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Abstract: Organic–inorganic hybrid perovskite solar cells (PSCs) have emerged as a new class of
optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years.
The perovskite solar cells present numerous advantages include unique electronic structure, bandgap
tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar
cells have demonstrated unprecedented progress in efficiency and its architecture evolved over
the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in
2016, serving as a promising candidate with the potential to replace the existing commercial PV
technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as
superior electronic properties and unique features of halide perovskite materials compared to that of
conventional light absorbing semiconductors. The review also presents a brief overview of device
architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of
the review elaborates on the major challenges such as hysteresis and stability issues in perovskite
solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

Keywords: Perovskite photovoltaics; electronic structure; crystal structure; stability; hysteresis;
interface engineering

1. Introduction

Recent advances in organic-inorganic hybrid perovskite solar cells (PSCs) with methyl ammonium
lead iodide as the archetypal material, have led to the advent of new low cost photovoltaic (PV)
technology that could be a viable competitor to the commercially available Silicon based solar cells [1,2].
Apart from low cost, simple device processing and manufacturability combined compatibility with
roll-to-roll processing and fabrication on flexible substrates add to the merits of the perovskite PV
technology [3–7]. The term “perovskite” was attributed to the crystal structure of calcium titanate
(CaTiO3), which was discovered by the German mineralogist Gustav Rose in 1839 and named in
honour of the Russian mineralogist Lev Perovski [8]. The organic–inorganic hybrid halide based
perovskites are widely studied in the 1990s for the application in transistor technology and light
emitting diodes, due to their excellent opto-electronic properties and solution processability of these
materials [9–15]. Organic–inorganic hybrid halide based perovskites are a group of materials with the
general formula ABX3, where A is an organic cation (CH3NH3

+ or NH2CH3NH2
+), B is a divalent

cation (Pb2+ or Sn2+) and X is a monovalent halide anion (I−, Br−, or Cl−) [16–18].
Organic-inorganic hybrid halide based perovskites was first used in photovoltaics as a sensitizer

replacing the dye pigment in Dye sensitized solar cells (DSSCs), which reported a 3.8% PCE in
2009 [19]. The devices employed liquid electrolyte as hole transporting layer (HTL), therefore gained
little attention due to low efficiency and poor stability. Later, the liquid electrolyte was replaced by
solid-state HTL (Spiro-OMeTAD), which resulted in a solid-state device with relatively high efficiency,
~9%, in 2012. This breakthrough led to the so-called “perovskite fever” [20] attracting much research
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interest in the following years, eventually increasing the efficiency to a record 22.1% [21] in early 2016.
The trend in increase of performance efficiency of perovskite solar cells along with the associated
timeline is shown in Figure 1 and the corresponding device details are depicted in Table 1.
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Table 1. Development trend in perovskite solar cells with details of device structure.

Year Device Structure PCE (%) Reference

2009 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Redox Liquid electrolyte/Pt 3.8 [19]
2011 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Redox Liquid electrolyte/Pt 6.5 [22]
2012 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au 9 [23]
March 2013 FTO/bl-TiO2/mp-Al2O3/CH3NH3PbI3–xClx/Spiro-OMeTAD/Ag 12.3 [24]
July 2013 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au 15 [25]
2013 FTO/Graphene-TiO2/mp-Al2O3/CH3NH3PbI3–xClx/Spiro-OMeTAD/Au 15.6 [26]
December 2013 ITO/np-ZnO/CH3NH3PbI3/Spiro-OMeTAD/Ag 15.7 [27]
August 2014 ITO-PEIE/Y-TiO2/CH3NH3PbI3–xClx/Spiro-OMeTAD/Au 19.3 [28]
June 2015 FTO/bl-TiO2/mp-TiO2/(FAPbI3)1–x(MAPbBr3)x/PTAA/Au 20.1 [29]
March 2016 FTO/bl-TiO2/mp-TiO2/Csx(MA0.17FA0.83)(1–x)Pb(I0.83Br0.17)3/Spiro-OMeTAD/Au 21.1 [30]
March 2016 N/A 22.1 [21]

