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Abstract: As one of the emerging renewable resources, the use of photovoltaic cells has become
a promise for offering clean and plentiful energy. The selection of a best photovoltaic cell for a
promoter plays a significant role in aspect of maximizing income, minimizing costs and conferring
high maturity and reliability, which is a typical multiple attribute decision making (MADM) problem.
Although many prominent MADM techniques have been developed, most of them are usually to
select the optimal alternative under the hypothesis that the decision maker or expert is completely
rational and the decision data are represented by crisp values. However, in the selecting processes
of photovoltaic cells the decision maker is usually bounded rational and the ratings of alternatives
are usually imprecise and vague. To address these kinds of complex and common issues, in this
paper we develop a new interval-valued intuitionistic fuzzy behavioral MADM method. We employ
interval-valued intuitionistic fuzzy numbers (IVIFNs) to express the imprecise ratings of alternatives;
and we construct LINMAP-based nonlinear programming models to identify the reference points
under IVIFNs contexts, which avoid the subjective randomness of selecting the reference points.
Finally we develop a prospect theory-based ranking method to identify the optimal alternative,
which takes fully into account the decision maker’s behavioral characteristics such as reference
dependence, diminishing sensitivity and loss aversion in the decision making process.

Keywords: multiple attribute decision making; interval-valued intuitionistic fuzzy information;
photovoltaic cells; renewable energy

1. Introduction

With natural resource scarcity and environmental protection, the use of renewable energy has
become a promise for offering clean and plentiful energy source [1]. Photovoltaic cell is one of the
emerging renewable energy sources. For a promoter or inverter, the selection of a best photovoltaic cell
plays a significant role in aspect of maximizing income, minimizing costs and conferring high maturity
and reliability. The selection of photovoltaic cells usually needs to take into account multiple attributes,
such as the manufacturing cost, the efficiency in energy conversion, the emissions of greenhouse gases,
etc. This is a typical multiple attribute decision making (MADM) problem. Many prominent decision
making techniques have been developed for solving MADM problems during the past decade years,
such as Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) [2],
the TOPSIS method [3], the VIKOR method [4,5], the ELECTRE method [6,7], the DEMATEL method [8],
the WASPAS method [9], etc. During these well-known techniques, the LINMAP method is a practical
and useful approach for determining the weights of attributes and the ideal solution in the decision
making process, which has recently been extended to the decision environments of fuzzy numbers [10],
the decision contexts of intuitionistic fuzzy numbers [11,12], the decision environments of hesitant
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fuzzy numbers [13,14], the decision environments of interval-valued intuitionistic fuzzy numbers
(IVIFNs) [15], the decision contexts of grey [16], etc.

However, these aforementioned MADM techniques are derived from expected utility theory
which is based on the strict assumption regarding complete rationality of the decision maker (DM),
while many excellent papers involving behavioral experiments [17,18] have shown that the DM
is usually bounded rational in real-life decision process. To well capture the DM’s behavioral
characteristics, prospect theory developed by Tversky and Kahneman [18] is integrated into the
MADM process, which is called the behavioral MADM. Gomes and Lima [19] developed a discrete
MADM approach based on prospect theory, which is called the TODIM approach and has been applied
in the selection of the destination of natural gas [20], the evaluation of residential properties [21],
oil spill response [22], etc. On the other hand, many fuzzy behavioral MADM techniques have recently
been developed, for example, Liu et al. [23] developed a fuzzy MADM method based on prospect
theory for solving risk decision problems with interval probability in which the attribute values take
the form of uncertain linguistic variables. Krohling and de Souza [24] developed a fuzzy extension
of TODIM for handling the fuzzy behavioral MADM problems. Krohling et al. [25] also developed
an intuitionistic fuzzy TODIM. Liu et al. [26] introduced a risk decision method based on cumulative
prospect theory to solve emergency response problems. In the case of considering aspiration-levels of
attributes, Fan et al. [27] presented a method based on prospect theory to solve the MADM problem
where attribute values are denoted by crisp numbers and interval numbers. Zhang and Xu [28]
developed a hesitant fuzzy TODIM method for solving behavioral MADM problems with hesitant
fuzzy information.

The most characteristic of fuzzy behavioral MADM is that it can deal simultaneously with risk and
uncertainty in MADM problems. However, they suffer from some limitations: (1) in several practical
behavioral MADM the reference point is completely unknown, while most of the aforementioned
techniques under the hypothesis that the reference point is completely known in advance fail to deal
with such a kind of problems; and (2) these existing prospect theory-based decision making methods
fail to deal with the IVIFNs decision data in the decision making process. To overcome the above
limitations, we attempt to develop a new interval-valued intuitionistic fuzzy behavioral MADM
method to address the behavioral MADM problems under IVIFNs context in which the reference point
is completely unknown in advance. We also explore how to solve the selection case of photovoltaic
cells by using the proposed method.

The remainder of this paper is organized as follows: Section 2 reviews basic concepts related
to IVIFNs. In Section 3, an optimal model is first constructed to determine the reference point, and
a prospect theory-based ranking method is developed to identify the best alternative under IVIFNs
environment. In Section 4, the proposed method is employed to assist the promoter to select the
optimal photovoltaic cells. Section 5 presents the concluding remarks of this paper.

2. Preliminaries

Let X be nonempty set, an interval-valued intuitionistic fuzzy set (IVIFS) Ĩ in X is expressed as [29]:
Ĩ = {< x, Ĩ(x) >

∣∣∣x ∈ X} , where Ĩ(x) = ([µ̃L
Ĩ
(x), µ̃U

Ĩ
(x)], [ν̃L

Ĩ
(x), ν̃U

Ĩ
(x)]), [µ̃L

Ĩ
(x), µ̃U

Ĩ
(x)] ⊆ [0, 1] and

[ν̃L
Ĩ
(x), ν̃U

Ĩ
(x)]⊆ [0, 1] are intervals, respectively, 0 ≤ µ̃L

Ĩ
(x) ≤µ̃U

Ĩ
(x) ≤ 1, 0 ≤ ν̃L

Ĩ
(x) ≤ ν̃U

Ĩ
(x) ≤ 1 and

µ̃U
Ĩ
(x) + ν̃U

Ĩ
(x) ≤ 1. Usually, the Ĩ(x) is called an IVIFN [30] and is denoted by Ã =

(
[µ̃L, µ̃U ], [ν̃L, ν̃U ]

)
for convenience, where [µ̃L, µ̃U ] ⊆ [0, 1], [ν̃L, ν̃U ] ⊆ [0, 1] and µ̃U + ν̃U ≤ 1.

In the real-life decision process, the DM usually uses the IVIFNs instead of IVIFSs to express the
ratings for the alternatives on attributes (Case 1) or the pair-wised comparison assessment information
over alternatives (Case 2). For example, Case 1: let A1 be an alternative, and let C1 be an attribute which
the alternative A1 satisfies, the rating of the alternative A1 with respect to the attribute C1 is represented
by IVIFN as C1(A1) = ([0.5, 0.6], [0.2, 0.3]), which can express the meaning that the alternative A1

is an excellent alternative for the DM on the attribute C1 with a chance between 50% and 60%,
and simultaneously A1 is not an excellent choice with a chance between 20% and 30% [31]; and Case 2:
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given two alternatives A1 and A2, if the DM prefers A1 to A2 with IVIFN preference information
([0.7, 0.8], [0.1, 0.2]), which means that the degree to which the DM thinks the alternative A1 is superior
A2 is the interval [70%, 80%] and A1 is inferior to A2 with a chance between 10% and 20%.

Definition 2.1. [32]. For two IVIFNs Ãj = ([µ̃L
j , µ̃U

j ], [ν̃
L
j , ν̃U

j ]) (j = 1, 2), let s(Ãj) =
1
2 (µ̃

L
j − ν̃L

j + µ̃U
j −

ν̃U
j ), h(Ãj) = 1

2 (µ̃
L
j + µ̃U

j + ν̃L
j + ν̃U

j ), T(Ãj) = µ̃U
j + ν̃L

j − µ̃L
j − ν̃U

j and G(Ãj) = µ̃U
j + ν̃U

j − µ̃L
j − ν̃L

j
(j = 1, 2) be the score function and the accuracy function, the membership uncertainty index, and the hesitation
uncertainty index of Ãj (j = 1, 2), respectively, then we have:

(1) if s(Ã1) < s(Ã2), then Ã1 ≺ Ã2;

(2) if s(Ã1) = s(Ã2), then


h(Ã1) < h(Ã2)⇒ Ã1 ≺ Ã2

h(Ã1) = h(Ã2)⇒


T(Ã1) > T(Ã2)⇒ Ã1 ≺ Ã2

T(Ã1) = T(Ã2)⇒
{

G(Ã1) > G(Ã2)⇒ Ã1 ≺ Ã2

G(Ã1) = G(Ã2)⇒ Ã1 ∼ Ã2

.

