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Abstract: Lignin is a substantial component of lignocellulosic biomass but is under-utilized relative
to the cellulose and hemicellulose components. Historically, lignin has been burned as a source of
process heat, but this heat is usually in excess of the process energy demands. Current models indicate
that development of an economically competitive biorefinery system requires adding value to lignin
beyond process heat. This addition of value, also known as lignin valorization, requires economically
viable processes for separating the lignin from the other biomass components, depolymerizing the
lignin into monomeric subunits, and then upgrading these monomers to a value-added product.
The fact that lignin’s biological role is to provide biomass with structural integrity means that this
heteropolymer can be difficult to depolymerize. However, there are chemical and biological routes to
upgrade lignin from its native form to compounds of industrial value. Here we review the historical
background and current technology of (thermo) chemical depolymerization of lignin; the natural
ability of microbial enzymes and pathways to utilize lignin, the current prospecting work to find
novel microbial routes to lignin degradation, and some applications of these microbial enzymes and
pathways; and the current chemical and biological technologies to upgrade lignin-derived monomers.
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1. Introduction

Lignocellulosic biomass includes a wide variety of plant material, such as crops, agricultural
residue, and wood. Humankind has utilized biomass throughout history to produce: heat for warmth
and cooking; biochemicals, such as the ethanol and lactic acid produced by fermentation; and biofibers,
such as those used in clothing and other textiles [1]. Present-day utilization of lignocellulosic biomass
instead of petroleum in the production of chemicals and fibers could contribute to the improvement of
environmental quality, national security, and rural economic development [1].

One component of lignocellulosic biomass, lignin, has long been viewed as a low-value or waste
product in the wood pulping industry. The most common pulping process is the Kraft process, where
lignin is dissolved in hot sodium hydroxide and sodium sulfide [2]. The top three pulping processes
are the Kraft process, the sulfite process, and the soda lignin process. These three processes produce
60–100 Ktonnes of Kraft lignin, 1 Mtonne of lignosulfonates, and 5–10 Ktonnes of Sulfur-free soda
lignin per year, respectively [3]. Typically, lignin is used as a fuel to fire pulping boilers [4]. However,
the energy produced through lignin combustion is about sixty percent greater than the demand [5].
Traditionally, only 1%–2% of lignin was isolated from pulping liquors and used for specialty products,
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such as dispersants or binders [6]. It follows that lignin has also been combusted as an energy source
in the conversion of biomass to ethanol [7].

There is a vast collection of literature on lignin processing, including improving the recovery
of lignin from biomass, depolymerization of lignin into monomers by chemical and/or biological
means, and upgrading of the depolymerized lignin monomers to industrially relevant chemicals,
which have been described in several other recent reviews (Figure 1) [2,5,8,9]. The purpose of this
review is to summarize strategies from each of these processing steps and to briefly describe their
economic relevance.
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Figure 1. The lignin polymer can be processed via combustion, chemical processing, thermochemical
processing, biological processing or a combination of these routes. This review covers chemical,
thermochemical, and biological processing of depolymerized lignin to produce industrially
relevant chemicals.

2. Lignin Structure and Abundance

Lignin is a stable aromatic heteropolymer that accounts for 10–35 wt% of lignocellulosic
biomass [8]. Table 1 details the variation of lignin content in various lignocellulosic biomass types.
Lignin is the second most abundant terrestrial polymer after cellulose, and it is the only large-volume
renewable source of aromatics [10,11]. In nature, lignin functions as a matrix that holds the plant
together and provides protection from environmental factors. The properties of lignin that benefit
the plant are also the properties that make lignin difficult to access and convert to industrially
relevant products. Although the structure and composition of lignin vary from plant to plant,
during lignin production, the three primary lignin monomers coniferyl alcohol, sinapyl alcohol,
and p-coumaryl alcohol are subject to polymerization so that the resulting lignin polymer is comprised
of three phenylpropanoid monomeric units guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H)
(Figure 2) [12,13].

Table 1. Lignin content in lignocellulosic crops.

