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Abstract: Effective wind turbine fault diagnostic algorithms are crucial for wind turbine intelligent
condition monitoring. An unscented Kalman filter approach is proposed to successfully detect and
isolate two types of gearbox failures of a wind turbine in this paper. The state space models are
defined for the unscented Kalman filter model by a detailed wind turbine nonlinear systematic
principle analysis. The three failure modes being studied are gearbox damage, lubrication oil leakage
and pitch failure. The results show that unscented Kalman filter model has special response to
online input parameters under different fault conditions. Such property makes it effective on fault
identification. It also shows that properly defining unscented Kalman filter state space vectors and
control vectors are crucial for improving its sensitivity to different failures. Online fault detection
capability of this approach is then proved on SCADA data. The developed unsented Kalman filter
model provides an effective way for wind turbine fault detection using supervisory control and data
acquisition data. This is essential for further intelligent WT condition monitoring.
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1. Introduction

Accurate and reliable wind turbine (WT) condition monitoring system (CMS) is important for
wind farm reliability centre maintenance that is expected to increase WT availability and decrease cost
of wind energy [1,2]. Developing effective WT fault diagnostic algorithms are crucial for reliable WT
CMS. Due to the variable-speed operation of a WT and stochastic characteristics of load, traditional
frequency domain techniques for WT fault detection may not be applicable. There has been increasing
trend of developing model based algorithm for fault detection and isolation [3]. Typically, CMS analyses
high frequency signals such as vibrations in frequency domain to monitor WT health while its cost
per channel is high. Supervisory control and data acquisition (SCADA) system mounted in the
WT controller to allow local and remote control of basic WT functions by collecting WF data is
originally used to analyze and report on operational performance. Its signal sampling rate and data
storage requirement are low and then its cost is lower compare to CMS [4]. However, low frequency
characteristics of SCADA data were considered to have low accuracy and may lead to challenge of
using it on fault diagnosis. Recently, Qiu YN and Feng YH [4,5] prove the relationship between the
SCADA data trending and WT failures based on physical principle analysis, which reveals that for
certain failure modes SCADA data is useful on the fault detection and diagnosis. Fault features can be
captured by anomaly detection algorithms developed on SCADA data [6].

Earliest attempt to use SCADA data on WT fault detection is using neural network technique
to realize automated anomaly detection on signals [7]. Thereafter, different signal processing
techniques have been applied to develop appropriate algorithm for accurate fault detection and
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diagnosis [8-11]. The signals used for WT fault detection include vibration, acoustic emission, strain,
torque, temperature etc. They range from mechanical signal to electrical signals. The signal processing
methods used for fault feature mining include time-domain method, classical frequency analysis
method, time-frequency analysis methods, model based method, probability-based method, artificial
intelligent method etc. [8]. Although comparison of different approaches, such as signal trending,
self-organizing maps and physical model, on using SCADA data for fault detection shows that
physical model has superior performance [12,13] on fault isolability, identificability, its dependence
on modelling and poor robustness make it difficult for implementation. Recently, Philip C [14]
develops an adaptive data-driven wind turbine model for fault detection and demonstrates its success
on implementation. However, data driven approach also has problem on providing explanation
on fault origins, which will lead to poor capability on fault isolation. This is also main issue for
artificial intelligent approaches, which cannot provide convincing explanation for various fault features.
Sataru [15] uses model based cascaded Kalman filter to show its advances on fault detection and
isolation while the nonlinearity of WT system is solved by nonlinear map. This indicates increasing
trend of using model-based approaches for WT fault detection.

This paper proposed a quantitative model-based approach for WT online fault detection and
diagnosis. It is realized by constructing a cascaded unscented Kalman filter (UKF) model by operational
principle analysis. Previous researches of WT gearbox degradation and generator faults clarify the
failure mechanisms [16,17] and offer a reference for WT quantitative model development. In addition,
considering the nonlinear characteristics of a WT system cascaded UKF is adopted [18,19]. The health
status of a wind turbine is judged by comparison of UKF prediction results and simulation results
under the same input. The prediction results of the WT with fault deviate from simulation results.
The location and detection of faults are achieved based on residual trending. Its fault detection
performances are then evaluated in terms of fault detection capability.