Definition 2.2. [30]. Let Ãj =
(
[µ̃L

j , µ̃U
j ], [ν̃

L
j , ν̃U

j ]
)
(j = 1, 2, · · · , n) be a collection of IVIFNs, the interval-

valued intuitionistic fuzzy weighted averaging (IVIFWA) operator is a mapping Hn → H such that

IVIFWA
(

Ã1, Ã2, · · · , Ãn

)
=

(
[1−

n

∏
j=1

(1− µ̃L
j )

wj , 1−
n

∏
j=1

(1− µ̃U
j )

wj ], [
n

∏
j=1

(ṽL
j )

wj ,
n

∏
j=1

(ṽU
j )

wj ]

)
(1)

where w = (w1, w2, · · · , wn)
T is the weight vector of Ãj (j = 1, 2, · · · , n).

Definition 2.3. [33]. Let Ãj =
(
[µ̃L

j , µ̃U
j ], [ν̃

L
j , ν̃U

j ]
)
(j = 1, 2) be two IVIFNs, the Euclidean distance between

Ã1 and Ã2 is defined as follows:

d
(

Ã1, Ã2

)
=

√
1
4

((
µ̃L

1 − µ̃L
2
)2

+
(
µ̃U

1 − µ̃U
2
)2

+
(
ṽL

1 − ṽL
2
)2

+
(
ṽU

1 − ṽU
2
)2

+
(
π̃L

1 − π̃L
2
)2

+
(
π̃U

1 − π̃U
2
)2
)

(2)

where π̃L
1 = 1− µ̃U

1 − ṽU
1 , π̃U

1 = 1− µ̃L
1 − ṽL

1 , π̃L
2 = 1− µ̃U

2 − ṽU
2 and π̃U

2 = 1− µ̃L
2 − ṽL

2 .

3. The Developed Decision Making Approach

Consider an MADM problem with IVIFNs which consists of a set of alternatives
A = {A1, A2, · · · , Am} and a set of attributes C = {C1, C2, · · · , Cn}. Let Ãij be the rating
of the alternative Ai with respect to the attribute Cj, and the decision matrix is denoted by
< = (Ãij)m×n where all Ãij are represented by IVIFNs. The weight vector of attributes is denoted
by w = {w1, w2, · · · , wn}. To select the best alternative which is the most satisfactory with respect to
attributes C = {C1, C2, · · · , Cn} from the potential alternatives set A = {A1, A2, · · · , Am} according to
the decision information < = (Ãij)m×n, we next construct the LINMAP-based nonlinear programming
models to determine the reference points under IVIFNs context, and develop a prospect theory-based
ranking method with IVIFNs data to identify the best alternative in case of considering the DM’s
behavioral characteristics.

3.1. LINMAP-Based Nonlinear Programming Models to Derive the Reference Point

The LINMAP method developed by Srinivasan and Shocker [2] proves to be a practical and useful
approach for determining the ideal solution based on the given decision information. In this method
the derived ideal solution is neither the best point nor the worst point but an optimal point because it is
obtained based on that the inconsistency index (poorness of fit) between the derived ranking order of
each pair alternatives and the preorder given by the DM should be minimized and must be no bigger
than the consistency index (goodness of fit). Obviously, the ideal solution is much in accord with the
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aspiration of the DM and is very appropriate to be as the reference point in the decision process in
case of considering the DM’s psychological behavior. Therefore, drawing on the idea of the LINMAP
approach, in the next section we construct a nonlinear programming approach to obtain the reference
point on the basis of the given decision information for solving the IVIF behavioral MCDM problem.

The LINMAP approach requires the DM to provide the incomplete preference relations
on pair-wise comparisons of alternatives. We assume that the DM expresses the comparison
preference information between the alternatives Aξ and Aζ by using IVIFNs according to his/her
subjective experiences and judgments. The comparison information is given by a set of ordered
pairs Ω̃ = {(ξ, ζ)|Aξ�R̃(ξ,ζ)Aζ , f or ξ, ζ = 1, 2, . . . , m} where the R̃(ξ, ζ) is an IVIFN denoted

by R̃(ξ, ζ) = ([ũL
R̃(ξ,ζ)

, ũU
R̃(ξ,ζ)

], [ṽL
R̃(ξ,ζ)

, ṽU
R̃(ξ,ζ)

]), which indicates the degree that the DM prefers the

alternative Aξ to Aζ .

Remark 3.1. It is noted that if the comparison preference information is complete, then |Ω̃| = 1
2 m(m− 1),

where |Ω̃| is the cardinality of Ω̃; while if it is incomplete, then |Ω̃| < 1
2 m(m− 1). This study allows the

pairwise comparison preference information given by the DM to be incomplete and/or intransitive.

3.1.1. Definitions of Consistency and Inconsistency Indices under IVIFNs Context

Given a pair of alternatives (ξ, ζ) ∈ Ω̃, the distance between each of the alternatives Ai(i = ξ, ζ)

and the reference point A∗ can be calculated as follows:

Di = ∑n
j=1 wjd(Ãij, Ã∗j )

2

= 1
4

n
∑

j=1
wj


(

µ̃L
ij − (µ̃L

j )
∗)2

+
(

µ̃U
ij − (µ̃U

j )
∗)2

+
(

ṽL
ij − (ṽL

j )
∗)2

+
(

ṽU
ij − (ṽU

j )
∗)2

+
(

π̃L
ij − (π̃L

j )
∗)2

+
(

π̃U
ij − (π̃U

j )
∗)2

 (3)

where the reference point vector is denoted by A∗ = (Ã∗1 , Ã∗2 , · · · , Ã∗n), and Ã∗j is the reference point

with the attribute Cj by expressing as an IVIFN Ã∗j = ([(ũL
j )
∗, (ũU

j )
∗
], [(ṽL

j )
∗, (ṽU

j )
∗
]).

Let gξζ = Dζ − Dξ , then

gξζ =
1
4

n

∑
j=1

w j


(

µ̃L
ζ j − (µ̃L

j )
∗)2

+
(

µ̃U
ζ j − (µ̃U

j )
∗)2

+
(

ṽL
ζ j − (ṽL

j )
∗)2

+
(

ṽU
ζ j − (ṽU

j )
∗)2

+
(

π̃L
ζ j − (π̃L

j )
∗)2

+
(

π̃U
ζ j − (π̃U

j )
∗)2
−
(

µ̃L
ξ j − (µ̃L

j )
∗)2
−
(

µ̃U
ξ j − (µ̃U

j )
∗)2

−
(

ṽL
ξ j − (ṽL

j )
∗)2
−
(

ṽU
ξ j − (ṽU

j )
∗)2
−
(

π̃L
ξ j − (π̃L

j )
∗)2
−
(

π̃U
ξ j − (π̃U

j )
∗)2

 (4)

For convenience of description, we stipulate:

ηζξ j =
1
4

 (µ̃L
ζ j)

2
+ (µ̃U

ζ j)
2
+ (ṽL

ζ j)
2
+ (ṽU

ζ j)
2
+ (π̃L

ζ j)
2
+ (π̃U

ζ j)
2 − 2π̃L

ζ j − 2π̃U
ζ j−

(µ̃L
ξ j)

2 − (µ̃U
ξ j)

2 − (ṽL
ξ j)

2 − (ṽU
ξ j)

2 − (π̃L
ξ j)

2 − (π̃U
ξ j)

2
+ 2π̃L

ξ j + 2π̃U
ξ j


µ̂L

j = wj(µ̃
L
j )
∗, µ̂U

j = wj(µ̃
U
j )
∗, v̂L

j = wj(ṽL
j )
∗, v̂U

j = wj(ṽU
j )
∗, αL

ζξ j =
1
2 (−µ̃L

ζ j + π̃U
ζ j + µ̃L

ξ j − π̃U
ξ j)

αU
ζξ j =

1
2 (−µ̃U

ζ j + π̃L
ζ j + µ̃U

ξ j − π̃L
ξ j), βL

ζξ j =
1
2 (−ṽL

ζ j + π̃U
ζ j + ṽL

ξ j − π̃U
ξ j),

βU
ζξ j =

1
2 (−ṽU

ζ j + π̃L
ζ j + ṽU

ξ j − π̃L
ξ j)