Biomass Category Biomass Type Lignin Content (wt%)

Softwood Pine 28 [14]

Hardwood
Poplar 21–27 [15]

Eucalyptus 29–32 [16]

Herbaceous

Miscanthus 9–13 [17]
Switchgrass 17–18 [18]
Corn Stover 18 [19]

Bagasse 20 [20]
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Figure 2. Primary lignin monomers are hydroxycinnamyl alcohols which are known as monolignols.
These primary lignin monomers are polymerized. The corresponding phenylpropanoid monomeric
units in the lignin polymer are guiacyl units (G), syringyl units (S), and p-hydroxyphenyl units (H),
respectively, which can be polymerized at any of the wavy bond positions [12,13].

3. Challenges and Progress in Lignin Recovery

Lignin is recalcitrant and has a heterogeneous structure. In addition, the separation of lignin
from biomass can be energy intensive and sometimes requires harsh chemicals. The lignin isolation
methods in Table 2 use combinations of acid/base chemistry, high temperatures and pressures, solvents,
and catalysts.

3.1. Pulping Processes

Kraft pulping is the dominant pulping process, with about 90% share of the total global production
capacity, while less than 10% of pulp is produced by sulfite pulping and less than 5% by sulfur free
alkali pulping [2,21]. In the Kraft process, cellulose is isolated from hemicellulose and lignin using
sodium hydroxide and sodium sulfide. The heating value of the hemicellulose and lignin in the
by-product liquor is high: 14–16 MJ/kg on a dry basis [22]. A chemical produced from the lignin in
the black liquor needs to be of sufficient value to compensate for this loss of possible heat energy or
only excess lignin should be diverted from process heat production [2].

Table 2. Non-biological lignin recovery methods.

Recovery Methods Benefits Challenges Products

Kraft [23] and sulfite
pulping [21] Well-developed Harsh chemicals Cellulose, hemicellulose/lignin

Sulfur free alkali (soda)
pulping [24] Sulfur-free Lower lignin

removal rate
Solid polysaccharides,

lignin-rich liquid

Organosolv pulping [25] Sulfur-free Has not been adapted to
production scale

Varies by process, some
organosolv processes can

essentially isolate cellulose,
hemicellulose, and lignin

Fast pyrolysis [26] Fast Undesired char
formation

Solid (bio-char), Liquid (bio-oil),
and gas

Dilute acid
hydrolysis [27] Highly advanced Solid product is acid

insoluble
Monomeric sugars, Biofine

ligneous char (high heating value)

Hydrothermal
Fractionation [28,29]

High product selectivity,
produces monomeric

products

Separation of hydrogen
catalyst from the wood
residue is challenging

Aromatic monomers,
hydrolyzed hemicellulose

Biphasic
fractionation [30]

Lower temperatures,
near atmospheric

pressure

Toxic solvents used in
some cases

Hemicellulose degradation
products (such as C5 oligomers,
furfural), Cellulose solid, and

lignin fragments
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Organosolv pulping uses low-boiling, organic solvents (typically sulfur free) for delignification.
Commonly used solvents for organosolv are ethanol, methanol, organic acids, and mixed organic
solvent–non organic alkali. Organosolv pulping is more environmentally benign than Kraft and sulfite
pulping, and it allows for almost complete separation of cellulose, hemicellulose, and lignin. Research
activities on organosolv biomass fractionation are increasing, but there is not a full-scale process to
date [2].

3.2. Thermochemical Depolymerization of Biomass

Pyrolysis is the heating of biomass in the absence of oxygen. Fast pyrolysis converts biomass
to a liquid (bio-oil), gas, and solid (char) product at moderately high temperatures (up to 500 ◦C).
Up to 75% of the pyrolysis product is bio-oil, which contains compounds of similar structure to the
original molecules [2]. However, there are a lower number of methoxyl groups on the pyrolytic lignin
compared to the native milled wood lignin which is likely caused by demethoxylation of guaiacyl and
syringyl moieties to form methanol [31]. The carbohydrate-derived compounds in the bio-oil have
a higher affinity for water than the lignin-derived compounds. Therefore, separation of the lignin
component can be done with water, controlled deposition, or solvent extraction [2,32–34]. Biomass
pyrolysis also produces a solid, known as bio-char, that can be used as a soil amendment for carbon
sequestration and to improve crop production [35,36].

