemble predictions (ENS).

Wind Field
SINGLE ENS

OF AB WAB OF AB WAB

001 2.68 2.29 2.21 2.71 2.09 1.86
002 3.41 2.87 2.75 2.83 2.14 1.90
003 3.22 2.80 2.74 2.70 2.09 1.96
004 1.53 1.53 1.63 2.42 1.95 1.84
005 2.94 2.56 2.45 3.01 2.35 2.17
006 2.47 2.29 2.28 2.23 1.95 1.78

average 2.71 2.39 2.34 2.65 2.10 1.92

According to the result, RMSE shows that ensemble forecasts keep a higher accuracy in both
the original forecasts and the corrected predictions. In addition, the average bias correction performs
well in reducing the error of both ensemble forecasts and single forecasts, and the weather adapted
correction outperforms the traditional correction. Moreover, the improvement by weather type
correction is more significant in ensemble predictions than in single forecasts in the tested wind farms.
Results of further analysis on RMSE of ensemble predictions are listed in Tables 3–5.

Setting the original ensemble forecasts as the reference forecasts, we further define the ratio of
change that is made by two correction methods as follows for quantitative comparison:

Kvar = 1 − var
varre f

(13)

In the above equation, var is the evaluation index of the forecasts to be tested, and varre f is
the index of reference forecasts. Kvar indicates the capability of the correction method in reducing
prediction errors. Kvar is positive only when prediction errors are reduced. The higher Kvar is, the better
the correction method performs.

From these three tables, we can compare two correction methods quantitatively by the K index
for the three scenarios. The average bias correction makes a very huge improvement in the mean bias
of predictions (Table 3), but it does not help improve sdbias (Table 4) and disp (Table 5), which even
have a growth. By incorporating weather classification to the correction, the growth of sdbias caused
by correction has been reduced, as highlighted in Table 4, and the disp index also shows improvements.
Nonetheless, little influence is seen in mnbias.

Table 3. Mean bias (m/s) and change rate K (%) of original forecasts (OF), average bias correction (AB),
and weather adapted bias correction (WAB) outputs from the ensemble average forecasts.

Wind Field OF AB KAB WAB KWAB

001 2.40 0.68 0.72 0.64 0.73
002 2.47 0.81 0.67 0.78 0.68
003 2.33 0.77 0.67 0.75 0.68
004 1.95 0.68 0.65 0.62 0.68
005 2.57 0.85 0.67 0.80 0.69
006 1.67 0.51 0.70 0.46 0.72

average 2.23 0.72 0.68 0.68 0.70
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Table 4. Standard deviation bias (m/s) and change rate K (%) of three outputs of ensemble
average forecasts.

Wind Field OF AB KAB WAB KWAB

001 0.77 0.89 −0.16 0.65 0.16
002 0.64 0.75 −0.17 0.48 0.25
003 0.46 0.55 −0.18 0.38 0.18
004 0.44 0.52 −0.17 0.42 0.05
005 0.75 0.85 −0.14 0.61 0.18
006 0.50 0.57 −0.14 0.31 0.38

average 0.59 0.69 −0.16 0.47 0.20

Table 5. Dispersion error (m/s) and change rate K (%) of three outputs of ensemble forecasts.

Wind Field OF AB KAB WAB KWAB

001 2.13 2.34 −0.09 2.15 −0.01
002 2.26 2.43 −0.08 2.24 0.01
003 2.26 2.43 −0.07 2.31 −0.02
004 2.18 2.28 −0.05 2.19 −0.01
005 2.47 2.65 −0.07 2.51 −0.01
006 2.22 2.32 −0.04 2.17 0.02

average 2.25 2.41 −0.07 2.26 −0.00

5.2.2. Continuous Ranked Probability Skill (CRPS)

The continuous ranked probability skill (CRPS) is widely used in evaluation of ensemble
systems. Compared with the mean absolute error (MAE) and RMSE that evaluate the error of a
deterministic forecasting, the CRPS considers the performance of all ensemble members. The CRPS
reflects the difference of cumulative distribution function (CDF) between the full ensemble forecasts
and the observations, and is usually used as an assessment of overall performance of ensemble
prediction systems.