(5)

Therefore, gξζ can be written as follows:

gξζ =
n

∑
j=1

wjηζξ j +
n

∑
j=1

µ̂L
j αL

ζξ j +
n

∑
j=1

µ̂U
j αU

ζξ j +
n

∑
j=1

v̂L
j βL

ζξ j +
n

∑
j=1

v̂U
j βU

ζξ j (6)

According to prospect theory, the DM usually prefers to the alternative that is closer to the
reference point.
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Definition 3.1. For each pair of alternatives (ξ, ζ) ∈ Ω̃, an inconsistency index (Dζ − Dξ)
− is defined to

measure the degree of inconsistency between the ranking orders of the alternatives Aξ and Aζ in which one
ranking order is determined by Dξ and Dζ , and the other ranking order is obtained by the comparison preference
relation (ξ, ζ) ∈ Ω̃ given by the DM in advance as below:

(
Dζ − Dξ

)−
=

{
0

(
Dζ ≥ Dξ

)
R̃ (ξ, ζ)×

(
Dξ − Dζ

) (
Dζ < Dξ

) (7)

According to the basic operation of IVIFNs, it is easy to see that the inconsistency index
(Dζ − Dξ)

− is an IVIFN. Thus, (Dζ − Dξ)
− is also called the interval-valued intuitionistic fuzzy

inconsistency index. Then, this inconsistency index (Dζ − Dξ)
− can be rewritten as:(

Dζ − Dξ

)−
= R̃ (ξ, ζ)max

{
0,
(

Dξ − Dζ

)}
(8)

The comprehensive inconsistency index is defined as:

B̃ = ∑
(ξ,ζ)∈Ω̃

(
Dζ − Dξ

)−
= ∑

(ξ,ζ)∈Ω̃

R̃ (ξ, ζ)max
{

0,
(

Dξ − Dζ

)}
(9)

In a similar way, the consistent index can be introduced as follows:

Definition 3.2. For each pair of alternatives (ξ, ζ) ∈ Ω̃, the consistency index (Dζ − Dξ)
+ is defined as:

(
Dζ − Dξ

)+
=

{
R̃ (ξ, ζ)×

(
Dζ − Dξ

) (
Dζ ≥ Dξ

)
0

(
Dζ < Dξ

) (10)

which can measure the degree of consistency between the ranking orders of the alternatives Aξ and Aζ in which
one ranking order is determined by Dξ and Dζ , and the other ranking order is obtained by the preference relation
(ξ, ζ) ∈ Ω̃ given by the DM in advance.

Obviously, the consistency index (Dζ − Dξ)
+ in Equation (10) is also an IVIFN, which is called

the interval-valued intuitionistic fuzzy consistency index and can also be rewritten as:(
Dζ − Dξ

)+
= R̃ (ξ, ζ)max

{
0,
(

Dζ − Dξ

)}
(11)

Then, the comprehensive consistency index can be obtained by the following equation:

G̃ = ∑
(ξ,ζ)∈Ω̃

(
Dζ − Dξ

)+
= ∑

(ξ,ζ)∈Ω̃

R̃ (ξ, ζ)max
{

0,
(

Dζ − Dξ

)}
(12)

Using Equations (9) and (12), it can be easily derived that

G̃− B̃ = ∑
(ξ,ζ)∈Ω̃

(
(Dζ − Dξ)

+ − (Dζ − Dξ)
−
)

= ∑
(ξ,ζ)∈Ω̃

(
R̃(ξ, ζ)× (Dζ − Dξ)

)
= ∑

(ξ,ζ)∈Ω̃

(
R̃(ξ, ζ)× gξζ

) (13)

3.1.2. Construction of the Nonlinear Programming Model

To determine the reference point A∗, we construct the following optimal model that intends to
minimize B̃ under the condition that G̃ is no smaller than B̃ by an IVIFN ε̃:
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min
{

B̃
}

s.t.


G̃− B̃ ≥ ε̃

0 ≤ (µ̃L
j )
∗ ≤ (µ̃U

j )
∗, j ∈ {1, 2, · · · , n}

0 ≤ (ṽL
j )
∗ ≤ (ṽU

j )
∗, j ∈ {1, 2, · · · , n}

(µ̃U
j )
∗
+ (ṽU

j )
∗ ≤ 1, j ∈ {1, 2, · · · , n}

(MOD-1)

where ε̃ =
(
[uL

ε̃ , uU
ε̃ ], [v

L
ε̃ , vU

ε̃ ]
)

which is an IVIFN given by the DM in advance represents the DM’s
lowest acceptable level towards the difference of G̃− B̃.

Remark 3.2. According to the LINMAP method, the mode (MOD-1) is to determine the ideal solution based on
the given decision information. This derived ideal solution is neither the best point nor the worst point but an
optimal point because it is obtained based on that the inconsistency index between the derived ranking order of
each pair alternatives and the preorder given by the DM should be minimized and must be no larger than the
consistency index. Obviously, the ideal solution is much in accord with the aspiration of the DM and is very
appropriate to be as the reference point in the decision process in case of considering the DM’s psychological
behavior. Apparently, it is reasonable to derive the reference points by using the mode (MOD-1).

By Equations (6), (9) and (13), the optimal model (MOD-1) is equivalent to the following model:

min

{
∑

(ξ,ζ)∈Ω̃
R̃ (ξ, ζ)max

{
0,
(

Dξ − Dζ

)}}

s.t.


∑

(ξ,ζ)∈Ω̃

(
R̃ (ξ, ζ)× gξζ

)
≥ ε̃

0 ≤ ûL
j ≤ ûU

j , 0 ≤ v̂L
j ≤ v̂U

j , 0 ≤ ûU
j + v̂U

j ≤ wj, j ∈ {1, 2, · · · , n}

(MOD-2)

Furthermore, let λξζ = max
{

0, (Dξ − Dζ)
}

, then for each pairwise of alternatives (ξ, ζ) ∈ Ω̃, it is
obtained λξζ ≥ Dξ − Dζ , namely, λξζ + Dζ − Dξ ≥ 0 and λξζ ≥ 0. Thus, the optimal model (MOD-2)
can be converted into the following optimal model:

min ∑
(ξ,ζ)∈Ω̃

λξζ R̃(ξ, ζ)

s.t.


∑

(ξ,ζ)∈Ω̃

(
R̃(ξ, ζ)× gξζ

)
≥ ε̃

gξζ + λξζ ≥ 0, λξζ ≥ 0, (ξ, ζ) ∈ Ω̃
0 ≤ ûL

j ≤ ûU
j , 0 ≤ v̂L

j ≤ v̂U
j , 0 ≤ ûU

j + v̂U
j ≤ wj, j ∈ {1, 2, · · · , n}

(MOD-3)

It should be noted that both the objective function and the constraints of the model (MOD-3)
contain the IVIFNs which cannot be solved by the existing programming methods. In the following,
we discuss how to solve the model (MOD-3).

3.1.3. Obtain the Reference Points by Solving the Optimal Model

According to the interval-valued intuitionistic fuzzy weighted averaging operator introduced in
Section 2, the objective function of the model (MOD-3) is obtained as:

∑
(ξ,ζ)∈Ω̃

(
λξζ R̃ (ξ, ζ)

)
=


[1− ∏

(ξ,ζ)∈Ω̃
(1− uL

R̃(ξ,ζ)
)

λξζ , 1− ∏
(ξ,ζ)∈Ω̃

(1− uU
R̃(ξ,ζ)

)
λξζ ],

[ ∏
(ξ,ζ)∈Ω̃

(vL
R̃(ξ,ζ)

)
λξζ , ∏

(ξ,ζ)∈Ω̃
(vU

R̃(ξ,ζ)
)

λξζ ]

 (14)
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and the left of the first constraint the model (MOD-3) is obtained as below:(
[1− ∏

(ξ,ζ)∈Ω̃
(1− uL

R̃(ξ,ζ)
)

gξζ , 1− ∏
(ξ,ζ)∈Ω̃

(1− uU
R̃(ξ,ζ)

)
gξζ ], [ ∏

(ξ,ζ)∈Ω̃
(vL

R̃(ξ,ζ)
)

gξζ , ∏
(ξ,ζ)∈Ω̃

(vU
R̃(ξ,ζ)

)
gξζ ]

)
(15)

Apparently, both Equations (14) and (15) are IVIFNs. According to the definition of IVIFNs,
the model (MOD-3) can be transformed to the following bi-objective interval programming model as:

min {[1− ∏
(ξ,ζ)∈Ω̃

(
1− uL

R̃(ξ,ζ)

)λξζ
, 1− ∏

(ξ,ζ)∈Ω̃

(
1− uU

R̃(ξ,ζ)

)λξζ
]}

max {[ ∏
(ξ,ζ)∈Ω̃

(
vL

R̃(ξ,ζ)

)λξζ
, ∏
(ξ,ζ)∈Ω̃

(
vU

R̃(ξ,ζ)

)λξζ
]}

s.t.




