Article

Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

Chih-Lung Shen *, Po-Chieh Chiu and Yan-Chi Lee

Department of Electronic Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 82445, Taiwan; u0352801@nkfust.edu.tw (P.-C.C.); u0052808@nkfust.edu.tw (Y.-C.L.)
* Correspondence: clshen@nkfust.edu.tw; Tel.: +886-7-601-1000; Fax: +886-7-601-1386

Abstract: This paper presents a novel interleaved converter (NIC) with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV) panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at front end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

Keywords: photovoltaic (PV) panel; fuel cells; high step-up converter; interleaved converter; low voltage stress

1. Introduction

Since fossil fuels will be depleted in the next decades, development of green energy power generation systems becomes urgent. Among renewable energy generation systems, photovoltaic (PV), wind turbine, energy storage systems, and fuel cells attract a lot of attention [1–4]. Nevertheless, low output voltage is their common shortcoming, especially in grid connection or electric vehicle (EV) applications. Therefore, a step-up converter to achieve high voltage gain is required. Conventional boost-type converters, like boost, buck-boost, and flyback, are able to step-up input voltage. However, in order to meet high-voltage gain requirements, they have to operate in heavy-duty ratio or adopt a high turns ratio transformer, which will decrease the conversion efficiency dramatically. Cascading more boost-type converters can avoid the above problem but issues of volume, cost, and efficiency emerge. Therefore, the high step-up DC/DC converter is the current design trend.

High step-up converters can be mainly classified into two categories: single-stage and interleaved structure. Single-stage topology incorporates coupled inductors and/or switched capacitors to complete high voltage gain. Even though its input voltage is boosted, a large magnitude of input current ripple occurs, limiting the converter power rating significantly [5–8]. The interleaved converter has the ability of suppressing input current ripple by means of adding a parallel current path, which is a better choice for high power applications [9–11]. However, the conventional interleaved converters have voltage gain limitation, which confines their applications in grid-tied systems. To overcome the aforementioned disadvantages, various high step-up interleaved converters were proposed in [12–16]; nevertheless, the shortcomings of lower voltage gain, higher voltage stress, and large component
count still exist. An interleaved Boost converter combining voltage doubler is introduced in [12], while a coupled inductor is examined in [13]. In order to achieve high voltage gain, the converters in [12,13] have to be operated at heavy-duty ratio or adopt a magnetic transform with high turns ratio, which results in low conversion efficiency or high voltage stress. Even though Lai et al. [14] proposed another high step-up converter, incorporating coupled inductor and switched capacitor, into an interleaved Boost configuration, the converter intrinsically has the demerits of higher voltage stress and sophisticated structure. An interleaved step-up converter with winding-cross-coupled inductors and voltage multiplier cells is presented in [15]. This converter is composed of eight semiconductor devices and two three-winding coupled inductors. That is, a large number of power devices must be used. Tseng et al. [16] utilized the characteristics of forward, flyback, and interleaved converters to boost input voltage, but voltage gain still is limited.

This paper proposes a novel interleaved converter (NIC), which can accomplish a high voltage conversion ratio and is capable of processing low voltage, high power distributed resources. Its power stage is depicted in Figure 1. The proposed NIC mainly includes three parts: one interleaved-boost converter cell and two voltage multipliers. The interleaved-Boost converter cell is in charge of lowering input current ripple, increasing current rating, and primarily stepping input voltage. The two voltage multipliers can further stack up voltage level. The series voltage of the three parts determines the magnitude of output voltage. Since the proposed converter only uses two coupled inductors, three capacitors, four diodes, and two active power switches, it has a lower component count and a simple circuit structure. The advantages of the proposed NIC are summarized as follows:

1. The NIC can suppress input current ripple.
2. The energy stored in leakage inductance can be recycled.
3. The voltage stress of the semiconductor device is low enough so that a power switch with lower on-state resistance and smaller parasitic capacitance can be chosen.
4. As compared with a conventional interleaved high step-up converter, the proposed NIC can achieve a much higher voltage gain under the same power component count.