3.3. Dilute Acid Hydrolysis

In the dilute acid hydrolysis process known as the Biofine process, shredded biomass is added
to dilute sulfuric acid. Then the product is subject to two stages of dilute acid treatment at high
temperatures to hydrolyze polysaccharides into their monomeric units. A solid called Biofine char
is produced, which has a very high heating value of 26 MJ/kg and is mainly comprised of ligneous
type components according to thermogravimetric-Fourier Transform infrared spectroscopy (TG-FTIR).
The Biofine process is highly advanced in the processing of polysaccharides. The polysaccharides
are converted into levulinic acid, formic acid, and furfural. However, the use of the Biofine char has
limited applications because it is acid insoluble [2,27].

3.4. Hydrothermal Fractionation

Hydrothermal fractionation is the heating of wood in hot-compressed water (200 ◦C and moderate
hydrogen pressure) in the presence of a hydrogenation catalyst [2,29]. The main products are the
lignin-derived aromatic monomers propyl guaiacol, propyl syringol, guaiacyl propanol, syringyl
propanol, and also hydrolyzed hemicellulose, which all remain in the aqueous phase. The advantage
of hydrothermal fractionation is good product selectivity. However, it can be difficult to separate the
hydrogenation catalyst from the wood residue [2].

3.5. Biphasic Fractionation

Biphasic fractionation can be used to separate the cellulose, hemicellulose, and lignin from
each other. Solvents that have been applied to the organic phase include phenol [37–39], cresol [40],
lignin-derived phenolic mixtures [41], polyethylene glycol [42–45], and 2-methyltetrahydrofuran [46].
The hemicellulose components can be extracted by the aqueous phase, the lignin components can
be extracted by the organic phase, and the cellulose can precipitate as a solid. Although biphasic
fractionation is advantageous because it can be carried out at lower temperatures and near atmospheric
pressure, the toxicity of some of the solvents could pose a challenge [2].

3.6. Modeling of Lignin Isolation

There is no precise equation for the amount of lignin extracted relative to the “severity” of
treatment [47]. In 1987, an equation for the severity was proposed that depended on two parameters:
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temperature and time [48]. However, the equation was intended to estimate the impact of the treatment
on the hemicellulose fraction of the biomass and not the lignin fraction, and there was no direct
correlation between extracted lignin and the severity factor. In addition, the equation was not applicable
for temperatures lower than 100 ◦C and it had limitations for catalyst usage. In 1990 and 2007, the
severity factor was modified to reflect the effect of acid and base respectively on the severity factor,
but the equation had to be modified by a factor of n depending on whether an acid or base was being
used [49,50]. A recent study proposed an improved model that is universal for both acid and base
treatments, and shows good correlation for one- and two-shot steam explosion, hot alkali macerations,
and Kraft pulping with different types of biomass [47].

4. Lignin Utilization in Nature

In nature, lignin is utilized by specialized microorganisms encoding metabolic pathways that
can break down components of lignin. Microorganisms that can break down lignin are able to use
it as a carbon and energy source for metabolite production and have an advantage over biological
organisms that can only utilize the cellulose and hemicellulose components of lignocellulosic biomass.
Throughout this review, the phrases model lignin and lignin model compounds will be used.
Researchers often use lignin model compounds when investigating what types of products can
be produced using biological or chemical catalysis. Lignin model compounds have similarities to
the lignin structure, such as common linkages or common structure seen in lignin. Zakzeski et al.
categorize the most commonly researched lignin model compounds into β-O-4 linkage, carbon-carbon
linkage, β-5 linkage, α-O-4 and 4-O-5 linkage, and p-coumaryl, coniferyl, and sinapyl alcohol [51].

4.1. Lignin Degrading Enzymes

Lignin degrading enzymes must have properties distinct from cellulose or hemicellulose
degrading enzymes. Hydrolytic enzymes that can cleave other plant material cannot cleave lignin
because of lignin’s heterogeneous C-C and C-O linkages [52]. The enzymes responsible for the initiation
of lignin polymerization in plants, low potential oxidoreductases, cannot oxidize the non-phenolic
aromatic components of lignin [5]. However, some fungal and bacterial species do express enzymes that
can break down the bulky and heterogeneous structures of lignin and/or convert smaller lignin-derived
molecules into carbon and energy (Table 3) [53,54].