2. System Model

Figure 1 illustrates the process of developing a quantitative model-based fault diagnostic
algorithm and also the structure of this paper. The wind turbine operational process is firstly
presented by two main process, wind power generation model and gearbox thermal model. The wind
turbine model simulates systematic output under healthy and faulty situation. According to the WT
operational principle, a cascaded UKF model is developed to detect three faults: gearbox damage,
oil leakage and pitch failure. Residuals between predicted results and simulation outputs for the
three failure modes are compared and discussed. Then the predicted results of UKF model are further
compared to SCADA data. Its effectiveness is finally evaluated and summarized in terms of fault
detection capability criteria.
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Figure 1. System process of developing quantitative model for wind turbine (WT) fault detection
and diagnosis.
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2.1. Wind Power Generation Model

As illustrated in Figure 2, the wind turbine system studied in this paper is 1.5-2 MW with
typical configuration of wind rotor, electrical pitch, gearbox, doubly fed induction generator, tower etc.
The wind rotor is driven by the mechanical energy from input wind. The rotational speed of the spindle
is controlled jointly by input mechanical torque and the reverse torque generated by the generator.
The generator’s electromagnetic torque is controlled by the stator voltage to realize maximum power
point tracking when wind speed is under rated range. If wind speed is above rated, pitch system
controls pitch angle to limit the input mechanical energy in order to maintain constant output power.
The WT operational principle was discussed and the simulation models was developed in [16,17].
The simulation is performed according to a WT with 1.5-2 MW, which is configured with a gearbox
and doubly fed induction generator. Its simulation model is constructed according to WT’s steady
state rotor aerodynamics, simplified drive train aerodynamics and control principles as discussed
in [16,17]. The time domain simulation result is obtained according to wind speed variation as input
to the model.

aaoag

L]

Figure 2. Schematic diagram of WT.

2.2. Gearbox Thermal Model

WT energy efficiency is determined by the amount of energy loss during the transmission process
within the drive train. Part of energy loss will dissipate within the gearbox in the form of heat due to the
bearing friction, gear meshing, oil mixing and viscous friction [16,20]. To simplify the calculation, this
paper assumes that the energy loss in the process of gearbox transmission dissipated as heat through
three ways [16,21]: heat conduction and convection to the external environment from the gearbox, Q1;
heat exchange by oil supplied via the oil cooling system, Q,; heat loss to the adjacent components by
conduction through the coupling shaft, base and all internal components, Q3. The gearbox thermal
model is developed by lumped parameter approach as shown in Equation (1), with assumption that
thermal equilibrium is reached in the gearbox.

Qloss = Ql + Q2 + QS

Q1 = KAAT )
Q2 = c1pgAT
Q3 = szAT

where K is the overall heat transfer coefficient, calculated by K = 1/(1/hy + L/k + 1/hy) [21], where
hq and hy are the convective heat transfer coefficient of oil and air; k is the thermal conductivity of
gearbox casing; L is the thickness of gearbox casing; A is the surface area of the gearbox casing; c;,
p, g are the specific heat capacity, density and flow rate of cooling oil; c; and m are the specific heat
capacity and mass of gearbox; AT is the gearbox temperature-rise.
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2.3. Unscented Kalman Filter Model

A cascaded UKF method is developed based on the analysis in Section 2.1. and Section 2.2.
UKF method matches nonlinear distribution with the sampling strategy [22], which has better
applicability in nonlinear system comparing to the traditional linearization method. The core of
UKEF is unscented transform (UT) [19,23]: For n-dimensional random variable x, which has the mean
value ¥ and covariance Py, a group of sigma points (o) is available for nonlinear transform of every
sigma point. The optimal state estimation and covariance can be obtained through statistics for the
transformed sigma points. For the following nonlinear discrete time dynamic system:

X(k+1) = f[X(k), u(k)] + O(k) @)

Y(k) = h[X(k)] + M(k) ®G)

where X(k) is the state; u(k) is the inputs; Y(k) is the measurement outputs; f and & are system function
and measurement function; O(K) and M(k) are process noise and measurement noise. The sigma points
and weights can be made as follows:

o) =2X
o;=x+[/(n+ANP],i=1,...,n 4)
;=% [Vt NPy, i=n+1,...2n

Wit =N/ (n+7)
W§=A/(n+A)+1—o?+p ®)
W = W¥¢ =1/2(n+A),i=1,...,2n

A=ol(n+k)—n (6)

where k > 0 is to ensure positive semi-definite covariance matrix; « determines the distribution of
sigma points, 0 < o < 1; § = 2 for Gaussian Noise.