![Figure 1. The main power circuit of the proposed novel interleaved converter (NIC). PV: photovoltaic.](image)

2. Operation Principle of the Proposed Converter

In Figure 1, \(L_{m1}\) and \(L_{m2}\) denote the magnetizing inductances of the coupled inductors \(T_1\) and \(T_2\), respectively. The \(L_{k1}\) and \(L_{k2}\) represent the primary leakage inductances of \(T_1\) and \(T_2\), in turn, while \(L_{k3}\) stands for the total leakage inductance at the secondary windings of both coupled inductors. Turns ratios of primary to secondary of \(T_1\) and \(T_2\) are denoted as \(n_1\) and \(n_2\), respectively. \(C_1\), \(C_2\), and \(C_3\) are the main capacitors employed in the circuit. It is supposed that the NIC operates in continuous conduction mode (CCM) and the two active switches \(S_1\) and \(S_2\) are controlled in interleaved manner. Accordingly, the operation of the NIC can be divided into ten operation modes over one switching cycle. The corresponding equivalents are illustrated in Figure 2, while Figure 3 depicts key waveforms. Analysis of the proposed NIC begins by making these assumptions:
(1) All parasitic capacitances and internal resistances are neglected. Moreover, all diodes are ideal.
(2) The voltages across capacitors C_1, C_2, C_3, and C_o are time-invariant.
(3) Magnetizing inductances, L_{m1} and L_{m2}, are much larger than the leakage inductances L_{k1}, L_{k2} and L_{k3}.
(4) The switching period is T_s. Both switches are closed for time DT_s and open for $(1 - D)T_s$.

Mode 1 (t_0–t_1) (Figure 2a): This mode is the initial mode of the all operation procedures. During this time interval, both active switches S_1 and S_2 are closed. Diodes D_1, D_3 and D_o are in reverse-bias, but D_2 is forward-biased. Input voltage V_{in} is across the primaries of T_1 and T_2 directly. Then, the current flowing through S_2 starts increasing linearly from zero, while the switch current i_{S1}, having an initial value determined by the end of Mode 10, also increases linearly. In addition, the energy remained in L_{k3} will be recycled to C_2 via D_2. At the time that the diode current i_{D2} drops to zero, and this mode ends.

Mode 2 (t_1–t_2) (Figure 2b): During this time interval, active switches S_1 and S_2 are still closed, and V_{in} remains across the two coupled inductors. Thus, the current i_{m1} and i_{m2} are continuously increasing. In this mode, the current flowing through leakage inductances i_{k1} and i_{k2} are equal to magnetizing-inductance currents i_{l1} and i_{l2}, respectively. This mode ends when the switch S_1 is turned off.

Mode 3 (t_2–t_3) (Figure 2c): In this mode, S_2 remains in on state but S_1 becomes off. Diodes D_2, D_3 and D_o are reversely-biased but D_1 is in forward-bias. The V_{in}, L_{m1}, L_{k1} and C_2 dump energy to L_{k3} and C_1 via D_1 and S_2, so the current flowing through D_1 and S_2 increases. This mode finishes when D_3 becomes forward-biased and L_{k3} starts to release energy.

Mode 4 (t_3–t_4) (Figure 2d): Over the whole interval of Mode 4, S_2 is still kept in on state while S_1 in off state. The D_1 remains forward-biased and D_3 becomes closed. Meanwhile, both diodes D_2 and D_o continue the off status. Magnetizing-inductance L_{m1} pumps energy to C_3 via the coupled inductor. Capacitor C_1 is charged continuously, the circuit behavior of which is the same as in the previous mode. When the leakage-inductance L_{k1} releases over its stored energy, L_{D1} will drop to zero. That is, diode D_1 becomes reversely-biased and this mode ends.

Mode 5 (t_4–t_5) (Figure 2e): During this time interval, S_2 is still closed and S_1 is open. Diodes D_1, D_2 and D_o are reversely-biased but D_3 is in forward-bias. V_{in} and L_{m1} supply energy to C_3 simultaneously by the T_1 and T_2 in turn. This mode finishes as S_1 is turned on.

Mode 6 (t_5–t_6) (Figure 2f): During this mode, S_1 and S_2 are both in on state. Diodes D_1, D_2 and D_o are off, but D_3 is on. L_{m1} starts to draw energy from V_{in}. The stored energy in L_{k3} will releases to C_3 through S_3. This mode sustains until i_{D3} decreases to zero.