There are four major types of ligninolytic peroxidases: ligninolytic peroxidase (LiP), manganese-
dependent peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP) [5,55].
LiP, originally isolated from Phanerochaete chrysosporium, can oxidize molecules with high redox
potential, including the moderately activated non-phenolic aromatics that can make up to 90% of
the lignin polymer [5,56,57]. Unlike LiP, MnP cannot oxidize non-phenolics, and it is dependent on
Mn2+ ions. However, MnP can oxidize phenolic model lignin compounds [5,58]. VP can oxidize both
non-phenolic and phenolic compounds [5,59]. DyPs are the most recently discovered ligninolytic
peroxidases. DyPs are unique because they can oxidize hydroxyl-free anthraquinone [55]. Many dyes
are derived from anthraquinone, and therefore, it is present in dye-contaminated wastewater [55].
Anthraquinone is also used in the pulping process as a redox catalyst in papermaking [2]. White-rot
fungi produce aryl-alcohol oxidase and glyoxal oxidase, and these oxidases produce hydrogen peroxide
for the peroxidases [60,61].

Laccases are another class of enzymes contributing to the degradation of lignin. These copper-
containing oxidases are found in bacteria and fungi, reduce molecular oxygen to water, and oxidize a
large range of compounds including polyphenols, methoxy-substituted phenols, and diamines [62].
However, laccases are bulky and have non-phenolic sub-units that prohibit direct action on the lignin
polymer. Instead, laccases have been shown to depolymerize lignin and lignin-derived molecules by
action on smaller mediator molecules such as 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid
(ABTS) and hydroxybenzotriazole (HBT) [54,63,64].
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Table 3. Major enzyme families involved in lignin degradation.

Enzyme Function

Ligninolytic peroxidase (LiP) Oxidizes molecules with high redox potential, including moderately
activated non-phenolic aromatics (up to 90% of lignin polymer) [5,56,57]

Manganese-dependent peroxidase (MnP) Oxidizes phenolic compounds [5,58]
Versatile peroxidase (VP) Oxidizes both non-phenolic and phenolic compounds [5,59]

Dye-decolorizing peroxidase (DyP) Oxidizes hydroxyl-free antraquinone and peroxidase substrates [55]

Lacasse
Oxidize aromatics and phenols, take action on smaller molecules in

lignin such as ABTS and HBT in order to oxidize non-phenolic
aromatics [54,62–64]

4.2. Bacterial and Fungal Pathways of Lignin Utilization

The bacteria Alpha-proteobacteria, gamma-proteobacteria, Firmicutes, and some actinomycetes
have been shown to modify or degrade lignin. However, a bioinformatic analysis has shown a higher
proportion of lignin-degrading genes in proteobacteria and actinobacteria than in Firmicutes [54,65].
The metabolic pathways for aromatic degradation depend on the microorganism and its environment,
particularly its oxygen availability (Figure 3).
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Figure 3. Aromatics can be degraded via aerobic routes (indicated by blue lines) or anaerobic routes
(indicated by red lines). In the two far left routes, aromatics are converted to reactive intermediates
and then converted to elements of the TCA cycle. In the third route, aromatics are first converted to
reactive intermediates, then reactive intermediates are converted into non-aromatic epoxides. Next, the
non-aromatic epoxides are converted to TCA cycle intermediates. In the far right route, aromatics are
converted into reactive intermediates, then reduced, and finally converted into elements of the TCA
cycle. This figure is an adaptation from Figure 2 in Fuchs et al. [9].
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4.2.1. Aerobic Degradation

In aerobic degradation, aromatic compounds derived from lignin are normally attacked
by oxygenases with the help of O2 [9,66]. The aromatic compounds are funneled to a few
key molecules known as central intermediates, which can then be more easily converted into
elements of the tricarboxylic acid (TCA) cycle. Hydroxylated central intermediates such as catechol
(1,2-dihydroxybenzene), protocatechuate (3,4-dihydroxybenzoate), and less frequently gentisate or
homogentisate, are normally produced from aromatic monomers with the help of bacterial and fungal
oxygenases [67–72]. The hydroxylated products are activated for oxidative ring cleavage because they
have electron rich functional groups in ortho and para positions. The central intermediates are then
converted by ring-cleaving enzymes [73–78].