For the prediction variable x, an ensemble prediction contains multiple members, and each
member outputs prediction values for N times in the period of interest. Therefore, all of these members
are time series of prediction values with the length of N. It can always obtain the probability density
ρ(x) of prediction values of all the members at the same snapshot, namely, the ith time point. Then we
have the CDF F f

i (x) as:

F f
i (x) =

∫ x

−∞
ρ(y)dy (14)

Therefore the F f
i (x) is the probability that the member forecast will be smaller than x.

On the other hand, at the same time point we have the observed value xa
i . Thus, we establish the

CDF of the corresponding observation Fo
i (x) as:

Fo
i (x) = H(x − xa

i ) (15)

where:

H(x) =

{
0 for x < 0
1 for x ≥ 0

(16)

is known as the Heaviside function [56,57].
Thus, the Fo

i (x) shows a Boolean value of whether the observed value xa
i is smaller than x.

Then, the CRPS is computed by the formula:

CRPS =
1
N

N

∑
i=1

∫ ∞

−∞
[F f

i (x)− Fo
i (x)]

2
dx (17)
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showing the difference between the predicted and observed cumulative distributions.
Here, the CRPS of the original and corrected ensemble forecasts are given in Table 6.

Table 6. Continuous ranked probability skill (CRPS) of original (OF), AB and WAB corrected
ensemble forecasts.

Wind Field OF AB WAB

001 2.10 1.58 1.39
002 2.20 1.62 1.44
003 2.09 1.56 1.45
004 1.52 1.41 1.33
005 2.37 1.80 1.63
006 1.71 1.43 1.30

average 2.00 1.57 1.42

The CRPS score (CRPSS) is further used here to compare impacts of two correction methods,
which is defined as follows [57]:

CRPSS = 1 − CRPS/CRPSOF (18)

The CRPS is the index of corrected predictions, and CRPSOF is the original predictions as a
reference. For the six wind farms in test, the CRPSS of two correction methods are shown in Figure 5,
which shows that WAB forecast is stable and an improvement against AB forecast (CRPSS around
7% increment).Energies 2016, 9, 894 13 of 20 
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5.2.3. Rank Histogram

As a method to directly reflect the consistency in statistical distributions between ensemble
members’ predictions and observation, rank histogram is widely used in evaluation of the reliability
of ensemble predictions [58,59]. In this method, at each snap shot, the wind speed is divided into
N + 1 intervals by N forecast values of ensemble members, and the frequency that observation values
fall in each interval is counted. In the ideal situation, the probability density distribution of ensemble
members’ prediction values should be consistent with that of observations, thus the observation
should fall in each interval with the same probability, which means the rank histogram will have a
flat distribution [58,59] (the black solid line in Figure 6). For the three predictions, data from all wind
farms are used as the sample here.



Energies 2016, 9, 894 14 of 20

Energies 2016, 9, 894 13 of 20 

 

 

Figure 5. Continuous ranked probability skill (CRPS) score in all tested wind farms, with a 
comparison between average bias correction (AB) and weather adapted bias correction (WAB). 

5.2.3. Rank Histogram 

As a method to directly reflect the consistency in statistical distributions between ensemble 
members’ predictions and observation, rank histogram is widely used in evaluation of the reliability 
of ensemble predictions [58,59]. In this method, at each snap shot, the wind speed is divided into  
N + 1 intervals by N forecast values of ensemble members, and the frequency that observation values 
fall in each interval is counted. In the ideal situation, the probability density distribution of ensemble 
members’ prediction values should be consistent with that of observations, thus the observation 
should fall in each interval with the same probability, which means the rank histogram will have a 
flat distribution [58,59] (the black solid line in Figure 6). For the three predictions, data from all wind 
farms are used as the sample here. 

 
Figure 6. Rank histogram of ensemble forecasts, including original forecast (OF), and predictions from 
average bias correction (AB) and weather adapted bias correction (WAB). The black line with marks 
“+” is the ideal flat distribution. 

In the upper panel of Figure 6, the rank histogram of original forecast (OF) has an “L” shaped 
distribution, which means the dominant part of ensemble members have larger prediction values 
than observation. The middle panel shows that the errors of predictions are effectively reduced after 

Figure 6. Rank histogram of ensemble forecasts, including original forecast (OF), and predictions from
average bias correction (AB) and weather adapted bias correction (WAB). The black line with marks
“+” is the ideal flat distribution.