Due to complexity of a WT system monitoring all of its state parameters will consume large
amount of resources. To improve the efficiency of fault diagnosis, cascaded UKF model is defined
for two subsystems of a WT in order to reduce the number of state parameters and avoid complex
mathematical description of the control system. In addition, WT system is a time-varying nonlinear
system, its process function is not the typical form of linear equation. The first stage f; in the UKF
system model contains the aerodynamics of wind rotor, gearbox mechanics and thermal mechanism,
which predicts the rotor speed w, and temperature-rise of the gearbox AT with controlled vector of
wind speed v and pitch angle 3 from WT system process. The second stage f, is the generator model,
which predicts the generator electromagnetic torque Ty with the controlled vector of voltage U and
the rotational speed w, obtained from WT system process and the first stage UKF model respectively.
The nonlinear system equations and its state space vectors are expressed as Equations (7)-(10):

X1 = [wy, AT]T ;
{ = o, B]" @)

[@or, AT]" = [g1(wy, 0, B), 82(0, B)] + Oy
g1<wrr o, B) = [0'57TPOR203CP(?\0/ B)/wr - NTg/T]] / (]1’ + szg/ﬂ) (8)

82(0,B) = (1 —1)0.5mpgR*>Cy (Ao, B)/ (KA + c1pq + com)
Ao = wyR/v

{ X2 =Ts T )

uy = [wy, U]
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{ T, = g3(wr1 u) + 02 (10)

g3(wy, U) = pymyUsr, /{(Nw, — w1)[(rs — Crrar / (Nw, — wq))? + (x5 + Cxr)?]}

where T, is the torque of low speed shaft; p is air density; R is the wind rotor radius; C;, is wind power
coefficient, determined by the tip speed ratio Ag and pitch angle §3; ], and ], are the rotational inertia of
WT rotor and generator; N, 1 are the drive ratio and transmission efficiency of gearbox; w,, w g W1
are rotor speed, generator speed and synchronous speed; p; and m; are the pole number and phase
number of a generator; 7, 1+, xs and x, are generator parameters of generator stator and rotor; C is the
correction factor.

The unscented transformation are described as:

Yilk+1) = floi(k), u(k)] (11)

and the priori state estimation and covariance are calculated by:

X(k+1) = zznw;”y,«(kﬂ) (12)
i=0
Py (k+1)= % Welyi(k+1) — X(k+1)][yi(k +1) — X(k+ 1)]T +O(k) (13)

i=0
For the measurement update step, taking the power as measurement variable, the measurement
output and covariance are calculated by:

yi(k+1) = hly;(k+1)] (14)
Y(k+1) = %W{”yi(kﬂ) (15)
i=0
Py(k+1) = zzn WEeyi(k+1) — Y(k+1)[yi(k+1) — Y(k+ 1)}T + M(k+1) (16)

i=0

The cross covariance between X (k + 1) and Y (k + 1) is:
2n . . T
Pey(k+1) = ) Wi[yi(k+1) = X(k+ D][yi(k+1) = Y(k +1)] (17)
i=0

The measurement update of the optimal state estimation and covariance are:

K(k+1) = Py (k+1)P, ' (k+1) (18)
Xt (k+1)=X(k+1) +K(k+1D[Y(k+1) = Y(k+1)] (19)
Py (k+1) = Pg(k+1) — K(k+1)P,(k+ 1)K (k + 1) (20)

The selection strategy of sigma points includes sampling number, location and weight factor.
The current strategies used include symmetric sampling, simplex sampling, 3-order skew sampling
and 4-order Gaussian sampling [22]. Symmetric sampling is adopted in this paper and the UKEF is
initialized as follow:
{ Xo = [X1,0, X20]" = [1.37,0,0]7 2
Py = diag[1072,1,10%]
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The comparison between UKF model prediction result and simulation result are evaluated through
their residuals. The residual is calculated as:
5= ‘Valueprediction — Valueeq| (22)

The parameters of the WT model are designed according to a 1.5-2 MW WT, shown as Table 1.