Mode 7 (t_6–t_7) (Figure 2g): During this time interval, S_1 and S_2 are both on in state, but D_1, D_2, D_3 and D_o are all reversely-biased. Since the primaries of the two coupled inductors are in parallel, V_{in} will supply energy to L_{m1}, L_{m2}, L_{k1} and L_{k2}. Therefore, i_{l1} and i_{l2} will increase linearly, which are identical to i_{S1} and i_{S2}, respectively. This mode is ended when S_2 is turned off.

Mode 8 (t_7–t_8) (Figure 2h): During this time interval, S_1 remains in on state, but S_2 in off state. D_1, D_2 and D_3 are off, but D_o is on. The L_{m2} starts to release its stored energy so that the current flowing through L_{m2} decays. Meanwhile, the current i_{k3} increases. The input V_{in} and the voltages across L_{m2}, L_{k2}, C_1, and C_3 will be stacked up to supply C_o. This mode terminates when L_{k3} starts to charge C_2.

Mode 9 (t_8–t_9) (Figure 2i): In this mode, S_1 is still closed and S_2 is open. The V_{in} will charge C_2 via coupled inductor T_1; meanwhile, the energy stored in L_{m2} will also be transferred to the secondary of T_2 for powering C_2. Therefore, i_{m2} drops and C_o keeps on charging. In Mode 9, the energy in L_{k2} is recycled to the output. This mode ends as i_{k2} falls to zero.

Mode 10 (t_9–t_{10}) (Figure 2j): The diode D_3 will become reversely biased when i_{k2} drops to zero. In Mode 10, S_1 proceeds with on-state conducting and S_2 remains in off state. With respect to diode status, the diodes D_1, D_3 and D_o are in reverse-bias and D_2 is still in on state. The V_{in} and L_{m2} will forward energy to C_2 through the coupled inductors T_1 and T_2, respectively. This mode ends when S_2 is turned on again, and then the operation returns to Mode 1.
Figure 2. Mode equivalents of the proposed NIC over one switching period. (a) Mode 1 \((t_0-t_1)\); (b) Mode 2 \((t_1-t_2)\); (c) Mode 3 \((t_2-t_3)\); (d) Mode 4 \((t_3-t_4)\); (e) Mode 5 \((t_4-t_5)\); (f) Mode 6 \((t_5-t_6)\); (g) Mode 7 \((t_6-t_7)\); (h) Mode 8 \((t_7-t_8)\); (i) Mode 9 \((t_8-t_9)\); and (j) Mode 10 \((t_9-t_{10})\).
3. Voltage Gain Derivation

Voltage gain is the most important characteristic of a high step-up converter. As the analysis in Section 2 shows, the switched capacitors C_1 and C_3 have the benefit of voltage stacking for achieving extra-high voltage gain. This section focuses on the voltage gain derivation of the proposed NIC. For high power applications, the converter is designed in CCM. Assumptions made in Section 2 are also adopted for simplifying the derivation. Furthermore, the coupling coefficients of the coupled inductors are both supposed at unity; that is, there is no leakage inductance.

According to the description for Mode 4 in Section 2, C_1 is charged by V_{in}, C_2, T_1, and T_2, whereas C_3 is charged by the two coupled inductors. Referring to Mode 9 in Section 2, if the leakage inductances are ignored, the output port is supplied by $V_{\text{in}}, T_1, T_2, C_1$, and C_3. Hence, to determine the voltage gain, V_o/V_{in}, the relationships of V_{C_1}, V_{C_2} and V_{C_3} in terms of V_{in} have to be found in advance.

3.1. The Ratio of V_{C_3} to V_{in}

As S_1 is closed, V_{in} will supply energy to L_{m1}. After an on-time interval DT_s, the change in i_{Lm1} can be estimated as:

$$\Delta i_{Lm1} = \frac{V_{\text{in}}DT_s}{T_{m1}}$$

In the opposite switch statuses, that is, S_1 off and S_2 on, the energy stored in L_{m1} will be transferred to the secondary of the coupled inductor T_1 and then be forwarded to C_3 by the loop of $N_2-N_{12}-D_3-C_2$. In addition, the source voltage V_{in} also supplies energy to C_3 via T_2. By Kirchhoff’s voltage law (KVL) and from the closed loop $N_2-N_{12}-D_3-C_2$, it can be found that:

$$n_2 V_{Lm2} - n_1 V_{Lm1} - V_{C3} = 0$$

Figure 3. Conceptual key waveforms of the proposed NIC.
Since voltage across L_{m2} is V_{in}, rewriting Equation (2) becomes:

$$V_{Lm1} = \frac{nV_{in} - V_{C3}}{n} = L_{m1} \frac{di_{Lm1}}{dt}$$ (3)