The β-ketoadipate pathway is a classic example of oxygenation and ring-cleavage. Dioxygen
aromatic cleavage can proceed in the ortho position between the two hydroxy groups or in the meta
position adjacent to the two hydroxyl groups [9].

Another route to cleaving the aromatic ring, which may be an adaptation of low or fluctuating O2

environments, is epoxidation of CoA thioesters. In this route, O2 is used to form a non-aromatic epoxide.
Then the ring is cleaved by hydrolysis and the molecule is converted to TCA cycle intermediates.
The epoxidation route occurs in bacteria to degrade benzoate, phenylacetate, or compounds that can be
broken into these two molecules. The epoxidation route requires monooxygenases in the class I di-iron
protein pathway. In the case of benzoate and phenylacetate degradation, the monooxygenases act as
epoxidases to catalyze ring epoxidation. The epoxidation of CoA thioesters to degrade benzoate and
phenylacetate occur either as the only pathway or as an additional pathway in low oxygen conditions
in about 5% and 16%, respectively, of all bacteria that have a sequenced genome [79–89].

4.2.2. Anaerobic Conditions

In anoxic conditions, O2 can no longer be used as a co-substrate, and the aromatic ring must be
reduced, which is a demanding reaction. Reduction of the aromatic ring requires agents with redox
potentials that are much more negative than a physiological electron donor could provide. Therefore,
the anaerobic pathways use central intermediates with substituents that have an electron withdrawing
effect [9].

A common intermediate in the anaerobic breakdown of aromatic compounds is benzoyl-CoA,
where the electron-withdrawing substituent is the carboxyl-thioester group. The benzoyl-CoA type
molecules can then be reduced by ring-reducing enzymes [9,72,90,91].

Another group of intermediates in the anaerobic breakdown of aromatic compounds is those with
two or more hydroxy groups in the meta position relative to each other. When the hydroxy groups are
in the meta position relative to each other, they polarize the ring, which facilitates the reduction of
the aromatic compound [9,92]. There have been two main anaerobic routes discovered that degrade
aromatics. In the first anaerobic route, aromatic ring cleavage can occur via benzoyl-CoA reduction,
driven by ATP hydrolysis and catalyzed by class I benzoyl-CoA reductases [9,93]. It is proposed that
the ATP-independent class II benzoyl-CoA reductase recently discovered in Geobacter metallireducens
and other similar systems could be used as an anaerobic ATP-independent route to aromatic
degradation [9,94].

4.3. Application Directed Studies of Lignin Degrading Microorganisms

Specialized microorganisms that contain the enzymes and reaction pathways described
above could be harnessed with the following applications in mind: microbial utilization of
aromatic-containing waste streams and microbial production of industrially relevant fuels and
chemicals from lignin-derived aromatic monomers. There is also an ongoing search for novel enzymes,
pathways, and microorganisms, often isolated from unique environments that are suited for use in
these applications.
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Our knowledge of fungal lignin-degrading enzymes far exceeds our knowledge of bacterial
lignin-degrading enzymes. However, fungal systems are typically difficult to manipulate and slow
acting. There is a push for utilization of bacterial systems, which are simpler and faster. Tropical soils
are depleted of oxygen, limiting fungal growth as well as the oxygen-dependent activities of traditional
peroxidases. The unique tropical soil environment was hypothesized to harbor anaerobic lignin
degrading bacteria. Enterobacter lignolyticus SCF1 was isolated by anaerobically culturing tropical forest
soils on minimal media with lignin as the sole carbon source [95]. E. lignolyticus SCF1 degraded 56%
(wt/vol) of the lignin in a lignin/xylose growth medium within 48 h. The E. lignolyticus SCF1 enzymes
up-regulated in the presence of lignin included: catalase/peroxidase, DyP-type peroxidase, and two
glutathione S-transferases (GSTs) [96,97]. As mentioned earlier, peroxidases are a key component of
lignin degradation. However, it is still unclear exactly how peroxidases are involved in anaerobic
lignin degradation. The presence of GSTs is evidence of a possible β-aryl ether cleavage mechanism in
lignin degradation [97].