In the upper panel of Figure 6, the rank histogram of original forecast (OF) has an “L” shaped
distribution, which means the dominant part of ensemble members have larger prediction values
than observation. The middle panel shows that the errors of predictions are effectively reduced after
AB correction, producing a “U” shaped rank histogram. Nonetheless, some observations are still
beyond the upper boundary of ensemble forecasts after correction, meaning that the predictions
have been excessively corrected. The lower panel shows the histogram of predictions with a WAB
correction. The excessive correction is mediated, and observations that fall below the lower boundary
are further reduced.

6. Conclusions and Discussion

In this research, an ensemble forecast system with 40 members is presented by adding initial
random perturbations and multi-schemes to the GFS global forecasting fields. The forecasting system
provides deterministic 70 m wind speed predictions of single wind farms with a 15 min interval. These
forecasting results are further improved by developing a weather adapted bias correction scheme,
based upon the average bias correction method. The effects of correction methods are tested by
ensemble forecasts from September 2014 to January 2015. Observations of 70 m wind speed from wind
towers are used as the ground truth, with the same temporal resolution as the predictions.

In the evaluation of the weather classification, ensemble predictions outperform single member
forecasts. This is because that compared with single member forecasts, ensemble average forecasts
come from 40 different members, and have filtered out uncertainty factors of single members. In this
way, it tends to achieve a more stable performance under different weather types, and has been proven
to be better than single forecasts by various scoring methods [60], thus leading to a higher association
between the prediction biases and the weather type.
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In the assessment of ensemble predictions, the deterministic predictions and the performances
of all ensemble members are tested. The weather adapted correction outperformed conventional
correction in both of the above two aspects.

The mean bias of predictions (mnbias) refers to a continuous systematic deviation in predictions,
while sdbias reflects the difference between standard deviations of predictions and observation values,
and disp comes from phase shifts. It is usually much easier to use historical data to decrease the
value of mnbias than sdbias and disp, because mnbias has a strong persistence than others, and could
be effectively reduced by a simple subtraction. By contrast, it would be more skillful to correct the
intensity of fluctuation and the phase variation.

In the AB correction method, an idealized assumption is that the 6 h averaged bias of predictions
changes smoothly over time, while large fluctuations often occur in the practical forecast. These
fluctuations will cause a deviation of bias estimation to subsequent predictions, and lead to an
inadequate or excess correction. This type of error in the correction is one of the main factors that cause
an increase in sdbias.

By considering the impact of different weather types on prediction biases, the WAB correction
method proposed in this research estimates and corrects prediction bias fluctuations caused by the
development of weather processes, and reduces the inadequate or excess correction caused by sudden
severe changes of 6 h average prediction biases. Therefore, compared with the AB correction method,
the WAB correction method improves the prediction by reducing the biases in the standard deviation
of predictions.

In Figure 7, four of the 18 weather types are observed during the period of seven days with
different statistical typical biases, highlighted by different background colors. The 12th (red area,
noted by WT = 12 in Figure 7) weather type has a larger positive bias than the 1st (yellow area) type,
which results in an overestimation of prediction biases after 15 October through the bias estimation.
The weather adapted correction method successfully reduces the excessive correction with respect to
predictions (blue line), and the WAB corrected predictions (red line) show an improvement compared
with the AB predictions (green line).Energies 2016, 9, 894 15 of 20 
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Figure 7. Original (OF, the blue solid line) and two corrected predictions (AB, the green line and WAB,
the red line) outputs and observation data (real, the black), and corresponding forecast biases (solid
lines in subplot below), with weather types in each period highlighted by background color. In lines
below axis, WT shows the number of each period’s weather type, and Er means the corresponding
typical bias of that weather type, which have been listed in Table A2 in Appendix A.
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In this research, the refined weather adapted bias correction method is based on the assumption
that there is a good association between the local near-surface wind speed in wind farms and the
weather types of this area. This also forms the basis of estimating the prediction biases through
mesoscale weather fields in NWPs. If the local wind speed in the wind farm has a strong local
property, and is rarely influenced by background weather field, the effect of correction would
nonetheless deteriorate.