Table 1. Wind turbine parameters.

Symbol Quantity Value
Po air density 1.225 kg/m3
R wind rotor radius 31m
IE rotor rotational inertia 2,460,106 kg-m2
Jg generator rotational inertia 52 kg~m2
N drive ratio 100
w1 synchronous speed 157 rad/s
p1 pole number 2
my phase number 3
Ts stator resistance 0.029 OO
Tt converted rotor resistance 0.023 Q)
Xs stator leakage reactance 0.18 0
Xr converted rotor leakage reactance 0.18 Q)
C correction factor 0.811

2.4. Fault Injection and Description

The rated wind speed of the 1.5-2 MW WT mentioned above is 12 m/s, its gearbox efficiency in
health is 97%, flow rate of gearbox lubrication oil is 0.84 L/s, pitch angle below the rated wind speed
is 0°. Three failure modes introduced in the WT simulation model are:

Fault1: Due to wearing of the gearbox, the mechanical energy transmission efficiency reduces to
92%, which further lead to reduce of output torque and power. Additional losses of energy
dissipate as heat in the gearbox, which results in abnormal temperature-rise [16].

Fault2: Lubricating oil leakage is a common failure mode of WT. It is assumed that the lubrication oil
leakage leads to the reduction of its flow rate from 0.84 L/s to 0.24 L/s. The heat dissipated
through lubrication oil is reduced and therefore results in temperature-rise of gearbox.

Fault 3: This paper simulates pitch system failure by setting pitch angle as 45° when wind speed is
below rated wind speed range. Increase of pitch angel will lead to decrease of mechanical
energy extracted by WT and then power generation.

With the defined state space vectors Xs and the control vector Us for the first and second UKF
model, the predicted rotor speed, generator torque, power and gearbox temperature-rise are obtained.
The feasibility of this UKF method on the wind turbine fault diagnosis is discussed through the
comparison between predicted and simulated results.

3. Simulation Results and Analysis

3.1. Diagnosis of Faults 1 and 2

The input wind speed varies between 9.5 and 10.5 m/s randomly. The results obtained by
system process simulation for a WT in health, with Fault 1 and with Fault 2 are shown in Figure 3.
Similar increasing trend of gearbox temperature-rise for a WT with Faults 1 and 2 are observed, which
indicates difficulties of accurate fault identification by using signal trending analysis approaches such
as data driven fault detection methods. For a WT with Fault 1, once gearbox transmission efficiency
decreases the amount of energy dissipated increases. With Fault 2, due to the decrease of the flow
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rate of the lubrication oil, the energy dissipated by the lubrication oil reduced. Both failures could
cause temperature rise of the WT lubrication oil. When the reduction amount of energy dissipated by
the lubrication oil is similar to reduction amount of energy dissipated due to transmission efficiency
reduction, the temperature rise of the two cases are similar. In fact, with the parameters set as above,
these two types of energy amount are similar. Therefore, similar temperature rises are observed for the
two failures.

Wind Speed v (m/s)

Temperature-rise AT (K)

z D) i T it e e
k]

;[T e S aasgen
T 25 é&ﬁ ___________________________
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Figure 3. Simulation results of a WT in three states: healthy, with Faults 1 and 2.

The gearbox temperature-rise AT for a healthy WT is obtained from the UKF model with the same
wind speed as input. Good agreement between UKF prediction and the simulation result are shown in
Figure 4. It proves the validity of developed UKF model, which is capable to track the performance
features of a healthy wind turbine.
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Figure 4. Comparison results of simulation and unscented Kalman filter (UKF) prediction for a WT
in health.