Several bacteria with aromatic degradation capability have been isolated from termite guts and
woodboring beetles [54]. There is some debate on the extent that the microorganisms degrade lignin
in vivo compared to the extent that microorganisms degrade lignin in vitro. One metagenomics
study of hindgut microflora did not find any lignin degradation genes [98]. However, microflora
from the same termite were able to degrade lignin in vitro [99]. In another study on the microflora
from Anoplophora glabripennis and Zootermopsis angusticollis, lignin was depolymerized, demethylated,
and ring-hydroxylated. The aerobic reactions required for lignin depolymerization observed in
A. glabripennis and Z. angusticollis indicate that some of the lignin degradation occurs in the foregut
rather than in the hindgut, which is mostly anaerobic [99,100].

In order to identify novel lignin degrading microorganisms, a fluorescent transcriptional reporter
system was used as a biosensor [101]. This biosensor can respond to specific lignin degradation
products such as vanillin, vanillic acid, and p-coumaric acid and was used to screen a DNA library
prepared from metagenomes of coal beds. DNA fragments that were enriched were isolated,
and the corresponding lignin transformation genes were identified. Recurring subsets of gene
functions included: oxidoreductase activity, co-substrate generation (hydrogen peroxide generation),
protein secretion, small molecule transport (multidrug efflux superfamily), motility (methyl-accepting
chemotaxis proteins), and signal transduction [101]. Oxidoreductase activity, hydrogen peroxide
generation, and protein secretion are associated with lignin degradation [54,102]. It was concluded
that the small molecule transport systems had a role in regulating microbial responses when exposed
to aromatic monomers. The cell motility was proposed to have a role in facilitating optimal positioning,
which may be important in environments with microscale physicochemical gradients [101,103]. Signal
transduction proteins could play a role in mediating lignin specificity in a microbial community [101].

A study of the structure and biochemistry of Streptomyces enzymes gave insight into unique laccase
binding capability. SACTE_2871 is found in a Streptomyces species isolated from the Pinewood-boring
wasp. SACTE_2871 can catalyze O2-dependent ring opening of catechols. Catechols are often
intermediates in the breakdown of lignin-derived molecules. SACTE_2871 can also directly bind
to synthetic lignin polymers [5,104]. Similarly, small laccases found in Streptomyces species have
been found to be able to bind directly to non-phenolic model lignin compounds and rearrange
non-phenolic compounds with the help of mediators. The small laccases can also oxidize phenolic
β-O-4 linkages [5,105].

Studying the utilization of lignin-derived compounds in nature can be important in tracking the
global carbon cycle and monitoring the degradation of pollutants. For instance, the lignin biphenyl
component can account for up to 10% of the lignin structure. The biological fate of the lignin biphenyl
component is therefore linked with the degradation of lignin. Bacterial biphenyl degradation is
well documented in a number of genera and has been reviewed elsewhere [54]. The pollutants
benzene, toluene, ethylbenzene, and xylenes (BTEX), naphthalene, and 2-methylnaphthalene are all
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aromatic in nature, have structural similarities to lignin-derived molecules, and can be degraded
anaerobically [9,106].

The conversion or upgrading of lignin to a higher value molecule could contribute to a more
cost-effective biomass processing scheme as discussed further in the economics section. Model
lignin-derived compounds can converge via the downstream production of vanillin and vanillic acid
before being converted to protocatechuic acid [7]. Extensive research on vanillin production via
microorganisms, partially motivated by the global demands for vanillin (12,000 tons/year), has been
reviewed elsewhere [107,108].

5. Challenges and Progress in Depolymerization of Isolated Lignin

Even when lignin is isolated, it often needs to be depolymerized into smaller molecules before
it can be upgraded. There are five major methods of depolymerization (Table 4): pyrolysis of
isolated lignin, catalytic hydrogenolysis, supercritical depolymerization, solvent depolymerization,
and alkaline hydrolysis.

Table 4. Non-biological depolymerization methods for isolated lignin.