[1− ∏

(ξ,ζ)∈Ω̃
(1− uL

R̃(ξ,ζ)
)

gξζ , 1− ∏
(ξ,ζ)∈Ω̃

(1− uU
R̃(ξ,ζ)

)
gξζ ],

[ ∏
(ξ,ζ)∈Ω̃

(vL
R̃(ξ,ζ)

)
gξζ , ∏

(ξ,ζ)∈Ω̃
(vU

R̃(ξ,ζ)
)

gξζ ]

 ≥ ([uL
ε̃ , uU

ε̃ ], [v
L
ε̃ , vU

ε̃ ])

gξζ + λξζ ≥ 0, λξζ ≥ 0, (ξ, ζ) ∈ Ω̃
0 ≤ ûL

j ≤ ûU
j , 0 ≤ v̂L

j ≤ v̂U
j , 0 ≤ ûU

j + v̂U
j ≤ wj, j ∈ {1, 2, · · · , n}

(MOD-4)

Theorem 3.1. The model (MOD-4) is equivalent to the following bi-objective interval programming
model (MOD-5):

max

{
[ ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uU
R̃(ξ,ζ)

), ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uL
R̃(ξ,ζ)

)]

}

max

{
[ ∑
(ξ,ζ)∈Ω̃

λξζ ln(vL
R̃(ξ,ζ)

), ∑
(ξ,ζ)∈Ω̃

λξζ ln(vU
R̃(ξ,ζ)

)]

}

s.t.



∑
(ξ,ζ)∈Ω̃

(gξζ ln(1− uL
R̃(ξ,ζ)

)) ≤ ln(1− uL
ε̃ ),

∑
(ξ,ζ)∈Ω̃

(gξζ ln(1− uU
R̃(ξ,ζ)

)) ≤ ln(1− uU
ε̃ )

∑
(ξ,ζ)∈Ω̃

(gξζ ln(vL
R̃(ξ,ζ)

)) ≤ ln(vL
ε̃ ),

∑
(ξ,ζ)∈Ω̃

(gξζ ln(vU
R̃(ξ,ζ)

)) ≤ ln(vU
ε̃ )

λξζ + gξζ ≥ 0, λξζ ≥ 0
(
(ξ, ζ) ∈ Ω̃

)
0 ≤ ûL

j ≤ ûU
j , 0 ≤ v̂L

j ≤ v̂U
j , 0 ≤ ûU

j + v̂U
j ≤ wj, j ∈ {1, 2, · · · , n}

(MOD-5)

The proof of Theorem 3.1 is provided in Appendix A.

Lemma 3.1. [34] The maximization optimal problem with interval-objective function as{
max ã
s.t. ã ∈ Ω

is equivalent to the bi-objective mathematical programming problem as:{
max

{
aL, m (ã)

}
s.t. ã ∈ Ω

where ã = [aL, aU ] is an interval number, the m (ã) =
(
aL + aU) /2 is the midpoint of ã, and Ω is a set

constraint condition in which the variable ã should satisfy.
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According to Lemma 3.1., the model (MOD-5) can be further transformed into the multi-objective
programming model as follows:

max{ ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uU
R̃(ξ,ζ)

)}

max{ 1
2 ( ∑

(ξ,ζ)∈Ω̃
λξζ ln(1− uU

R̃(ξ,ζ)
) + ∑

(ξ,ζ)∈Ω̃
λξζ ln(1− uL

R̃(ξ,ζ)
))}

max{ ∑
(ξ,ζ)∈Ω̃

λξζ ln(vL
R̃(ξ,ζ)

)}

max{ 1
2 ( ∑

(ξ,ζ)∈Ω̃
λξζ ln(vL

R̃(ξ,ζ)
) + ∑

(ξ,ζ)∈Ω̃
λξζ ln(vU

R̃(ξ,ζ)
))}

s.t.



∑
(ξ,ζ)∈Ω̃

(gξζ ln(1− uL
R̃(ξ,ζ)

)) ≤ ln(1− uL
ε̃ ), ∑

(ξ,ζ)∈Ω̃
(gξζ ln(1− uU

R̃(ξ,ζ)
)) ≤ ln(1− uU

ε̃ )

∑
(ξ,ζ)∈Ω̃

(gξζ ln(vL
R̃(ξ,ζ)

)) ≤ ln(vL
ε̃ ), ∑

(ξ,ζ)∈Ω̃
(gξζ ln(vU

R̃(ξ,ζ)
)) ≤ ln(vU

ε̃ )

λξζ + gξζ ≥ 0, λξζ ≥ 0
(
(ξ, ζ) ∈ Ω̃

)
0 ≤ ûL

j ≤ ûU
j , 0 ≤ v̂L

j ≤ v̂U
j , 0 ≤ ûU

j + v̂U
j ≤ wj, j ∈ {1, 2, · · · , n}

(MOD-6)

Using the weighted average approach, the objective function of model (MOD-6) can be defined as
the following form:

max


v1 ∑

(ξ,ζ)∈Ω̃
λξζ ln(1− uU

R̃(ξ,ζ)
) + v2

2 ( ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uU
R̃(ξ,ζ)

) + ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uL
R̃(ξ,ζ)

))

+v3 ∑
(ξ,ζ)∈Ω̃

λξζ ln(vL
R̃(ξ,ζ)

) + v4
2 ( ∑

(ξ,ζ)∈Ω̃
λξζ ln(vL

R̃(ξ,ζ)
) + ∑

(ξ,ζ)∈Ω̃
λξζ ln(vU

R̃(ξ,ζ)
))


Namely,

max


(v1 +

v2
2 ) ∑

(ξ,ζ)∈Ω̃
λξζ ln(1− uU

R̃(ξ,ζ)
) + v2

2 ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uL
R̃(ξ,ζ)

))

+(v3 +
v4
2 ) ∑

(ξ,ζ)∈Ω̃
λξζ ln(vL

R̃(ξ,ζ)
) + v4

2 ∑
(ξ,ζ)∈Ω̃

λξζ ln(vU
R̃(ξ,ζ)

))


where v f ( f ∈ {1, 2, 3, 4}) is the importance weight of the single object and v1 + v2 + v3 + v4 = 1.

Remark 3.3. The importance weight v f ( f ∈ {1, 2, 3, 4}) of the single object is usually provided by the DM in
advance. On the basis of the definition of IVIFNs, the values of v1, v2 should be bigger than v3, v4 because
the membership degree in IVIFNs is usually more important than the non-membership degree. Without loss of
generality, this study assumes that v1 = v2 = 0.3 and v3 = v4 = 0.2.

Thus, the model (MOD-6) can be transformed into the single objective programming model
as follows:

max


(v1 +

v2
2 ) ∑

(ξ,ζ)∈Ω̃
λξζ ln(1− uU

R̃(ξ,ζ)
) + v2

2 ∑
(ξ,ζ)∈Ω̃

λξζ ln(1− uL
R̃(ξ,ζ)

))

+(v3 +
v4
2 ) ∑

(ξ,ζ)∈Ω̃
λξζ ln(vL

R̃(ξ,ζ)
) + v4

2 ∑
(ξ,ζ)∈Ω̃

λξζ ln(vU
R̃(ξ,ζ)

))



s.t.