From Equation (3), the current change in L_{m1} after a switch-off interval $(1 - D)T_s$, is found by:

$$\Delta i_{Lm1} \text{off} = \frac{(nV_{in} - V_{C3}) (1 - D) T_s}{nL_{m1}}$$ (4)

In steady state, over one switching cycle the net change of inductor current i_{Lm1} is zero. That is:

$$nV_{in}DT_s + (nV_{in} - V_{C3}) (1 - D) T_s = 0$$ (5)

Rearranging the above equation can obtain the voltage of V_{C3} in terms of V_{in} as follows:

$$V_{C3} = \frac{nV_{in}}{(1 - D)}$$ (6)

3.2. The Ratio of V_{C2} to V_{in}

With respect to the ratio of V_{C2} to V_{in}, the current change in L_{m2} has to be dealt with first. The current flowing through L_{m2} increases when S_2 is closed. After DT_s, the change $(\Delta i_{Lm2})_{on}$ can be expressed as:

$$\Delta i_{Lm2} \text{on} = \frac{V_{in}DT_s}{L_{m2}}$$ (7)

when switch S_2 is open for $(1 - D)T_s$ and S_1 is in on state. The energy stored in L_{m2} will be released to C_2 by coupled inductor T_2 as well as the loop of N_{12}-N_2-C_3-D_2. Therefore:

$$nV_{Lm1} - nV_{Lm2} - V_{C2} = 0$$ (8)

In Equation (8), the voltage across L_{m1} equals V_{in}, thus:

$$V_{Lm2} = \frac{nV_{in} - V_{C2}}{n} = L_{m2} \frac{di_{Lm2}}{dt}$$ (9)

The total current drop in L_{m2} can be found by:

$$\Delta i_{Lm2} \text{off} = \frac{(nV_{in} - V_{C2}) (1 - D) T_s}{nL_{m2}}$$ (10)

In steady state, over one switching cycle the net change of the inductor current i_{Lm2} is zero. That is:

$$nV_{in}DT_s + (nV_{in} - V_{C2}) (1 - D) T_s = 0$$ (11)

Thus, the voltage of V_{C2} in terms of V_{in} is as follows:

$$V_{C2} = \frac{nV_{in}}{(1 - D)}$$ (12)

3.3. The Ratio of V_{C1} to V_{in}

While S_1 is open and S_2 is closed, from the current flow path of V_{in}-L_{m1}-D_1-C_2-N_2-N_{12}-C_1-S_2, the following relationship can be found:

$$V_{Lm1} = \frac{V_{in} + V_{C2} + nV_{Lm2} - V_{C1}}{1 + n} = L_{m1} \frac{di_{Lm1}}{dt}$$ (13)

Since the voltage across L_{m2} in Equation (13) is V_{in}, the current decrease on L_{m1} is derived as:
\[
(V_{\text{in}} + V_{C2} + nV_{\text{in}} - V_{C1})(1 - D) T_s
\]

(14)

In addition, the total amount of current increase on \(L_{m1} \) over the \(S_1 \)-closed interval has been depicted as Equation (1). This increment is equal to the decrease amount in \(i_{Lm1} \) over one switching cycle, which yields:

\[
\frac{V_{\text{in}}D T_s}{L_{m1}} + \frac{(V_{\text{in}} + V_{C2} + nV_{\text{in}} - V_{C1})(1 - D) T_s}{(1 + n)L_{m1}} = 0
\]

(15)

Rearranging Equation (15) results in:

\[
V_C1 = \frac{(1 + 2n)}{(1 - D)} V_{\text{in}}
\]

(16)

3.4. The Ratio of \(V_o \) to \(V_{\text{in}} \)

Under the condition that \(S_1 \) is closed and \(S_2 \) is in off state, the voltage \(V_{Lm2} \) can be determined by applying KVL to the loop enclosed by \(V_{\text{in}}, L_{m2}, C_1, N_{12}, N_2, C_3, D_0 \), and \(C_o \). Therefore:

\[
V_{Lm2} = \frac{V_{\text{in}} + V_{C1} + nV_{\text{in}} + V_{C3} - V_0}{(1 + n)} = L_{m2} \frac{di_{Lm2}}{dt}
\]