Figure 5 shows the comparison between UKF predicted and simulation results of a WT with Fault 1.
The comparisons are made between the performance parameters including gearbox temperature-rise
(AT), rotor rotational speed (wy), generator torque (T¢) and power output (P). Gearbox temperature-rise
predicted by UKF model is less than the simulation results, and their difference fluctuates between
5.4 and 6.9 K. By analyzing the WT process simulation model it is found that the output mechanical
torque of a faulty gearbox decreases with the reduction of transmission efficiency due to the gear
fatigue and wear. The reduction of mechanical torque subsequently causes controller to adjust the
stator voltage of the generator to ensure stability of the system. This is proved by the UKF predicted
reduced generator torque and output power as shown in Figure 5. Therefore, increase of rotor rotational
speed is obtained. The model developed in UKF is to predict the system expected performance by
considering a healthy WT. That is, the UKF model estimates a WT gearbox temperature rise with a
varied stator voltage obtained from the WT system process that is actually under faulty situations.
Therefore, the temperature-rise obtained by UKF method deviates from the simulation results under
the same input condition. In addition, the UKF prediction of the AT, w;, T¢ and P are dependent on
results in the previous time slot, which results in cumulative enlargement of residual S as observed
from Figure 5.
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Figure 5. Cont.
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Figure 5. Comparison results of simulation and UKF prediction for a WT in Fault 1.

Figure 6 shows the UKF predicted gearbox temperature-rise is less than the simulation results
under Fault 2 condition. The residual varies between 5.4 and 6.8 K consistently in time domain.
By analyzing the mechanism of Fault 2 it is found that gearbox transmission efficiency is the same as
healthy situation, which indicates the same amount of energy loss for this case. It is due to the variation
of oil flow rate that leads to temperature rise of the lubrication oil. Therefore, the stator voltage U
maintains the same as the value under healthy situation, which result in the same temperature rise
predicted by UKF model as healthy situation. Due to the lubrication oil leakage, the actual WT gearbox
temperature-rise increases, which is simulated by system process simulation by changing oil flow
rate. The comparison between UKF result and the simulation result actually shows the comparison
between WT system output under healthy and faulty situations. Less fluctuation of residual between
UKEF prediction and simulation results is observed for this case. However, as the gearbox transmission
efficiency is the same as healthy situation the main energy transmission process is unaffected and then
the expected rotor speed, torque and output power are the same as actually output. Therefore, good
agreements between UKF model output and simulation results are observed.
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Energies 2016, 9, 847 10 of 18

== Simulation (Fault 2)

. -
a P = & ~.UKF prediction (Fault2) _ | ¢ ‘E_
e E sesseresidual =
g4 E
e % 3
g 2 g
3 -9
0
Time (s)
_ | =& Simulation (Fault 2) r 15
3 BOO o= =& - UKF prediction (Fault 2) ~ -
E seessresidual L1 ,5,
g 1000 »
: 3
5 70 3
g. -4
O 400
0 20 40 60 80 100
Time (s)

Figure 6. Comparison results of simulation and UKF prediction for a WT in Fault 2.

Due to different influence of Faults 1 and 2 to performance parameters of a wind power system
different rotor speed, generator torque, output power and gearbox temperature-rise predicted by UKF
model are observed for Faults 1 and 2. The different behaviors of predicted results and tendency of
residuals can be regarded as the feature of faults detection and identification.

3.2. Diagnosis of Faults 1 and 3

To investigate UKF model performance for Fault 3 detection, the same random wind speed shown
in Figure 3 is used. The simulated rotor rotational speed w;, electromagnetic torque Ty, output power P
and gearbox temperature-rise AT of a WT under healthy situation and with Faults 1 and 3 are obtained
and compared in Figure 7. It shows that the gearbox temperature-rise of a WT with Fault 1 is higher
and that of a WT with Fault 3 is a little lower than a healthy one. The simulated generator torque
and power of a WT with Faults 1 and 3 decrease with a similar trend. For a WT under speed control
mode, the generator speed is controlled to ensure maximum power point tracking. When a WT has
reduced gearbox efficiency (Fault 1), the energy is transmitted to the generator decrease. In order
to maintain the same rotational speed for maximum power point tracking, the generator generates
a reduced reversion torque and then lower output power. Therefore, a reduced generator torque and
output power is observed for a WT under this failure mode. Similarly, when a wind turbine has a fixed
(larger than normal situation) pitch angle and operates under rate wind speed range, the reduced
energy extracted from wind speed results in reduced energy being transmitted to the generator. Then a
reduced torque and output power is generated from the generator. The simulation results show the
similar variation of the three outputs of Faults 1 and 3 in Figure 7, which also indicates challenge of
fault identification of these two failure modes.
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Figure 7. Simulation results of a WT in three states: healthy, with Faults 1 and 3.

The cascaded UKF model is used to estimate w;, Tg and P of a WT with Fault 3. With the same
wind speed as inputs, the comparison results of prediction and simulation are shown in Figure 8.