The stride of progress has been extraordinary and unprecedented in PV history and can be ascribed
to numerous factors related to inexpensive fabrication costs, ease of processing, and the excellent
electronic and optical properties of the perovskite materials. Moreover, the superior performance
of the PSCs is reflected in their high open circuit voltage (Voc). The solar cell device efficiency (η)
is generally defined as η = Jsc (short circuit current density) × Voc (open circuit voltage) × FF
(fill factor). According to detailed balance theory, [31] the maximum open circuit voltage (Voc-max) of
a semiconductor absorber is approximately its bandgap energy (Eg) subtracted/reduced by 0.25 eV
and the ratio of Voc-max/Eg indicates the efficacy of the semiconductor material as a solar cell absorber.
In line with this, the maximum theoretical limit (SQ-limit) calculated for the perovskite solar cells
employing CH3NH3PbI3-xClx absorber (Eg ~1.55 eV) is as follows: Jsc(SQ-limit) is 27.20 (mA/cm2),
Voc(SQ-limit) is 1.28 V, FF(SQ-limit) is 90.2 and PCE(SQ-limit) is 31.4% [32]. It clearly indicates that perovskite
solar cells have immense potential for further development and the progress is promising [1,33–36].
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2. Crystal Structure

The crystal structure of perovskites (ABX3), typically consists of a unit cell with five atoms in a
cubic structure (α phase), in which the cation A has twelve nearest neighbouring anions X and the
cation B has six as shown in Figure 2a. Under ideal conditions, in order to maintain high-symmetry
cubic structure, the tolerance factor t should be close to 1. The tolerance factor t is expressed as a
function of ionic radii of A, B and X site ions, which is written as

t =
(RA + RX){√
2(RB + RX)

} (1)

where RA, RB, and RX are the ionic radii of the corresponding ions. Larger the deviation from the
ideal value t, the crystal structure will be distorted and the symmetry would be lowered. Therefore,
in order to satisfy the ideal tolerance factor (t ≈ 1), the A-site ion must be much larger than the B-site
ion. In the case of halide perovskites, in general, large Pb or Sn atom occupies the B site; hence the
cation at A-site must be extremely large. At finite temperature, cubic structure may exist when t lies
between 0.89 and 1, and smaller t (i.e., t < 0.89) could result in lower-symmetry tetragonal (β phase) or
orthorhombic (γ phase) crystal structures. On the other hand, larger t (i.e., t > 1), could undermine
the three-dimensional (3D) B–X network, leading to a two-dimensional (2D) layer structure. It is
noteworthy to mention that the DFT calculations computed at zero temperature have revealed that
the orthorhombic (γ phase) is the most stable and the cubic (α phase) is the most unstable structure,
since it is very difficult to satisfy the ideal condition t = 1. However, transitions between those crystal
structures often occur in most perovskites at finite temperature [37–39]. The tolerance factors of some
of the notable hybrid perovskite materials are shown in Figure 2c.
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Figure 2. (a) Crystal structure of cubic (α phase); (b) crystal structure of the tetragonal crystal system
(β) phase and orthorhombic (γ) phase of MAPbX3; and (c) the tolerance factor for different perovskite
material systems, t = 1 is ideal. Image: (a) copyright [40]; (b) copyright [41]; and (c) copyright [42].

The perovskite material (CH3NH3PbI3) undergoes reversible phase transition as a function of
temperature [43]. At low temperature of about 100 K, a stabilized orthorhombic (γ) phase exists and
the phase transition between the tetragonal (β) phase and orthorhombic (γ) phase occurs at around
160 K. The crystal structure for three phases is shown in Figure 2a–c. The tetragonal-cubic phase
transition partially influences the thermal stability issue for MAPbI3 based PSCs [44]. In the case of
formamidinium iodide (HC(NH2)2PbI3) based perovskites, a similar phase transition occurs at higher
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temperature, hence it is relatively stable compared to MAPbI3. A recent report revealed light soaking
could also induce reversible structure transformation in halide perovskite materials [45].