(17)

Thus, the decreased quantity of \(i_{Lm2} \) is expressed as:

\[
(\Delta i_{Lm2})_{\text{off}} = \frac{(V_{\text{in}} + V_{C1} + nV_{\text{in}} + V_{C3} - V_0)(1 - D) T_s}{(1 + n)L_{m2}}
\]

(18)

From the increment \((\Delta i_{Lm2})_{\text{on}} \) in Equation (7) and the condition \((\Delta i_{Lm2})_{\text{off}} = (\Delta i_{Lm2})_{\text{on}}, \)
the following relationship holds:

\[
\frac{V_{\text{in}}D T_s}{L_{m2}} + \frac{(V_{\text{in}} + V_{C1} + nV_{\text{in}} + V_{C3} - V_0)(1 - D) T_s}{(1 + n)L_{m2}} = 0
\]

(19)

After simplifying, the following equation can be obtained:

\[
\frac{V_{\text{in}}(1 + n) D}{(1 - D)} + V_{\text{in}} + V_{C1} + nV_{\text{in}} + V_{C3} - V_0 = 0
\]

(20)

Substituting Equations (6) and (16) into Equation (20) can obtain the voltage gain of the proposed converter, \(V_o/V_{\text{in}}, \) and yields:

\[
\frac{V_o}{V_{\text{in}}} = \frac{2(2n + 1)}{(1 - D)}
\]

(21)

4. Voltage Stress of Power Component

This section begins with the determination of voltage stresses across \(S_1 \) and \(S_2 \). Supposing that all leakage inductances are neglected, Modes 4 and 9 in Section 2 will therefore dominate the estimation of voltage stress. When \(S_1 \) is open, from Figure 2d it can be found that the blocking voltage of \(S_1 \), \(V_{DS1,\text{stress}} \), can be expressed as

\[
V_{DS1,\text{stress}} = V_{C1} - C2 - V_{C3} = \frac{1}{1 - D} V_{\text{in}}
\]

(22)

With respect to active switch \(S_2 \), its blocking voltage, \(V_{DS2,\text{stress}} \), can be determined from Figure 2i and the following relationship can be found:

\[
V_{DS2,\text{stress}} = V_0 - V_{C3} - V_{C2} - V_{C1} = \frac{1}{1 - D} V_{\text{in}}
\]

(23)
Equations (22) and (23) reveal that the voltage stresses of S_1 and S_2 are identical and irrelative to turns ratio of coupled inductor. Voltage stresses across active switches only depend on duty ratio and input voltage. Rewriting Equations (22) and (23) in terms of V_o results in:

$$V_{DS1,\text{stress}} = V_{DS2,\text{stress}} = \frac{V_o}{2(1+n)}$$

(24)

Equation (24) implies that the voltage stresses of S_1 and S_2 are much lower than output voltage. Considering the statues of S_1 on and S_2 off, the voltage across D_1 and D_3 can be determined as follows:

$$V_{D1,\text{stress}} = V_o - V_{C3} - V_{C2} = \frac{2(1+n)}{1-D} V_{\text{in}}$$

(25)

and:

$$V_{D3,\text{stress}} = V_{C3} + V_{C2} = \frac{2n}{1-D} V_{\text{in}}$$

(26)

With respect to D_2 and D_o, their voltage stresses are calculated during the time interval of S_1 off and S_2 on. The corresponding voltage stress calculations can be:

$$V_{D2,\text{stress}} = V_{C2} + V_{C3} = \frac{2n}{1-D} V_{\text{in}}$$

(27)

and:

$$V_{D0,\text{stress}} = V_o - V_{C1} = \frac{1+2n}{1-D} V_{\text{in}}$$

(28)

According to Equations (25)–(28), it can be observed that D_1 endures the highest voltage stress among the four diodes. Table 1 summaries the comparison between NIC and other high step-up converters proposed in [13–16]. If the duty cycle D is 0.6, and the transformer turns ratio n is 1, the proposed converter can boost 15-times input voltage. However, the voltage gains of the converters in [13–16] are 5, 5.6, 10, and 10, respectively. It is obvious that the proposed NIC can exceed these high step-up converters in voltage gain. With respect to voltage stress across semiconductor device, if under the same condition that $D = 0.6$, $n = 1$, and $V_o = 380$ V, the maximum voltage stress of the active switches in [15,16] and the proposed NIC are all 95 V, but the converters in [13,14] are up to 190 V and 170 V, respectively. That is, the proposed converter features an advantage over other high step-up converters.