Recovery Methods Benefits Challenges Products

Pyrolysis of isolated
lignin [109–113] Simple process

Selectivity for specific aromatic
compounds is very low; char
formation

Aromatic and non-aromatic
molecules, char, and light
gasses

Catalytic pyrolysis
[114–118]

Products are less
oxygenated and more
stable

Coke deposits on catalysts

Aromatic hydrocarbon
containing liquid, char, coke,
light hydrocarbons, and
oxygenate gasses

Supercritical water
[119–123]

Lower concentration of
lignin means lower
chance of condensation
reactions

High cost for process heat; only
one-third of lignin product is low
molecular weight

Aromatic hydrocarbon
containing liquid, char

Supercritical solvent
[124–130]

Products have a lower
boiling point allowing
for easier separation

Mid-high pressure High
temperature

Primary product is monomeric
substituted cyclohexyl
derivatives, negligible
aromatics, little to no char

Base-catalyzed
depolymerization
[12,131]

Oil contains low
molecular weight species

Produces around 20% (wt/wt)
desired oil product compared to
the total weight of the products
(oil, residual lignin, and coke)

Coke (undesired), oil (desired)

5.1. Pyrolysis of Isolated Lignin

Pyrolysis is a simple and fast process to depolymerize lignin. The bio-oils obtained from pyrolysis
of isolated lignin are complex mixtures of hundreds of phenolic monomers and oligomers, with no
specific compound making up more than 1% of the total product weight. It is known that the products
of lignin pyrolysis differ by biomass type. Pyrolysis of hardwood lignin produces both syringol
and guaiacol-type phenols, whereas pyrolysis of softwood lignin produces mostly guaiacol-type
phenols. Pyrolysis of herbaceous lignin produces a mixture of syringol, guaiacol and phenol types
of compounds [132,133]. An investigation of the thermal decomposition of lignin derived from both
herbaceous (rice straw and rice husk) and woody (maple) biomass used TG-FTIR and pyrolysis-gas
chromatography/mass spectrometry (Py-GC/MS). There were three mass loss stages observed: the
evaporation of water, the evolution of aromatic compounds, and the release of light gasses. It was
found that more phenolic compounds, methanol, and methane evolved from maple lignin. Maple
lignin was also the most thermally unstable because it formed phenolic compounds earlier than
the herbaceous lignin. However, the formation of carbon dioxide was higher in herbaceous lignin
than in maple lignin. Py-GC/MS analysis revealed that evolution of phenol-type and aromatic
compounds increased with increased temperature due to more demethoxylation and dihydroxylation
reactions [133]. Quantifiable phenolic monomers account for up to 17 wt% of the pyrolysis oil, [134]
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depending on the lignin feedstock. The majority of the compounds in the lignin-derived bio-oil are
phenolic oligomers. It has been shown that during pyrolysis of lignin derived from corn stover by
organosolv treatment, phenolic monomers and dimers are mainly produced. However, the reactive
monomers can rapidly repolymerize [135]. Isolated lignin contains an increased amount of C-C
bonds, which is more resistant to thermal depolymerization. Coupled with free radical initiated
repolymerization during pyrolysis, isolated lignin could produce over 40% char [136,137]. Approaches
to reduce char formation could significantly enhance lignin volatilization.

5.2. Catalytic Pyrolysis of Isolated Lignin

The addition of a catalyst to the pyrolysis reactor can improve product selectivity [118].
For instance, the use of a solid acid catalyst, such as HZSM-5 zeolite, can convert the wide range
of phenolic compounds to a smaller number of aromatic hydrocarbons, such as benzene, toluene,
and xylene (BTX). Other types of catalysts, such as HY zeolite [138], Al-MCM-41, (CoO/MoO3) and
Co/Mo/Al2O3 [109,110] have also been tested for lignin pyrolysis. However, these catalysts are less
efficient in deoxygenating lignin compared to HZSM-5. Challenges with catalytic pyrolysis of lignin
include coke deposits on the catalyst [2,109–113] and low product yield.