3. Electronic Structure of Perovskites

The electronic structure of hybrid perovskites especially near the band edge is predominantly
dictated by the BX6 (octahedra) building blocks. For instance, in the case of [PbI6]4− units in particular,
the valence band (or highest occupied molecular orbital, HOMO) is determined by the Pb 6s–I 5p
σ-antibonding orbital. Similarly, the conduction band (or lowest unoccupied molecular orbital,
LUMO) is determined by the Pb 6p–I 5p π-antibonding and Pb 6p–I 5s σ-antibonding orbitals [46–51].
The unusual electronic properties of hybrid perovskites is mainly ascribed to the lone pair of s electrons
in Pb cation, i.e., unlike most cations whose outer s orbitals are empty, Pb has an occupied 6s orbital,
which lies below the top of the valence bands [52,53]. The valence band maximum (VBM) has
strong Pb s and I p antibonding character, whereas the conduction band minimum (CBM) is mostly
contributed from the Pb p state, which attributes to the unique dual nature (ionic and covalent
characteristics) of electronic structures in halide perovskites. Figure 3 (top) shows the atomic structure
of perovskite (ABX3) and the contribution of each of its atoms/ions towards the electronic structure
of the perovskite material. In the hybrid perovskite structure of MAPbI3, the iodine ions at the
X-site forms the valence band and the lead (anion) at the B-site forms the conduction band, while
organic cation at the A-site remains electronically inactive but contributes to the structural stability
and tolerance factor of the perovskite structure.
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Figure 3. Top: Schematic of the perovskite crystal structure with respect to the A, B and X lattice sites
and their contribution to the electronic structure-copyright [54]; Bottom: (a) Contributions of MA, Pb,
and I on the density of state of MAPbI3 perovskite (copyright [55]). The schematic optical absorption
of: (b) halide perovskite solar cell absorber; (c) first-generation (Si); and (d) second-generation
(GaAs as example) (copyright [32]).

The contributions of MA, Pb, and I on the density of state of MAPbI3 perovskite are shown in
Figure 3a (bottom). It can be clearly seen that the grey coloured distribution pertaining to the A cation
lies well below the valence band maximum (VBM), therefore does not contribute to the bandgap
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electronically. The uniqueness of the electronic structure of the halide perovskites is also shown in
Figure 3b–d, comparing with 1st generation (Si solar cells) and 2nd generation (GaAs as an example).
In conventional semiconductors like GaAs, the CBM is predominantly determined by s orbital and the
VBM is primarily determined by p orbital [32,56]. In contrast, the halide perovskites exhibit inverted
electronic band structure (see Figure 3b,d)). The halide perovskites have strong optical absorption than
that of the first-generation and second-generation semiconductors shown above—mainly due to the
electronic band structure. The first-generation absorber (silicon) is an indirect bandgap material and its
transition probability between conduction and valence band edges is about two orders of magnitude
lower than that of the direct bandgap semiconductors (halide perovskite or GaAs), therefore, making
its absorber layer to be two orders of magnitude thicker and consequently increasing the material cost.

Though GaAs and CH3NH3PbI3 have direct bandgap, their electronic structures are very different.
Dispersive s band (delocalized s orbitals) dictates the lower part of the CB of GaAs, whereas the
degenerate Pb p bands dictate the lower part of the CB of the halide perovskite (CH3NH3PbI3).
The atomic p orbitals exhibit relatively less dispersion than those of s orbitals. Hence, the density
of states (DOS) pertaining to the conduction band minimum (CBM) is significantly higher than that
of GaAs (Figure 4a) and consequently leading to higher Joint density of states (JDOS) (Figure 4b).
Moreover, the energy level transition between VB and CB for CH3NH3PbI3 is contributed from mixed
(Pb s, I p) to Pb p orbitals (see Figure 3b). Here, the intra-atomic transition probability between the
Pb s to Pb p is relatively high in halide perovskites when compared to that of GaAs and it is the
reason behind stronger optical absorption of perovskites than GaAs as shown in Figure 4c. It is worthy
mentioning that optical absorption coefficient of CH3NH3PbI3 is up to 1 order of magnitude higher
than that of GaAs within the visible light range and hence relatively lower thickness is needed for
absorber materials to attain maximum efficiency as shown in Figure 4d [32].
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Figure 4. (a) Density of states (DOS) of CH3NH3PbI3 and GaAs. The VBMs are referred to as zero
energy and CBMs are marked as dashed lines; (b) the Joint density of states (JDOS) of CH3NH3PbI3 and
GaAs; (c) the optical absorptions of CH3NH3PbI3, and GaAs; and (d) calculated maximum efficiencies
of halide perovskites, CIS, CZTS, and GaAs as a function of film thickness (copyright [32]).

Another important unique characteristic of halide perovskites is that the grain boundaries
(GB) are electrically benign. Unlike in conventional polycrystalline light absorbers, where GBs are
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usually detrimental to solar cell performance, the effect of GBs in halide perovskites are electrically
invisible [57] and reports have even shown that it is quite favourable for better device performance [58].
The electrically benign nature of GBs in halide perovskites is primarily correlated to their electronic
structures. The valence band maximum (VBM) in halide perovskites is energetically much higher
than I 5p due to strong coupling between Pb 6s and I 5p, which consequently increases the level
of VBM. Higher VBM implicates lower defect levels or shallow defect states, therefore charge
carrier recombination propagated by the defect states are much lower in halide perovskites [32].
The extremely efficient charge transport and charge collection characteristics in perovskite solar cells
are also attributed to the unique electronic structure of the halide perovskites as discussed earlier.
Ambipolar carrier diffusion combined with long and balanced charge carrier diffusion lengths can be
added to the merits of the unique electronic structure [32,59,60].