∑
(ξ,ζ)∈Ω̃

(gξζ ln(1− uL
R̃(ξ,ζ)

)) ≤ ln(1− uL
ε̃ ), ∑

(ξ,ζ)∈Ω̃
(gξζ ln(1− uU

R̃(ξ,ζ)
)) ≤ ln(1− uU

ε̃ )

∑
(ξ,ζ)∈Ω̃

(gξζ ln(vL
R̃(ξ,ζ)

)) ≤ ln(vL
ε̃ ), ∑

(ξ,ζ)∈Ω̃
(gξζ ln(vU

R̃(ξ,ζ)
)) ≤ ln(vU

ε̃ )

λξζ + gξζ ≥ 0, λξζ ≥ 0
(
(ξ, ζ) ∈ Ω̃

)
0 ≤ ûL

j ≤ ûU
j , 0 ≤ v̂L

j ≤ v̂U
j , 0 ≤ ûU

j + v̂U
j ≤ wj, j ∈ {1, 2, · · · , n}

(MOD-7)

Apparently, the model (MOD-7) can be easily solved by using the MATLAB 7.4.0 or LINGO 11.0
software, and its non-inferior solutions, namely the ûL

j , ûU
j , v̂L

j , v̂U
j (j = 1, 2, · · · , n) can be obtained.
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Furthermore, based on Equation (5) the reference point Ã∗j =
(
[(ũL

j )
∗, (ũU

j )
∗
], [(ṽL

j )
∗, (ṽU

j )
∗
]
)

can be
obtained by using the following equations:

(ũL
j )
∗
= ûL

j /wj, (ũU
j )
∗
= ûU

j /wj, (ṽL
j )
∗
= v̂L

j /wj, (ṽU
j )
∗
= v̂U

j /wj (j ∈ {1, 2, · · · , n}) (16)

3.2. Prospect Theory-Based Ranking Method for Identifying the Optimal Alternative

Based on the derived reference points in Section 3.1, we present a prospect theory-based ranking
method for identifying the optimal alternative under IVIFNs environment in case of considering the
DM’s psychological behavior.

Using the derived reference point vector A∗, we first need to calculate the gain and loss values
under IVIFNs environment. We employ the ranking method of IVIFNs presented in Definition (2.1)
to identify the relative “loss” and the “gain”, and utilize the distance measure presented in
Definition (2.3) to calculate the prospect value of the alternative Ai (i ∈ {1, 2, · · · , m}) on the attribute
Cj (j ∈ {1, 2, · · · , n}). Then, the prospect value of the alternative Ai (i ∈ {1, 2, · · · , m}) with respect to
the attribute Cj (j ∈ {1, 2, · · · , n}) is defined as below:

Pij =


(

d(Ãij, Ã∗j )
)α

, i f Ãij�Ã∗j

−θ
(

d(Ãij, Ã∗j )
)β

, i f Ãij ≺ Ã∗j
(17)

where the ranking order between Ãij and Ã∗j can be usually determined by Definition (2.1) and

d(Ãij, Ã∗j ) represents the interval-valued intuitionistic fuzzy Euclidean distance between the alternative

Ai and the preference point Ã∗j with the attribute Cj.
It is apparent to see from Equation (17) that:
(1) If Ãij�Ã∗j , then the prospect value of the alternative Ai with the attribute Cj is regard as a

“gain” result by comparing the reference point Ã∗j with the attribute value Ãij. According to the idea
of prospect theory, the DM exhibits risk-averse tendency for gains and the DM’s gains can be regard
as (d(Ãij, Ã∗j ))

α
(α ∈ [0, 1]), where the parameter α is the estimable coefficient representing the risk

aversion of the DM with respect to gains.
(2) If Ãij ≺ Ã∗j , then the prospect value of the alternative Ai with the attribute Cj is regard as a

“loss” result by comparing the reference point Ã∗j with the attribute value Ãij. Usually, the DM exhibits

risk-seeking tendency for losses and the DM’s losses can be regard as −θ(d(Ãij, Ã∗j ))
β
(β ∈ [0, 1]),

where the parameter β is the estimable coefficient representing the risk seeking of the DM with respect
to losses and the parameter θ represents a characteristic of being steeper for losses than for gains.
Moreover, the DM is more sensitive to losses than to equal gains. Therefore, the prospect function is
steeper in the loss domain than in the gain domain, and the parameter θ should be bigger than 1.

Remark 3.4. It is noted that the different values of three parameters α, β, θ in the prospect function usually reflect
the different psychological behavior of the DM concerned with reference dependence, diminishing sensitivity and
loss aversion. Kahneman and Tversky [18] suggested α = β = 0.88 and θ = 2.25 which are also employed in
this study.

Based on the obtained prospect values Pij(i ∈ {1, 2, · · · , m} , j ∈ {1, 2, · · · , n}), we can get the
collective prospect value of each alternative by using the following formula:

Pi = ∑
j∈{k:|Ãik�Ã∗j ,k=1,2,...,n}

wj

(
d(Ãij, Ã∗j )

)α
− ∑

j∈{k:|Ãik≺Ã∗j ,k=1,2,...,n}
wjθ

(
d(Ãij, Ã∗j )

)β
(18)
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Clearly, the bigger the collective prospect value Pi(i ∈ {1, 2, · · · , m) is, the better the alternative
Ai will be. Therefore, based on the collective prospect value of each alternative we can determine
the ranking order of alternatives and the best alternative with the biggest collective prospect value
is selected.

3.3. The Decision Process of the Proposed Approach

The decision process of the proposed method can be roughly divided into three phases.

Phase I: Identify the potential alternatives as well as evaluation attributes, and provide the ratings
of alternatives with each attribute represented by IVIFNs and the pair-wise comparison information of
alternatives denoted by IVIFNs.

Phase II: Determine the reference points by solving the LINMAP-based nonlinear
programming models.

Phase III: Sort the alternatives and choose the best alternative using the prospect theory-based
ranking approach.

Detailed activities for these three phases are summarized in Figure 1, which reflects two main
contributions of the proposed method: (1) we construct the LINMAP-based nonlinear programming
models to identify the reference point under IVIFNs contexts; and (2) we develop a prospect
theory-based ranking method with IVIFNs data to identify the optimal alternative.
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Table 1. The steps of the proposed method.

Decision Phases Main Steps

Description of the MADM problems under
IVIFNs context (Phase I)

Step 1: Identify the evaluation attributes and the
feasible alternatives.

Step 2: Provide the ratings of alternatives with attributes by
using IVIFNs and the weights of attributes.

Step 3: Give the incomplete pairwise comparison preference
information between alternatives by using IVIFNs.

Determination of the reference point based on
nonlinear programming models (Phase II)

Step 4: Calculate the consistency and inconsistency indices by
using Equations (9) and (12), respectively.

Step 5: Construct the nonlinear programming model by using
the model (MOD-3).

Step 6: Get the reference point vector A∗ through solving the
model (MOD-3) which is converted into the model (MOD-7).

Ranking all the alternatives based on prospect
theory (Phase III)

Step 7: Calculate the prospect values of the alternatives
Ai (i = 1, 2, · · · , m) with respect to attributes by using
Equation (17).

Step 8: Calculate the collective prospect values of alternatives
by using Equation (18).

Step 9: Rank these alternatives and the best alternative with
the biggest collective prospect value is selected.

Remark 3.5. In several existing literature reports related to behavioral MADM, the reference point is usually
given by the DM in advance [24,26,27], or the following methods are used for the DM to select reference
point [23]: (1) zero point; (2) mean value; (3) the medium value; (4) the worst point; and (5) the optimal point.
But the developed method does not require knowing the reference point in advance, which can avoid the subjective
randomness of selecting the reference point by the DM in the real-life decision process.

4. Case Study

Now, we explore how to solve the selection case of photovoltaic cells by using the proposed
method. The comparison analysis of the computational results is conducted to show the superiority of
the proposed technique.

4.1. Description

To protect environment and save the non-renewable energy sources, the use of renewable energy
plays a significant role in aspect of the production of electric power. Photovoltaic cell is one of
the emerging renewable energy sources, which possesses the desirable advantages of the simplicity
and the modularity of the energy conversion system. For a promoter or inverter, the selection of
a best photovoltaic cell plays a significant role in aspect of maximizing income, minimizing costs
and conferring high maturity and reliability. In this study, we assume that there are five potential
photovoltaic cells to be selected (please see [35] for more details): Photovoltaic cells with crystalline
silicon (A1), Photovoltaic cells with inorganic thin layer (A2), Photovoltaic cells with inorganic thin
layer (A3), Photovoltaic cells with advanced, low cost, thin layers (A4), and Photovoltaic cells with
advanced III–V thin layer with tracking systems for solar concentration (A5). After analyzing the
potential photovoltaic cells, the attributes considered for the assessment of the selection problem are
the following [35]: Manufacturing cost (C1), Efficiency in energy conversion (C2), Market share (C3),
and Emissions of greenhouse gases generated during the manufacturing process (C4). We assume
the weights of attributes are obtained in advance as w = (w1, w2, w3, w4)

T = (0.25, 0.2, 0.15, 0.4)T.
The rating of each alternative under each attribute can be considered as an IVIFN and the results
evaluated by the DM are contained in an IVIF decision matrix shown in Table 2. Each cell of the
decision matrix < denotes the IVIFN assessment of an alternative with respect to an attribute.
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Table 2. Interval-valued intuitionistic fuzzy decision matrix < .