Table 1. Comparison among the proposed and other high step-up converters.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage gain</td>
<td>$\frac{1+n}{1-D}$</td>
<td>$\frac{2+2n}{1-D}$</td>
<td>$\frac{2(1+n)}{1-D}$</td>
<td>$\frac{2(1+2n)}{1-D}$</td>
<td>$\frac{2(1+2n)}{1-D}$</td>
</tr>
<tr>
<td>Number of active switches</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of diodes</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of capacitors</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of transformers</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of inductors</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum voltage stress of active switch</td>
<td>$\frac{V_o}{1-D}$</td>
<td>$\frac{V_o}{1-D}$</td>
<td>$\frac{V_o}{2(1+n)}$</td>
<td>$\frac{V_o}{2(1+n)}$</td>
<td>$\frac{V_o}{2(1+n)}$</td>
</tr>
<tr>
<td>Maximum voltage stress of diode</td>
<td>$\frac{V_o}{1-D}$</td>
<td>$\frac{V_o}{1-D}$</td>
<td>$\frac{V_o}{1-D}$</td>
<td>$\frac{V_o}{1-D}$</td>
<td>$\frac{V_o}{1-D}$</td>
</tr>
</tbody>
</table>

5. Experimental Results

To validate the proposed NIC, a prototype based on the specifications summarized in Table 2 is designed, built, and tested. The types of semiconductor devices used in the prototype are given in Table 3. The power MOSFET, IRFL4615Pbf (International Rectifier, El Segundo, CA, USA), is selected to serve as active switches for controlling the current flow, of which maximum on-state resistance
$R_{DS(on)}$ is 42 mΩ. The FEP16GT (Fairchild, Sunnyvale, CA, USA) is employed as diodes D_1 and D_o, of which forward voltage is 1.3 V and reverse recovery time is 50 ns. With regard to diodes D_2 and D_3, the hyper-fast rectifier VS-8ETH03-1PbF (Nichicon, Kyoto, Japan) is considered, which has 1.25 V forward voltage and 35 ns reverse recovery time. The voltage waveforms of active power switches and control signals are shown in Figure 4a,b, which indicate that the voltage across S_1 and S_2 are both near 65 V. This value also demonstrates a relatively low voltage stress across the active power semiconductor, as compared with other high step-up converters.

Table 2. Specifications of the proposed converter.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Items</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>Input voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>V_o</td>
<td>Output voltage</td>
<td>380 V</td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>200 W</td>
</tr>
<tr>
<td>D</td>
<td>Duty cycle</td>
<td>0.62</td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>50 kHz</td>
</tr>
<tr>
<td>n</td>
<td>Transformer turns ratio</td>
<td>1</td>
</tr>
<tr>
<td>L_m</td>
<td>Magnetizing inductance</td>
<td>93 µH</td>
</tr>
<tr>
<td>L_k</td>
<td>Leakage inductance</td>
<td>1.9 µH</td>
</tr>
<tr>
<td>C_1, C_2 and C_3</td>
<td>Capacitances</td>
<td>68 µF</td>
</tr>
<tr>
<td>C_o</td>
<td>Output capacitance</td>
<td>330 µF</td>
</tr>
</tbody>
</table>

Table 3. Semiconductor devices used in the prototype.

<table>
<thead>
<tr>
<th>Components</th>
<th>Types</th>
<th>Absolute Maximum Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1 and D_3</td>
<td>FEP16GT</td>
<td>400 V/16 A</td>
</tr>
<tr>
<td>D_2 and D_3</td>
<td>VS-8ETH03-1PbF</td>
<td>300 V/8 A</td>
</tr>
<tr>
<td>S_1 and S_2</td>
<td>IRFSL4615PbF</td>
<td>150 V/33 A</td>
</tr>
</tbody>
</table>

Figure 4. Experimental waveforms of active power switches in CCM operation and at $D = 0.62$. (a) v_{DS1} and the corresponding control signals (v_{DS1}: 50 V/div, v_{gs1} and v_{gs2}: 10 V/div, time: 10 µs/div). (b) v_{DS2} and the corresponding control signals (v_{DS2}: 50 V/div, v_{gs1} and v_{gs2}: 10 V/div, time: 10 µs/div).