One of the remarkable aspects of halide perovskites is their capability to produce high-quality
semiconductor films from solution processing methods. For CH3NH3PbI3 thin films, four magnitude of
increase in mobility (8 to 35 cm2·V−1·s−1) has been observed by Time-resolved terahertz spectroscopy
(TRTS) which can be attributed to better solution processing or deposition techniques [61,62]. Similarly,
CH3NH3PbI3 thin films fabricated from PbI2 or PbAc precursor resulted in different diffusion length
(LD = 200 nm vs. 600 nm, respectively) [63]. The variation of charge carrier mobility and diffusion
length as a function of crystal structure of perovskite is shown in Figure 5 [61]. The variation of
electronic properties depending on the measurement methods and perovskite material composition
are listed in Table 2. The electronic properties relatively decrease as the perovskite phase transitions’
into the cubic structure at room temperature.
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Table 2. Diffusion length (LD) and mobility (µ) measured for notable hybrid perovskites thin films.

Compound
(Perovskite Thin Films)

Measurement
Technique

Mobility (µ)
(cm2·V−1·s−1)

Diffusion Length,
LD (µm)

Charge lifetime,
τ (ns) Reference

CH3NH3PbI3

PLQ 0.66 0.13 9.6 [64]
PLQ 1.4 0.13 4.5 [65]
TRTS 8.2 1.2 67 [62]

CH3NH3PbI3-xClx
PLQ 1.6 1.07 273 [64]
TRTS 11.6 2.4 200 [62]

CH3NH3PbBr3 PLQ 8.9 1.06 51 [66]

CH(NH2)2PbI3
PLQ 0.16 0.18 75 [67]
TRTS 27 3.1 140 [68]

CH(NH2)2PbBr3 TRTS 14 1.3 50 [68]

CH3NH3SnI3 TRTS 1.6 0.03 0.2 [69]

Legend: PLQ, Photo Luminescence Quenching; TRTS, Time-Resolved Terahertz Spectroscopy.
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The forthcoming sections provide a brief overview of device architectures, fabrication methods
and charge selective contacts employed in PSCs.

4. Perovskite Solar Cell Device Architectures

Perovskite solar cells evolved from the mesoscopic structure (Figure 6a) in which the halide
perovskite semiconductors replaced the light harvesting dye [23,70,71]. Later, the liquid electrolyte was
replaced with a solid-state hole conductor. The advent attracted much interest in the PV community,
which resulted in the development of other device structures as shown in Figure 6b–d. The planar
device structure is developed in which the perovskite absorber is sandwiched between the electron
(ETM) and hole transporting materials (HTM). The n-i-p is also called as normal device structure and
p-i-n structure is also called as inverted device structure. Simply, depending on the position of the
ETM and HTM, the device structure varies [70,72–74]. The details about the different electron and hole
transporting layers are discussed in the forthcoming section.
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Recently, Silvia et al. [75] demonstrated perovskite solar cells with fullerene as electron
transporting layer (ETL) which exhibited PCE >10% in n-i-p planar device configuration. The authors
incorporated an innovative fullerene-saturation approach/strategy (the perovskite processing solution
is saturated with fullerene) to avoid the damage of the fullerene film through dissolution during
the deposition of the perovskite layer. Another interesting finding was also demonstrated by the
same research group, where the perovskite solar cells are fabricated without the electron transport
layer with solution processed methylammonium lead triiodide perovskite–C70 fullerene (MAPbI3:C70)
blend films on fluorine-doped tin oxide (FTO)-coated glass substrates [76]. The ETL-free devices thus
fabricated exhibited PCE of 13.6% with significantly low carrier recombination when compared to
conventional MAPbI3 perovskite layer. The ETL-free devices also exhibited high photostability in
comparison to the conventional regular n-i-p architecture with TiO2 based ETL.