Attributes
Alternatives C1 C2 C3 C4

A1 ([0.5, 0.6],[0.2, 0.3]) ([0.3, 0.4],[0.4, 0.6]) ([0.4, 0.5],[0.3, 0.5]) ([0.3, 0.5],[0.4, 0.5])
A2 ([0.3, 0.5],[0.4, 0.5]) ([0.1, 0.3],[0.2, 0.4]) ([0.7, 0.8],[0.1, 0.2]) ([0.1, 0.2],[0.7, 0.8])
A3 ([0.6, 0.7],[0.2, 0.3]) ([0.3, 0.4],[0.4, 0.5]) ([0.5, 0.8],[0.1, 0.2]) ([0.1, 0.2],[0.5, 0.8])
A4 ([0.5, 0.7],[0.1, 0.2]) ([0.2, 0.4],[0.5, 0.6]) ([0.4, 0.6],[0.2, 0.3]) ([0.2, 0.3],[0.4, 0.6])
A5 ([0.1, 0.4],[0.3, 0.5]) ([0.7, 0.8],[0.1, 0.2]) ([0.5, 0.6],[0.2, 0.3]) ([0.2, 0.3],[0.5, 0.6])

According to the DM’s subjective experiences and judgments, the incomplete pair-wise
comparison information of alternatives is given by using IVIFNs as follows:

Ω̃ =


〈(A1, A2) , ([0.5, 0.6] , [0.2, 0.4])〉 , 〈(A3, A1) , ([0.65, 0.7] , [0.1, 0.3])〉 ,
〈(A4, A3) , ([0.85, 0.9] , [0.05, 0.1])〉 , 〈(A4, A5) , ([0.75, 0.8] , [0.1, 0.2])〉 ,
〈(A5, A2) , ([0.75, 0.8] , [0.1, 0.2])〉


where the comparison information 〈(A1, A2) , ([0.5, 0.6] , [0.2, 0.4])〉 in Ω̃ means that the degree to
which the DM thinks the alternative A1 is superior to A2 is the interval [50%, 60%] and A1 is inferior
to A2 with a chance between 20% and 40%; and the others have the similar meanings.

4.2. Illustration of the Proposed Approach

In the following, the proposed method is used to aid the promoter to select the best suitable
photovoltaic cells. Based on the procedure established in Section 3.3, we first need to derive the
reference points.

According to the model (MOD-3) and let ε̃ = ([0.01, 0.1], [0.8, 0.9]), we construct the optimal
model (MOD-8).

min

{
([0.5, 0.6] , [0.2, 0.4]) λ12 + ([0.65, 0.7] , [0.1, 0.3]) λ31 + ([0.85, 0.9] , [0.05, 0.1]) λ43

+ ([0.75, 0.8] , [0.1, 0.2]) λ45 + ([0.75, 0.8] , [0.1, 0.2]) λ52

}

s.t.



([0.5, 0.6] , [0.2, 0.4]) g12 + ([0.65, 0.7] , [0.1, 0.3]) g31 + ([0.85, 0.9] , [0.05, 0.1]) g43+

([0.75, 0.8] , [0.1, 0.2]) g45 + ([0.75, 0.8] , [0.1, 0.2]) g52 ≥ ([0.01, 0.1], [0.8, 0.9])
g12 + λ12 ≥ 0, g31 + λ31 ≥ 0, g43 + λ43 ≥ 0, g45 + λ45 ≥ 0, g52 + λ52 ≥ 0 ,
λ12 ≥ 0, λ31 ≥ 0, λ43 ≥ 0, λ45 ≥ 0, λ52 ≥ 0
g12 = 0.1ûL

1 + 0.3ûU
1 − 0.2v̂L

1 + 0.05v̂U
1 + 0.2ûU

2 − 0.15v̂L
2 + 0.15v̂U

2 − 0.1ûL
3 + 0.3ûU

3
+0.05v̂L

3 − 0.2v̂U
3 − 0.15ûL

4 + 0.25ûU
4 + 0.15v̂L

4 − 0.15v̂U
4 + 0.0233

g31 = 0.1ûL
1 − 0.15v̂U

1 + 0.1ûL
2 − 0.05ûU

2 + 0.15v̂L
2 − 0.15v̂U

2 + 0.05ûL
3 − 0.15v̂L

3
+0.05ûL

4 − 0.1ûU
4 − 0.15v̂L

4 + 0.15v̂U
4 − 0.0295

g43 = 0.05v̂U
1 − 0.05ûU

1 − 0.05v̂L
1 − 0.15ûL

1 − 0.05ûL
2 + 0.05ûU

2 − 0.15v̂L
2 − 0.15ûL

3
+0.05ûU

3 + 0.05v̂L
3 − 0.05v̂U

3 − 0.1ûL
4 + 0.1ûU

4 − 0.15v̂U
4 + 0.0902

g45 = 0.3ûL
1 − 0.3ûU

1 − 0.1v̂L
1 − 0.05v̂U

1 + 0.15ûL
2 − 0.2ûU

2 + 0.15ûU
3

−0.05v̂L
3 − 0.1v̂U

3 − 0.15ûL
4 + 0.2ûU

4 + 0.0262
g52 = 0.55ûU

1 − 0.25ûL
1 − 0.15v̂L

1 − 0.1ûL
2 + 0.4ûU

2 − 0.15v̂L
2 − 0.2ûL

3
+0.2ûU

3 − 0.15v̂U
3 − 0.05ûL

4 + 0.05ûU
4 − 0.15v̂U

4 + 0.0577
0 ≤ ûL

j ≤ ûU
j , 0 ≤ v̂L

j ≤ v̂U
j , ûU

j + v̂U
j ≤ wj, j ∈ {1, 2, 3, 4}

(MOD-8)

In the sense of the model (MOD-7) developed in Section 3.2, the optimal model (MOD-8) is
equivalent to the following linear programming model:
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max



(0.15 ∗ ln0.5 + 0.45 ∗ ln0.4 + 0.3 ∗ ln0.2 + 0.1 ∗ ln0.4) ∗ λ12

+(0.15 ∗ ln0.35 + 0.45 ∗ ln0.3 + 0.3 ∗ ln0.1 + 0.1 ∗ ln0.3) ∗ λ31

+(0.15 ∗ ln0.35 + 0.45 ∗ ln0.2 + 0.3 ∗ ln0.15 + 0.1 ∗ ln0.2) ∗ λ43

+(0.15 ∗ ln0.45 + 0.45 ∗ ln0.4 + 0.3 ∗ ln0.3 + 0.1 ∗ ln0.4) ∗ λ45

+(0.15 ∗ ln0.3 + 0.45 ∗ ln0.2 + 0.3 ∗ ln0.1 + 0.1 ∗ ln0.2) ∗ λ52



s.t.



ln0.5 ∗ g12 + ln0.35 ∗ g31 + ln0.35 ∗ g43 + ln0.45 ∗ g45 + ln0.3 ∗ g52 ≤ ln0.99
ln0.4 ∗ g12 + ln0.3 ∗ g31 + ln0.2 ∗ g43 + ln0.4 ∗ g45 + ln0.2 ∗ g52 ≤ ln0.9
ln0.2 ∗ g12 + ln0.1 ∗ g31 + ln0.15 ∗ g43 + ln0.3 ∗ g45 + ln0.1 ∗ g52 ≤ ln0.8
ln0.4 ∗ g12 + ln0.3 ∗ g31 + ln0.2 ∗ g43 + ln0.4 ∗ g45 + ln0.2 ∗ g52 ≤ ln0.9
g12 + λ12 ≥ 0, g31 + λ31 ≥ 0, g43 + λ43 ≥ 0, g45 + λ45 ≥ 0,
g52 + λ52 ≥ 0 , λ12 ≥ 0, λ31 ≥ 0, λ43 ≥ 0, λ45 ≥ 0, λ52 ≥ 0
g12 = 0.1ûL