Figure 8 shows the comparison result between UKF model estimation and simulation.
The predicted w,, Tg, P and AT from UKF is almost the same as the simulation result. It proves that
with the faulty pitch angle, the UKF model is adaptive to the system. By analyzing the definition of the
controlled vector for UKF model, it is found that pitch angle is one of the controlled vectors for the first
UKF model and stator voltage is one of the controlled vectors of the second UKF model. UKF model
exhibits different response for the varied pitch angle and the stator voltage. Different estimation output
from UKF model under Fault 1 and Fault 3 conditions indicate different sensitivity of designed cascade
UKEF to different failure mode.
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Figure 8. Comparison results of simulation and UKF prediction for a WT in Fault 3.

3.3. Discussion

The different mechanisms of Faults 1-3 cause the differences of the UKF estimated results for the
failures. It can be regarded as effective fault features for fault diagnosis. Wind turbine is a complex
nonlinear system with uncertain input. Its different failure modes may lead to similar fault features
that cause challenge of fault diagnosis. By a proper design, the UKF model is proved to be effective
in fault identification for different failure modes. Proper state space vector, control vectors should be
defined for the UKF model. This is closely related to its fault detection sensitivity and then determines
its effectiveness. For the three failure modes, which are Faults 1, 2 and 3, the systematic parameters
that are changed due to failures, UKF model state space vectors and control vectors, the performances
being monitored, residual variation tendencies are summarized and compared in Table 2.
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Table 2. System simulation and UKF model input and output parameters summary.

System Process

. . Cascaded UKF Model
Fault Simulation
Cases .
System I.’ar.ameters State Space Vector and Monitoring Residual Tendencies
Variation Control Vectors Performances
Fault 1 nl r oo AT w, TP S(AT) 1, S(wy) 1, S(Tg) 1,S(P) 1
Fault 2 ql UKET: [wy, ATT, [o,8] AT, wy, Ty, P S(AT) 1, S(wr)~0, S(Tg)~0, S(P)~0
Fault 3 B (=45°) UKEF2: Tg, [wg, U] AT, wy, Tg, P S(AT)~0, S(cwr)~0, S(T¢)~0, S(P)~0

(i) Fault 1 is representing such types of failures: due to a certain subcomponent (the gearbox in
this case) degradation, local parameter (transmission efficiency) variation of the subcomponents
causes WT different dynamic response. The control system changes certain process parameters
(Tg and w; in this case) to adapt to the varied local parameters, and then to maintain a stable
system according to control strategy. Analyzing residuals tendency of rotor speed, generator
torque, output power and oil temperature-rise between simulated and UKF predicted results can
identify Fault 1 from Faults 2 and 3.

(if)  Fault 2 is presenting such types of failures: As not all subcomponents degradation will actively
lead to WT different dynamic response, some failures only affect system performance. Assuming
gearbox oil leakage had neglected effects on gearbox heat dissipation and only causes the portion
of energy loss through oil to decrease. Unaffected system process parameters (Ty and U) are
the input of UKF model. It makes UKF prediction the same as WT output under healthy
condition. The actual WT output with fault compared to UKF model (healthy situation) shows
consistent temperature rise residual. In this case, UKF model is designed for less sensitive to
Fault 2 comparing to Fault 1. However, the different fault signatures can be defined for the
two failures identification.

(iif) Fault 3 is presenting such types of failures: key control parameters (pitch angle) of the system
are varied due to components (pitch system) failure which directly changes the system response.
With the UKF model defined with such parameters as an input controlled vector, the UKF model
shows good adaptability for such varied input parameters. It delivers similar estimation output
as the WT actually output under faulty condition. A proper UKF model can be re-defined in order
to detect these types of failures for example to add additional module to judge the rationality of
the input parameters of UKF. Although the UKF designed exhibits lower sensitivity to Fault 3,
but Fault 1 can be easily identified from it.

The comparison above shows that by properly defining the state space vector (monitoring
parameters) and control vector (key process parameters that is affected), UKF model is capable
to deliver estimated value for the performance. Comparing simulated results and UKF predicted
results and by analyzing their residual tendencies it is able to identify different failure modes. The UKF
method exhibits different adaptability and sensitivity to failures and shows advances on certain failure
mode detection.