5. Fabrication Methods

In the “one-step” deposition or spin coating method, the perovskite precursors of appropriate
stoichiometry are prepared in a common solution and are then spin coated into a thin film
(Figure 7a) [77]. Power conversion efficiency of over 20% has been achieved using this single step
method [28,34]. In the case of “two-step” deposition method or “sequential” deposition process,
two precursor solutions are prepared. For instance, a thin film is first deposited using metal halide
(e.g., PbI2) precursor using spin coating process (mostly) and then the film coated substrate is dipped
into the second precursor solution (Figure 7b) [78,79]. PSCs are also fabricated using the doctor
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blade method (PCE ~15%) and slot die coating (~12%), which could be a versatile approach for
scalability [80,81]. Dual source evaporation or vacuum deposition methods was also used to deposit
perovskite thin films, which provided the advantage of producing pin-hole free layers with uniform
thickness—resulting in PCE of ~15% [82]. However, this method presents challenges for scalability
and also requires relatively high energy for film fabrication. Hybrid approach of using both solution
processing and vapour deposition to fabricate perovskite thin films was also developed. Here, the PbI2

precursor is first spin-coated and then the methyl ammonium iodide (MAI) is evaporated on top of the
as-deposited PbI2 film and a PCE of ~12% was achieved using this method [83]. Table 3 lists some of
the other best perovskite solar cells (PCE > 17%) fabricated using different deposition methods.
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Single step FTO/bl-TiO2/mp-TiO2/(FAPbI3)1–x(MAPbBr3)x/PTAA/Au 24.7 1.06 77.5 20.2 [29]
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Two step FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au 21.4 1.06 76 17.1 [87]
Single step FTO/PEDOT:PSS/CH3NH3PbI3–xClx/PCBM/Al 22.4 0.92 82 18.0 [88]
Single step FTO/TiO2/(FAPbI3)1–x(MAPbBr3)x/PTAA/Au 21.8 1.11 73.6 17.9 [34]
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Single step FTO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au 21.3 1.14 74 18.4 [90]

6. Charge Selective Contacts and Interfaces

Charge selective layers play an important role in the performance of PSCs. Electron transport
layer (ETL) and hole transport layer (HTL) when placed on either side of the light absorbing perovskite
layer, provides unidirectional pathway for charge carriers. For instance, the ETL layer allows electrons
and acts as hole blocker and HTL vice versa. Therefore, the charge selective layers influence the
charge transport or charge extraction properties and thus the charge recombination rate significantly.
Moreover, interface engineering using the charge selective contacts can also passivate various physical
and electronic defects that could exist in the perovskite film, which includes voids, pin holes, energetic
barriers, defect states etc. For instance, incorporation of PEIE on top of ITO modifies the work
function of ITO from 4.6 eV to 4.0 eV, thereby reducing the electronic barrier at the ITO/TiO2 interface
in an ITO/PEIE/PCBM/Y: TiO2/MAPbI3/spiro-OMeTAD/Au device [28]. Such modification has
shown to improve the Jsc from 18.9 to 19.9 mA·cm−2 and increasing the FF from 65.25% to 73.28%.
Similarly, reports have shown that by incorporating an ultra-thin P3TMAHT intercalating layer
in the device structure for efficient hole extraction, the average PCE was improved from 8.52% to
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11.28% [82]. Dedicated reviews on interfacial engineering of perovskite solar cells can be found in
the literature [72–74]. Some of the notable materials employed in PSC device fabrication are shown
in Figure 8.Energies 2016, 9, 861  9 of 19 

 

Figure 8. Schematic of energy level diagram of representative hybrid halide perovskites and 

charge-extraction interlayers. The dotted lines represent the WF of the materials (copyright [91]). 

7. Challenges in Perovskite Solar Cells 

As discussed earlier, perovskite solar cells have seen unprecedented development in the past 

few years. The advancements in terms of performance efficiency were not  equally matched with the 

fundamental understanding of inherent electronic and physio-chemical properties, modulating the 

photovoltaic parameters of the devices. Hence, many challenges still remain which include hysteresis 

phenomenon observed during solar cell operation, improving the reproducibility of efficient devices, 

increasing the stability of the PSCs by making it thermal and moisture stable as well as reducing the 

reducing the amount of toxic (Pb-containing) material used in devices. Among these, the hysteresis 

and stability issue are found to be the most pressing issue as they serve as the bottleneck for 

commercialization. Further important challenges might arise from the scalability issues involved in the 

fabrication of perovskite solar cells. The details are discussed in the following sections. 

7.1. Hysteresis 

Hysteresis in HPSCs indicates the variations in the current–voltage response curves in which 

the corresponding photovoltaic parameters vary depending on the direction and rate of the scan as 

shown in Figure 9a, b as an example. Reversible hysteresis was reported by numerous research 

groups in MAPbI3-based devices of all architectures (normal and inverted) [92–95]. The scanning 

direction is called as backward or reverse scan when the voltage is swept from positive (open circuit) 

to negative (short circuit), whereas the scan in the opposite direction is termed as forward scan  [96]. 