1 + 0.3ûU
1 − 0.2v̂L

1 + 0.05v̂U
1 + 0.2ûU

2 − 0.15v̂L
2 + 0.15v̂U

2 − 0.1ûL
3

+0.3ûU
3 + 0.05v̂L

3 − 0.2v̂U
3 − 0.15ûL

4 + 0.25ûU
4 + 0.15v̂L

4 − 0.15v̂U
4 + 0.0233

g31 = 0.1ûL
1 − 0.15v̂U

1 + 0.1ûL
2 − 0.05ûU

2 + 0.15v̂L
2 − 0.15v̂U

2 + 0.05ûL
3

−0.15v̂L
3 + 0.05ûL

4 − 0.1ûU
4 − 0.15v̂L

4 + 0.15v̂U
4 − 0.0295

g43 = 0.05v̂U
1 − 0.05ûU

1 − 0.05v̂L
1 − 0.15ûL

1 − 0.05ûL
2 + 0.05ûU

2 − 0.15v̂L
2−

0.15ûL
3 + 0.05ûU

3 + 0.05v̂L
3 − 0.05v̂U

3 − 0.1ûL
4 + 0.1ûU

4 − 0.15v̂U
4 + 0.0902

g45 = 0.3ûL
1 − 0.3ûU

1 − 0.1v̂L
1 − 0.05v̂U

1 + 0.15ûL
2 − 0.2ûU

2 + 0.15ûU
3

−0.05v̂L
3 − 0.1v̂U

3 − 0.15ûL
4 + 0.2ûU

4 + 0.0262
g52 = 0.55ûU

1 − 0.25ûL
1 − 0.15v̂L

1 − 0.1ûL
2 + 0.4ûU

2 − 0.15v̂L
2 − 0.2ûL

3+

0.2ûU
3 − 0.15v̂U

3 − 0.05ûL
4 + 0.05ûU

4 − 0.15v̂U
4 + 0.0577

0 ≤ ûL
j ≤ ûU

j , 0 ≤ v̂L
j ≤ v̂U

j , ûU
j + v̂U

j ≤ wj, j ∈ {1, 2, 3, 4}

(MOD-9)

Let v1 = v2 = 0.3, v3 = v4 = 0.2, the model (MOD-9) is solved by using the LINGO software
and the following results are obtained as:

ûL
1 = 0, ûU

1 = 0, v̂L
1 = 0, v̂U

1 = 0.25, ûL
2 = 0,

ûU
2 = 0.1067273, v̂L

2 = 0.09327273, v̂U
2 = 0.09327273,

ûL
3 = 0, ûU

3 = 0.1393964, v̂L
3 = 0.0, v̂U

3 = 0, ûL
4 = 0,

ûU
4 = 0.1641527, v̂L

4 = 0, v̂U
1 = 0.2358473.

By Equation (16) and the weights of attributes provided by the DM in advance, the reference
points can be calculated as follows:

Ã∗1 = ([0.0, 0.0] , [0.0, 1.0]), Ã∗2 = ([0.0, 0.5336] , [0.4664, 0.4664]),

Ã∗3 = ([0.0, 0.9293] , [0.0, 0.0]), Ã∗4 = ([0.0, 0.4104] , [0.0, 0.5896]).

Then, using the Equation (17) the prospect value of each alternative Ai (i = 1, 2, 3, 4, 5) with
respect with each attribute Cj (j = 1, 2, 3, 4) can be calculated, i.e., Pij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) is
obtained and shown in Table 3.

Table 3. The prospect values of alternatives with attributes.

Attributes
Alternatives C1 C2 C3 C4

A1 −1.5199 −0.5814 0.5843 0.4805
A2 −1.3439 −0.6732 0.5891 0.5949
A3 −1.6658 −0.5720 0.4591 0.4669
A4 −1.5678 −0.5006 0.4814 0.4283
A5 −1.0318 0.5130 0.5384 0.4932
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Based on the data in Table 3, using the Equation (18) the collective prospect value of each
alternative P (Ai) (i = 1, 2, 3, 4, 5) can be obtained as follows:

P (A1) = −0.2164, P (A2) = −0.1443, P (A3) = −0.2752,
P (A4) = −0.2485, P (A5) = 0.1227.

By comparing the collective prospect values of alternatives, the ranking order of the five candidate
alternatives is determined as: A5 � A2 � A1 � A4 � A3. Obviously, the best alternative is A5. That is
to say, Photovoltaic cells with advanced III–V thin layer with tracking systems for solar concentration
are the best choice for the promoter.

4.3. Discussion and Comparative Analysis

It is noted that in our proposed method the reference points are completely unknown in advance.
In some real-world decision process, the reference points may be known in advance [23,26,27], such as
the following three common situations: (Case 1) the reference points are the positive ideal solutions;
(Case 2) the reference points are the negative ideal solutions; and (Case 3) the reference points are the
mean values of all alternatives with each attribute.

The positive ideal solutions for each attribute are assumed as below:

Ã+
1 = ([1.0, 1.0], [0.0, 0.0]), Ã+

2 = ([1.0, 1.0], [0.0, 0.0]),

Ã+
3 = ([1.0, 1.0], [0.0, 0.0]), Ã+

4 = ([1.0, 1.0], [0.0, 0.0]);

and the negative ideal solutions for each attribute as follows:

Ã−1 = ([0.0, 0.0], [1.0, 1.0]), Ã−2 = ([0.0, 0.0], [1.0, 1.0]),

Ã−3 = ([0.0, 0.0], [1.0, 1.0]), Ã−4 = ([0.0, 0.0], [1.0, 1.0]).

According to the interval-valued intuitionistic fuzzy averaging operator (i.e., Equation (2)),
the mean values for each attribute can be computed as follows:

ÃM
1 = ([0.4247, 0.5957] , [0.2169, 0.3393]) , ÃM

2 = ([0.3618, 0.5033] , [0.2579, 0.4282]),

ÃM
3 = ([0.5144, 0.6830] , [0.1644, 0.2825]) , ÃM

4 = ([0.1853, 0.3097] , [0.4891, 0.6491]).

For given different reference points, the collective prospect values and the ranking order of all
alternatives are obtained by using Equations (17) and (18) and are shown in Table 4.

Table 4. The prospect values and rankings of alternatives based on different reference points.

Different Reference Points A1 A2 A3 A4 A5
The Ranking Orders

of Alternatives

Case 1 −0.2181 −0.2992 −0.1032 −0.1881 0.0035 A5 � A3 � A4 � A1 � A2
Case 2 −0.3178 −0.3820 −0.3744 −0.3497 0.1105 A5 � A1 � A4 � A3 � A2
Case 3 −0.015 −0.141 −0.0801 −0.1253 0.0596 A1 � A5 � A3 � A4 � A2

The proposed method (Case 4) 0.0035 0.1105 0.5384 0.5384 0.4932 A5 � A2 � A1 � A4 � A3

We put the results of the rankings of alternatives based on different reference points into Figure 2.
It is easy to see from Figure 2 that the results of the ranking orders of alternatives obtained by different
reference points are usually different. If the reference points are the mean values, the best alternative
is A1; if the reference points are the positive ideal solutions or the negative ideal solutions, the best
alternative is A5; while if the reference points are completely unknown beforehand, our proposed
method constructs the nonlinear programming models to determine the reference points and the
best alternative is A5. Usually, in the real-life decision process under the hypothesis that the DM is
not completely rational, the different reference points will result in different decision results. Our
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proposed method does not require knowing the reference points in advance and avoids the subjective
randomness of selecting the reference points in the decision analysis by the DM.
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Figure 2. Comparison results of the ranking orders of alternatives based on different reference points.

On the other hand, we also note that in our proposed method the DM is bounded rational.
However, some widely used decision methods in existing literatures, such as the interval-valued
intuitionistic fuzzy TOPSIS method [36] and the interval-valued intuitionistic fuzzy LINMAP
method [37] are assumed that the DM is completely rational in the decision making process and
do not take into account the DM’s psychological behavior in the decision making process. We here
conduct a comparison analysis with these two methods.

Utilizing the decision method [36], we calculate the distances between each alternative and the
positive ideal solutions as well as the negative ideal solutions, respectively. The calculation results are
obtained as follows:

d+1 = 0.2879, d+2 = 0.4493, d+3 = 0.3431, d+4 = 0.3396, d+5 = 0.2843,

d−1 = 0.2967, d−2 = 0.3068, d−3 = 0.3181, d−4 = 0.3159, d−5 = 0.4043.