Figure 5a,d is the practical measurements of voltage waveforms of diodes D_o, D_1, D_2 and D_3, in turn, at the condition $D = 0.62$ and in CCM operation. **Figure 5a** illustrates that the maximum blocking voltage of D_o is nearly 200 V. With respect to D_1, its voltage stress approaches to 280 V, as shown in **Figure 5b**. Diodes D_2 and D_3 endure the same voltage of 130 V. In **Figure 5**, all the diode voltage stresses are in compliance with Equations (25)–(28).
Taoyuan, Taiwan) serves as input source, electronic load Chroma 6320 draws power from the converter, and all waveforms are measured by oscilloscope KEYSIGHT DSOX4024A (Santa Rosa, CA, USA).

Figure 5. Experimental waveforms of diodes: (a) v_{D0} (v_{D0}: 100 V/div, v_{g01} and v_{g02}: 20 V/div, time: 5 μs/div); (b) v_{D1} (v_{D1}: 200 V/div, v_{g01} and v_{g02}: 20 V/div, time: 5 μs/div); (c) v_{D2} (v_{D2}: 100 V/div, v_{g01} and v_{g02}: 20 V/div, time: 5 μs/div); (d) v_{D3} (v_{D3}: 100 V/div, v_{g01} and v_{g02}: 20 V/div, time: 5 μs/div).

Figure 6 shows the waveforms of input current and the corresponding control signals. It indicates that the magnitude of input ripple current is limited to less than 2 A. Figure 7 depicts the measured and simulated efficiencies from light load to full load. In the simulations, the considered conditions include forward voltage of diode, $R_{DS(on)}$ of MOSFET, copper loss of the coupled inductor, switching loss of MOSFET, and the equivalent resistance of diode. The maximum value of the measured efficiency is 93.7% at $P_o = 140$ W. Figure 8 is the photo of test bench, in which PV simulator Chroma 62050H-600S (Taoyuan, Taiwan) serves as input source, electronic load Chroma 6320 draws power from the converter, and all waveforms are measured by oscilloscope KEYSIGHT DSOX4024A (Santa Rosa, CA, USA).

Figure 6. Experimental waveforms of input current and corresponding control signals (i_{in}: 5 A/div, v_{g01} and v_{g02}: 20 V/div, time: 10 μs/div).
6. Conclusions

This paper proposes a NIC, which is applicable to PV systems or fuel cells for grid-connected high-power applications. The proposed converter utilizes the interleaved technique for current sharing to decrease input current ripples. Furthermore, the proposed converter can achieve a much higher voltage gain than a conventional interleaved converter. The operation principle and steady-state analysis of the proposed converter are described in detail. A 24 V/380 V 200 W prototype has been examined to demonstrate the feasibility of the proposed NIC. The maximum measured efficiency of the proposed converter is 93.7%. This value is a little lower than some of other high step-up converters. However, if the soft-switching technique is employed to make the switches operate at zero-voltage-switching or zero-current-switching condition, the efficiency of the proposed NIC can be improved significantly.

Acknowledgments: The authors would like to convey their appreciation for grant support from the Ministry of Science and Technology (MOST) of Taiwan under its grant with Reference Number MOST 105-3113-E-006-007.

Author Contributions: Chih-Lung Shen, Yan-Chi Lee and Po-Chieh Chiu conceived and designed the circuit. Yan-Chi Lee and Po-Chieh Chiu performed simulations, carried out the prototype, and analyzed data with guidance from Chih-Lung Shen. Chih-Lung Shen revised the manuscript for submission.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of this paper.

References

7. Shen, C.-L.; Chen, H.-Y.; Chiu, P.-C. Integrated three-voltage-booster DC–DC converter to achieve high voltage gain with leakage-energy recycling for PV or fuel-cell power systems. *Energies* 2015, 8, 9843–9859. [CrossRef]