The sample wind farms are located in Jiangsu Province, on the east coast of China, which is a flat
area without complex terrain. Therefore, the association between weather types and real wind speed is
relatively clear. Similar performance of the newly developed correction method can be expected in
offshore wind farms, while the effect may not be as satisfactory in mountainous areas.
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BE background error
CDF cumulative distribution function
COST733 the European Cooperation in Science and Technology Action 733
CRPS Continuous Ranked Probability Skill
disp dispersion error
ENS ensemble prediction
FNL final
GFS the Global Forecasting System
GMT Greenwich Mean Time
LST Local Standard Time
MAE mean absolute error
mnbias mean bias of prediction
MYJ the Mellor–Yamada–Janjić
NCEP the National Centers for Environmental Prediction
NWP numerical weather prediction
OF original forecast
PDF probability density function
RMSE root mean square error
RUC the Rapid Update Cycle
sdbias bias of standard deviation
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Appendix A

Table A1. Number of ensemble members and schemes used in multi-scheme system.

Microphysics Surface Cumulus Boundary Layer

14 Lin

4 thermal diffusion
scheme

2 Kain–Fritsch 1 YSU; 1 MYJ
1 Betts–Miller 1 YSU

1 Grell–Devenyi 1 YSU

4 unified Noah
2 Kain–Fritsch 1 YSU; 1 MYJ
1 Betts–Miller 1 YSU

1 Grell–Devenyi 1 YSU

3 RUC
1 Kain–Fritsch

1 YSU1 Betts–Miller
1 Grell–Devenyi

3 Pleim-Xu
1 Kain–Fritsch

1 YSU1 Betts–Miller
1 Grell–Devenyi

13 WSM 3-class
simple ice scheme

3 thermal diffusion
scheme

1 Kain–Fritsch
1 YSU1 Betts–Miller

1 Grell–Devenyi

4 unified Noah
2 Kain–Fritsch 1 YSU; 1 MYJ

1 YSU
1 YSU

1 Betts–Miller
1 Grell–Devenyi

3 RUC
1 Kain–Fritsch

YSU1 Betts–Miller
1 Grell–Devenyi

3 Pleim-Xu
1 Kain–Fritsch

YSU1 Betts–Miller
1 Grell–Devenyi

13 WSM 6-class
scheme

3 thermal diffusion
scheme

1 Kain–Fritsch
YSU1 Betts–Miller

1 Grell–Devenyi

4 unified Noah
2 Kain–Fritsch 1 YSU; 1 MYJ

1 YSU
1 YSU

1 Betts–Miller
1 Grell–Devenyi

3 RUC
1 Kain–Fritsch

YSU1 Betts–Miller
1 Grell–Devenyi

3 Pleim-Xu
1 Kain–Fritsch

YSU1 Betts–Miller
1 Grell–Devenyi

Table A2. Typical biases of 18 weather types in six wind fields.

Weather Types Site 01 Site 02 Site 03 Site 04 Site 05 Site 06

01 1.23977 1.18559 1.14319 0.987266 0.649091 0.918064
02 2.18727 1.82632 2.59693 2.38776 3.16838 1.43187
03 1.67154 1.58716 1.70714 0.77744 1.15744 0.209118
04 1.42473 1.58379 1.04783 0.764425 1.11299 −0.1966
05 1.62067 1.67296 1.34391 1.39182 1.96115 0.449447
06 1.4323 1.84642 2.2545 1.82924 1.70808 1.35626
07 2.80638 1.70231 1.14023 1.94397 2.04169 1.53158
08 1.21735 1.46985 1.4147 0.389931 1.72153 0.136346
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Table A2. Cont.

Weather Types Site 01 Site 02 Site 03 Site 04 Site 05 Site 06

09 −0.06956 1.236 0.492679 −0.88616 −0.78387 −0.70555
10 3.08536 3.34946 2.92031 2.60398 3.64069 1.66283
11 1.6559 1.16625 1.52237 0.873545 1.3636 1.17054
12 2.64311 3.39535 1.93689 2.34948 2.78504 2.71129
13 1.56285 1.14944 1.88875 1.58339 2.20748 0.991559
14 3.43315 3.25248 3.64207 1.95077 3.26691 3.34844
15 3.05847 2.9717 2.99038 2.37237 2.96116 1.97132
16 2.7078 3.01587 2.2667 1.89914 3.37813 1.36602
17 1.92407 2.71989 2.25191 1.94155 2.61543 1.68193
18 1.63197 1.97719 2.01428 1.59431 2.71998 1.38041
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