Therefore, hysteresis imposes a serious problem on the accurate determination of perovskite solar cell 

efficiencies and long term device operational stability. Furthermore, there are increasing 

apprehensions over some reported efficiencies as  the devices are vulnerable to current-voltage (I-V) 

hysteresis effects. Hence, it is very much indispensable to decipher the origin or mechanisms of the 

I-V hysteresis in order to minimize or eradicate this anomalous behaviour completely for reliable 

quantification. 

Figure 8. Schematic of energy level diagram of representative hybrid halide perovskites and
charge-extraction interlayers. The dotted lines represent the WF of the materials (copyright [91]).

7. Challenges in Perovskite Solar Cells

As discussed earlier, perovskite solar cells have seen unprecedented development in the past
few years. The advancements in terms of performance efficiency were not equally matched with
the fundamental understanding of inherent electronic and physio-chemical properties, modulating
the photovoltaic parameters of the devices. Hence, many challenges still remain which include
hysteresis phenomenon observed during solar cell operation, improving the reproducibility of efficient
devices, increasing the stability of the PSCs by making it thermal and moisture stable as well as
reducing the reducing the amount of toxic (Pb-containing) material used in devices. Among these,
the hysteresis and stability issue are found to be the most pressing issue as they serve as the bottleneck
for commercialization. Further important challenges might arise from the scalability issues involved in
the fabrication of perovskite solar cells. The details are discussed in the following sections.

7.1. Hysteresis

Hysteresis in HPSCs indicates the variations in the current–voltage response curves in which the
corresponding photovoltaic parameters vary depending on the direction and rate of the scan as shown
in Figure 9a,b as an example. Reversible hysteresis was reported by numerous research groups in
MAPbI3-based devices of all architectures (normal and inverted) [92–95]. The scanning direction is
called as backward or reverse scan when the voltage is swept from positive (open circuit) to negative
(short circuit), whereas the scan in the opposite direction is termed as forward scan [96]. Therefore,
hysteresis imposes a serious problem on the accurate determination of perovskite solar cell efficiencies
and long term device operational stability. Furthermore, there are increasing apprehensions over some
reported efficiencies as the devices are vulnerable to current-voltage (I-V) hysteresis effects. Hence,
it is very much indispensable to decipher the origin or mechanisms of the I-V hysteresis in order to
minimize or eradicate this anomalous behaviour completely for reliable quantification.
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HPSCs (copyright [96]). (C) Schematic showing the various processes (or origins) occurring in the
perovskite solar cells (in normal device structure as an example) that could possibly lead to hysteresis
phenomenon during I-V measurements (copyright [95]).

Although the origin of hysteretic effects is still unclear, there are numerous mechanisms that have
already been proposed to explain the causes. The following mechanisms (Figure 9c) are found to
govern the hysteresis phenomenon in perovskite solar cells: (i) Ferroelectric polarization [94,97,98];
(ii) Ion migration [99–101]; (iii) Charge trapping [102,103]; and (iv) capacitive effects [104]. Dedicated
reviews on hysteresis phenomenon in perovskite solar cells can be found in the literature [95].
Since the perovskite solar cells are prone to hysteresis issues, extra care should be taken while
measuring the I-V data for reporting of efficiencies. Addressing this issue, an article has been
published recently comprising of step-by-step guidelines for proper characterization of perovskite
solar cells [105]. The authors described the characterization techniques similar to the best practices and
measurement standards followed in independent efficiency measurement labs like AIST, Fraunhofer
ISE and NREL etc. The protocols include: (i) Masking the cell appropriately and measuring the device
area accurately; (ii) Calibrating the illumination source; (iii) Determining the steady state Jsc and
Voc and simultaneously monitoring its stability; (iv) Measuring the J-V curves at the forward and
reverse direction at various scan rates; (v) Measuring steady-state photocurrent at several different
voltages near maximum power point; Pmax; (vi) Calculating the Jsc by integrating the IPCE data;
and (vii) performing statistical analysis across multiple measurement sample sets [105].