4. SCADA Data Analysis

To prove UKF model’s online fault detection feasibility, SCADA data from a WT with gearbox
failure is used to investigate its fault detection capability. This WT is about 1.5-2 MW with the same
configuration as discussed in Section 2. The date of the WT gearbox being replaced was recorded in
March 2007. The data that is collected before the WT gearbox failure are divided into two periods.
Each period contains the WT SCADA data for subsequent three months until WT failed. Therefore
there are 6 months of data in total. Figure 9 shows the power curve of this WT for the two periods by
assuming that the earlier three months data represents a healthy wind turbine performance.
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Figure 9. Power curve of a WT in health and fault.

The scattered plots in Figure 9 show the original SCADA data recorded and the lines are averaged
SCADA output power under the same wind speeds for the two periods. It shows that WT’s output
power of three months before failure deviates from healthy situation. Considering that the data
recorded in the SCADA system is ten minute averaged values, there is no high sampling rate signals
of control voltage U. Therefore, the state, input and measurement output are designed as Equation (23)
to match the sampling rate of SCADA data.

X = [w,, AT]"
u=[v, Ty, B]" (23)

Partial SCADA data in May 2006 and February 2007 are analysed with UKF method respectively,
shown as Figures 10 and 11.

Wind Speed v (m/s)

g s“'}& ® o®
o o o on® on®

0.5

Rotor Speed w, (rad/s)
Residual S (rad/s)

®)

Figure 10. Cont.
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Temperature-rise AT (K)
Residual S (K)

@

Figure 11. Comparison of UKF prediction and SCADA data in fault, 2007. (a) Wind speed; (b) Rotor
speed; (c) Output power; (d) Temperature rise.

The UKF method is used to estimate the output performance of a WT with input data recorded
in SCADA system. Comparing Figures 10 and 11 shows that although the fluctuation of rotor speed
w, and output power P residuals were becoming larger in February 2007 than in May 2006, their
differences between SCADA data and UKF prediction results are unobvious in consideration of the
influences of wind speed, noise and average process of SCADA system. Therefore, rotor speed and
output power may not be effective fault diagnosis parameters. While the magnitude of gearbox
temperature-rise AT in Figure 11 is completely different from that in Figure 10. The temperature-rise
in SCADA data a month before maintenance is higher than UKF prediction which is estimated as a
healthy WT. The residual of temperature-rise in February 2007 is larger than in May 2006 obviously
and it reached 10 K to 20 K. The result above can be used as the basis of WT gearbox fault diagnosis.
It proves the effectiveness of UKF in fault diagnosis of WT with SCADA data.

5. Conclusions

This paper represents a procedure to develop physical-model-based cascaded unscented Kalman
filter model for wind turbine fault detection. By analyzing the failure mechanism of the three different
types of failures, a cascaded unscented Kalman filter model is designed and its fault detectabilities
for the three failures are compared. Residuals behaviors between predicted results by unscented
Kalman filter model and actual output (simulation process model) under the same input condition are
analyzed for the three failures. It proves the applicability of the unscented Kalman filter method on
wind turbine fault diagnosis. The result shows that due to wind turbine’s nonlinear characteristics
and strong coupling between wind turbine subcomponents different failure modes have different
effects to the WT process parameters. The designed unscented Kalman filter therefore shows different
sensitivity to the failures. Properly defining state space vector (monitoring parameters) and control
vector (key process parameters that is affected) for different failures are crucial for effective unscented
Kalman filter model development.

In this paper, a new method of wind turbine fault diagnosis with SCADA data has been proposed.
The simulation results show that model-based unscented Kalman filter method in this paper offers an
effective means for detection of multiple faults in wind power system. The proposed method is able
to make different responses to the SCADA data of wind turbines in health and fault, which shows
its applicability to the online fault diagnosis of wind turbine. It gives successful examples and useful
hints for future research that aiming at developing accurate wind turbine fault detection algorithms by
designing proper input parameters of the algorithm. Extended research may also need to be performed
to improve the fault detection robustness by defining a proper threshold for different failures, which
not only depends on the failure model but also depends on the fault states. After all, the method
proposed is useful for wind turbine condition monitoring system that is a core for improving wind
turbines reliability and constructing scientific operational system of the wind farm.
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