Then, the closeness index of each alternative is calculated as

ci1 = 0.5075, ci2 = 0.4058, ci3 = 0.4811, ci4 = 0.4819, ci5 = 0.5871

and the closeness index-based ranking of alternatives is also obtained as A2 ≺ A3 ≺ A4 ≺ A1 ≺ A5.
Using the decision method [37], we calculate the distances between alternatives and the ideal

solutions as below:

d∗1 = 0.2051, d∗2 = 0.2249, d∗3 = 0.2052, d∗4 = 0.1799, d∗5 = 0.2061

and the ranking of the five candidate alternatives is obtained as A4 � A1 � A3 � A5 � A2.
We also depict the results of the ranking of alternatives obtained by the method [37],

the method [36] and our proposed method into Figure 3. We clearly know from Figure 3 that the
ranking orders of alternatives obtained by these three different approaches are remarkably different.
Using the method in [36] and the method in [37], the best alternatives are A5 and A4, respectively,
while, using our proposed approach, the best alternative is A5. The main reason for these differences
are that both the method [36] and the method [37] are assumed that the DM is fully rational in the
decision process, and they fail to consider the DM’s psychological behavior, while our proposed



Energies 2016, 9, 835 16 of 20

method can deal with the situation that the DM’s bounded rational and can take fully into account the
DM’s behavioral characteristics in the ranking process of decision making.Energies 2016, 9, 835 16 of 19 
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5. Conclusions

In this paper, we have developed an LINMAP-based interval-valued intuitionistic fuzzy
behavioral MADM method to help the promoter solve the selection problem of photovoltaic cells.
The main characteristic of our developed approach is that it cannot only effectively capture the DM’s
psychological behavior by using the prospect function, but also sufficiently consider the uncertainty
and ambiguity inherent in the human decision process by utilizing the IVIFNs. More importantly, our
developed technique which constructs several nonlinear programming models based on LINMAP
method to identify the reference points can avoid to the subjective randomness of selecting the reference
points in the real-life decision process.

In addition, it is noted that in the developed technique the weights of attributes are assumed
to be completely known in advance. But many real-life decision situations in which the weights of
attributes are completely unknown or partially known in advance need to be taken into account in
future. Meanwhile, in further research it would be interesting to extend the developed method to
address the MCDM problems under Pythagorean fuzzy environments [38,39] or heterogeneous fuzzy
contexts [40], etc.
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Appendix A

Lemma A.1. [41] Let ã = [aL, aU ] and b̃ = [bL, bU ] be two intervals, a natural quasi-ordering on intervals is
defined as follows:

ã ≤ b̃ if and only if aL ≤ bL and aU ≤ bU
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The Proof of Theorem 3.1

Proof: For 0 ≤ uL
R̃(ξ,ζ)

≤ 1 and 0 ≤ uU
R̃(ξ,ζ)

≤ 1, where “⇔” means “is equivalent to”, we have:

min

{
[1− ∏

(ξ,ζ)∈Ω̃

(
1− uL

R̃(ξ,ζ)

)λξζ
, 1− ∏

(ξ,ζ)∈Ω̃

(
1− uU

R̃(ξ,ζ)

)λξζ
]

}

⇔ max

{
[ ∏
(ξ,ζ)∈Ω̃

(
1− uL

R̃(ξ,ζ)

)λξζ
, ∏
(ξ,ζ)∈Ω̃

(
1− uU

R̃(ξ,ζ)

)λξζ
]

}

and, furthermore,

max

{
[ ∏
(ξ,ζ)∈Ω̃

(
1− uL

R̃(ξ,ζ)

)λξζ
, ∏
(ξ,ζ)∈Ω̃

(
1− uU

R̃(ξ,ζ)

)λξζ
]

}

⇔ max

{
[ ∑
(ξ,ζ)∈Ω̃

λξζ ln
(

1− uU
R̃(ξ,ζ)

)
, ∑
(ξ,ζ)∈Ω̃

λξζ ln
(

1− uL
R̃(ξ,ζ)

)
]

}

Consequently, we can obtain:

min

{
[1− ∏

(ξ,ζ)∈Ω̃

(
1− uL

R̃(ξ,ζ)

)λξζ
, 1− ∏

(ξ,ζ)∈Ω̃

(
1− uU

R̃(ξ,ζ)

)λξζ
]

}

⇔ max

{
[ ∑
(ξ,ζ)∈Ω̃

λξζ ln
(

1− uU
R̃(ξ,ζ)

)
, ∑
(ξ,ζ)∈Ω̃

λξζ ln
(

1− uL
R̃(ξ,ζ)

)
]

}

Similarly, for 0 < vL
R̃(ξ,ζ)

≤ 1 and 0 < vU
R̃(ξ,ζ)

≤ 1, we also obtain

max

{
[ ∏
(ξ,ζ)∈Ω̃

(
vL

R̃(ξ,ζ)

)λξζ
, ∏
(ξ,ζ)∈Ω̃

(
vU

R̃(ξ,ζ)

)λξζ
]

}

⇔ max

{
[ ∑
(ξ,ζ)∈Ω̃

(
λξζ ln(vL

R̃(ξ,ζ)
)
)

, ∑
(ξ,ζ)∈Ω̃

(
λξζ ln(vU

R̃(ξ,ζ)
)
)
]

}

According to Lemma A.1, the first constraint condition of model (MOD-4) may be transformed
into the following inequalities:

1− ∏
(ξ,ζ)∈Ω̃

(1− uL
R̃(ξ,ζ)

)
gξζ ≥ uL

ε̃ , 1− ∏
(ξ,ζ)∈Ω̃

(1− uU
R̃(ξ,ζ)

)
gξζ ≥ uU

ε̃ ,

∏
(ξ,ζ)∈Ω̃

(vL
R̃(ξ,ζ)

)
gξζ ≤ vL

ε̃ , ∏
(ξ,ζ)∈Ω̃

(vU
R̃(ξ,ζ)

)
gξζ ≤ vU

ε̃

Namely,

∏
(ξ,ζ)∈Ω̃

(
1− uL

R̃(ξ,ζ)

)gξζ ≤ 1− uL
ε̃ , ∏

(ξ,ζ)∈Ω̃

(
1− uU

R̃(ξ,ζ)

)gξζ ≤ 1− uU
ε̃ ,

∏
(ξ,ζ)∈Ω̃

(vL
R̃(ξ,ζ)

)
gξζ ≤ vL

ε̃ , ∏
(ξ,ζ)∈Ω̃

(vU
R̃(ξ,ζ)

)
gξζ ≤ vU

ε̃
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which are equivalent to the following inequalities:

∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
1− uL

R̃(ξ,ζ)

))
≤ ln

(
1− uL

h̃

)
, ∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
1− uU

R̃(ξ,ζ)

))
≤ ln

(
1− uU

h̃

)
,

∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
vL

R̃(ξ,ζ)

))
≤ ln

(
vL

h̃

)
, ∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
vU
(ξ,ζ)

))
≤ ln

(
vU

h̃

)
Then, the model (MOD-4) is transformed into the bi-objective interval programming model

as below:

max

{
[ ∑
(ξ,ζ)∈Ω̃

λξζ ln
(

1− uU
R̃(ξ,ζ)

)
, ∑
(ξ,ζ)∈Ω̃

λξζ ln
(

1− uL
R̃(ξ,ζ)

)
]

}

max

{
[ ∑
(ξ,ζ)∈Ω̃

(
λξζ ln(vL

R̃(ξ,ζ)
)
)

, ∑
(ξ,ζ)∈Ω̃

(
λξζ ln(vU

R̃(ξ,ζ)
)
)
]

}

s.t.



∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
1− uL

R̃(ξ,ζ)

))
≤ ln

(
1− uL

h̃

)
, ∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
1− uU

R̃(ξ,ζ)

))
≤ ln

(
1− uU

h̃

)
∑

(ξ,ζ)∈Ω̃

(
gξζ ln

(
vL

R̃(ξ,ζ)

))
≤ ln

(
vL

h̃

)
, ∑
(ξ,ζ)∈Ω̃

(
gξζ ln

(
vU
(ξ,ζ)

))
≤ ln

(
vU

h̃

)
λξζ + gξζ ≥ 0, λξζ ≥ 0

(
(ξ, ζ) ∈ Ω̃

)
ûL

j ≤ ûU
j , v̂L

j ≤ v̂U
j , ûU

j + v̂U
j ≤ wj, ûL

j ≥ 0, ûU
j ≥ 0, v̂L

j ≥ 0, v̂U
j ≥ 0, j ∈ {1, 2, · · · , n}

Thus, the proof of Theorem 3.1 is completed.
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