7.2. Stability

Another major challenge in perovskite PV technology is the degradation or lifetime of perovskite
solar cells. The performance efficiency of PSCs decreases over a period of time as the degradation
occurs. In order to pass the standard International Electrotechnical Commission damp heat test
(85 ◦C, 85% relative humidity), photovoltaic modules is expected to undergo less than 10% efficiency
loss in 1000 h (just over 40 days) [106,107]. Given this metric for stability requirement, the perovskite
solar cells are far from satisfying this condition till date. The degradation can occur when the devices
are exposed to moisture, continuous illumination, thermal-stress and oxygen [40,107–113]. The basic
degradation mechanism in PSCs is the breakdown of perovskite material under moisture or heat
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stress, which results in the segregation of MAPbI3 into its constituents PbI2 and MAI [114–116]. It is
summarized as: CH3NH3PbI3→PbI2 + CH3NH2↑+HI↑

The perovskite CH3NH3PbI3 thin films are found to undergo decomposition under thermal stress
at a temperature between ~100 ◦C [117] and 140 ◦C [118]; the decomposition rate increases further as the
temperature is increased [119]. Figure 10a shows the possible pathways of degradation of perovskite
via moisture ingression and iodide ion migration. Improvement in device stability by the incorporation
of phosphonic acid ammonium additive in the perovskite structure of CH3NH3PbI3 is reported
to increase the moisture resistance of the material by acting as a crosslink between neighbouring
grains [120] is shown in Figure 10b, where the stability is remarkably improved relative to the pristine
control (MAPbI3) devices. Figure 10c shows the device structure of carbon based encapsulation in
triple-layer PSCs which exhibited superior device stability [121].The carbon layer protects the device
from moisture ingression and the scaffolding provides protection against thermal stress [121,122].
Typically, testing under encapsulation denotes sealing the device completely in a glass or by sealing
the device using thermosetting epoxy glue [123,124]. Such kind of encapsulation protects the device or
adjacent films from oxygen and moisture ingression, thereby extending the long term stability of the
devices. Figure 10d shows the stability enhancement in PSCs via triple (or multiple) cation mixtures
with two different compositions - Cs5M and Cs0M, where Csx represents the percentage of Caesium
(5% and 0%) respectively and M stands for “mixed perovskite”. Addition of small amount of Cs
to MA/FA mixtures suppresses the device degradation occurring due to phase separation and also
improves the device performance significantly [30].
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Figure 10. (a) Schematic illustration of a proposed mechanism of silver iodide (AgI) formation:
(1) Moisture (H2O) in air enters through pinholes into the spiro-MeOTAD (HTL) layer.
(2) Decomposition of perovskite (MAPbI3) leads to an iodine containing volatile compound
(MAI and/or HI. (3) Migration of the iodine containing volatile compound from the MAPbI3 layer
corroding the electrode from both the top and bottom surface of silver (Ag) layer. (4) Surface diffusion
of the iodine containing volatile compound. (5) Silver iodide (AgI) formation. Copyright [125].
(b) Variation of PCE as a function of time of unsealed perovskite solar cells stored in ambient
air at ~55% humidity in the dark. Copyright [120]. (c) Schematic cross section of the triple-layer
perovskite-based fully printable mesoscopic solar cell. Copyright [121] (d) Aging for 250 hours of a
high performance Cs5M and Cs0M devices in a nitrogen atmosphere held at room temperature under
constant illumination and maximum power point tracking. Copyright [30]. Table 4 shows some of the
highly stable perovskite solar cells and their lifetime reported in literature.
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Table 4. List of some of the stable perovskite solar cells and lifetime values in literature.

Device Structure Efficiency
(%)

Expt. Conditions
(Light, Moisture, Temperature) Stability Reference

FTO/TiO2/Al2O3 +
MAPbI3−xClx/Li-spiro/Ag 12.6 80◦C, air 48 h [126]

FTO/c-TiO2/MAPbI3−xClx/spiro/Au 9.2 Dark, air 3 months [127]

FTO/TiO2/Al2O3/MAPbI3−xClx/spiro/Au 10.2 Ambient, 100 mW cm−2 light
Encapsulated device

60% decrease in PCE
after 175 h [128]

FTO/c-TiO2/m-TiO2 and
ZrO2/(5-AVA)x(MA)1−xPbI3/carbon film 12.8 Room temperature,

1.5 simulated sunlight 1008 h [121]

FTO/c-TiO2/MAPbI3−xClx/spiro/Au 10.2 Room temperature,
air, humidity < 35%

15 days, PCE dropped by
one order of magnitude [129]

FTO/c-TiO2/MAPbI3−xClx/spiro/Au 16.03 Bare device, no encapsulation,
stored under ambient condition

62 days: 9% decrease
in PCE [130]

FTO/TiO2 nano-rod +
TiCl4/MAPbI3−xClx/spiro/Au 10.6 Room temperature, air,

humidity < 35%
55 days, 60% of initial
PCE is retained [129]

ITO/NiOx/perovskite/ZnO/Al 14.6 Air, room temperature,
no encapsulation

60 days, 90% of initial
PCE is retained [85]

FTO/c-TiO2/m-TiO2/FEAI-MAPbI3/spiro/Au 18 Air, room temperature,
no encapsulation

120 days, 92% of initial
PCE is retained [131]

In order to achieve the main goal of producing cost effective modules of perovskite solar cells,
manufacturers must be able to deliver devices with the long term stability. Current products on
the market typically have a warranty of 20–25 years (c-silicon solar cells), which suggest that the
installation will retain 80% of its initial output after this time period, corresponding to a system loss of
<1%/year [132]. The perovskite solar cells demonstrated by Li et al. [122] would pass the temperature
or thermal stress test but yet to overcome the moisture ingression issues or pass the damp test. Research
conducted over the past couple of years indicates that the major key factors of degradation namely
moisture and heat must be addressed to improve the commercial viability of perovskite solar cells and
to provide a competitive edge over the currently existing alternatives.

Another important challenge in the development of perovskite solar cells is the concerns with
respect to toxicity of Lead (Pb) content in the perovskite material and the environmental concerns
of large scale deployment in the future. Recent studies based on life cycle analysis (LCA) and
environmental impact analysis (EIA) of perovskite solar cells showed that the lead content in the
perovskite materials contributes only to a small proportion on the overall environmental impact during
the fabrication or manufacturing process [133,134]. The potential lead pollution from the operation
of a perovskite PV manufacturing plant of 1-GW capacity is relatively lower when compared with
other lead emission sources such as fossil fuels, mining industries, battery technologies and other
related electronics [135]. Moreover, recent findings have shown that the perovskite solar cells can
be fabricated from the recycled lead from car batteries, [136] which could open up new avenues to
reduce the magnitude of lead contamination in the environment from other technologies by providing
a viable opportunity to reuse them in perovskite PV industry.

Furthermore, challenges pertaining to the scaling of perovskite solar cell fabrication for large
scale deployment should also be addressed in near future for successful commercialization. Thus far,
most of the best reported efficiencies (>20%) in perovskite PV technology were reported for miniature
devices with device area less than 1 cm2. Recently, Chen et al. reported the perovskite solar cells
of 1 cm2 with a certified efficiency of 15% [137]. The authors employed heavily doped inorganic
charge extraction layers in planar PSCs to achieve faster carrier extraction as well as depositing a
pin-hole free perovskite light absorber layer. Future development of large area perovskite solar cells
should also focus on reducing the series resistance losses and conductivity issues with respect to the
contacts. In addition, fabrication of high quality perovskite film with uniform microstructure across
a large area could pose a significant challenge; consequently, development of other economically
viable deposition techniques becomes indispensable for successful commercialization of perovskite
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PV technology. Moreover, most of the best reported perovskite solar cells employ gold and silver as
charge collection electrodes which could prove to be uneconomical for large scale deployment and
suitable alternative has to be found to mitigate such issues.

8. Outlook and Conclusions

The review presented a brief discussion of the progress and developments in the field of perovskite
solar cells. The PSC technology has undergone rapid evolution in the past 5–6 years owing to several
intriguing factors, including unique optical and electronic properties of halide perovskite materials
namely large carrier diffusion lengths, high charge-carrier mobility, low exciton binding energy and
bandgap tunability. Further progress in terms of power conversion efficiency (PCE) is predicted
via improving the crystal structure quality, grain size distribution of perovskite materials along with
uniform surface-coverage and careful control of structural and electronic properties of interfaces within
the device. The low exciton binding energy and ambipolar charge transport properties of perovskite
films makes them the right candidate for application in tandem cells using other PV-applicable
semiconductors, including organic photovoltaics (OPVs), silicon (c-Si or a-Si), copper indium gallium
di-selenide (CIGS), etc. [138,139]. It is expected that such a combination of materials will enable
the creation of low cost and high efficiency (>25%) solar cell devices and products [139]. In order
to improve the commercial viability of the perovskite PV technology, the prominent issues such as
hysteresis and degradation stability (lifetime) has to be addressed from both material and device
perspective. Moreover, standard testing protocols have to be developed for testing the devices
for accurate evaluation of the performance and lifetime. Overall, perovskite solar cells offer a
promising solution for developing the low cost PV technology that could become the game changer of
solar industry.
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