In catalytic hydropyrolysis, external hydrogen can help to stabilize reactive free radicals formed
during lignin depolymerization and promote hydrodeoxygenation. Hydrocracking also lowers char
and coke yields [139]. Under high partial pressure H2 and in the presence of Ru/C catalyst, Alcell
organosolv lignin was converted into cycloalkanes, alky-substituted cyclohexanols, cyclohexanol
and linear alkanes [140]. A wide range of supported catalysts, Ru (C, Al2O3, and TiO2), Pd (C, and
Al2O3), and a Cu/ZrO2, were also screened for catalytic hydrotreatment of Alcell lignin. It was
found that Ru/TiO2 outperforms other catalysts, yielding a mixture of alkylphenols, aromatics, and
catechols [141]. The complex oil mixture formed during catalytic hydropyrolysis is analogous to the
bio-oil formed during pyrolysis. However, there is a lower oxygen content in catalytic hydropyrolysis
oil, which makes it more stable than pyrolysis bio-oil [114,115]. Incorporating transitional metals into
HZSM-5 was beneficial because the bifunctional catalyst has both deoxygenation and hydrogenation
abilities. Pyrolysis of steam-explosion hybrid-poplar lignin using 1 wt% Pd/HZSM-5 at 1.7 MPa of H2

produced 44% more aromatic hydrocarbons compared to HZSM-5 as the catalyst. Due to high partial
pressure of hydrogen, saturation of the benzene ring occurred and cycloalkanes were found among
the products [142].

5.3. Supercritical Water

In the supercritical and subcritical treatment of lignin, there is a lower concentration of lignin
compared to catalytic hydropyrolysis of dry lignin, and therefore the probability of undesirable
condensation reactions is lower. However, the process heat required for the production of supercritical
water is high and the economic viability depends on process heat recovery. Alkali salts have been
shown to improve oil production, however, the maximum theoretical yield of low molecular weight
products is only one-third of the total lignin weight. The addition of phenol, butanol, and boric acid
has been shown to help the depolymerization of lignin and to increase the selectivity of the desired oil
product [119–123]. In the case of phenol, butanol, and boric acid addition, products will be biphenyl
dimer structures, which can be used as a high boiling solvent. Alternatively, the dimers can be cracked
into two aromatic monomers and be partially recycled into the process [2].

5.4. Supercritical Solvents

Supercritical solvents such as ethanol [124–127], methanol [128,129], CO2/acetone/water [130],
and butanol [122] have been used to dissolve isolated lignins at temperatures between 200
and 350 ◦C and high pressures. Mixtures of alcohols and water have also been utilized at
milder pressures [127,143,144]. Lignin solvolysis can be categorized into either base-catalyzed
depolymerization or hydrogenolysis. The hydrogen used for hydrogenolysis can come from a variety of
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sources, such as external hydrogen supply, a proton donor such as tetralin [144] and formic acid added
to the solvent [145,146], or partial reforming of the solvent in the presence of a metal catalyst [129].
When hydrogen donating solvents are used for depolymerization, the presence of a hydrogenation
catalyst stabilizes lignin depolymerization products and therefore increases the yield of phenolic
monomers. Conversion of birch wood lignin in alcohols (methanol, ethanol and ethylene glycol) using
Ni-based catalyst resulted in a phenolic oil with the selectivity of propylguiacol and propylsyringol
higher than 90% [147]. Cyclic hydrocarbons (primarily monomeric substituted cyclohexyl derivatives)
can be formed from supercritical solvolysis. The lower boiling point of the cyclic hydrocarbons allows
for separation and purification at lower temperatures, and the lower temperatures help to prevent
repolymerization reactions known to happen at higher temperatures [2].

5.5. Base-Catalyzed Depolymerization

Lignins can be used to produce low molecular weight compounds when subjected to high
temperature and pressure in the presence of a base in aqueous or organic solution. This process is
known as base-catalyzed depolymerization [131]. A study of the base-catalyzed depolymerization
of three different organosolv lignins (acetosolv, acetosolv/formosolv, and formosolv) showed that a
higher yield of desired oil product was achieved from base-catalyzed depolymerization of acetosolv
and acetosolv/formosolv lignins. Undesired coke production was low in the acetosolv lignin but higher
when formosolv was included or used by itself, indicating that formic acid decreased the effectiveness
of the catalyst. However, the formosolv oil contained higher amounts of phenolic monomers because
the formosolv lignin had the lowest molecular weight. Base-catalyzed depolymerization produces
only about 20% (wt/wt) oil when compared to the total product that contains repolymerized lignin
fragments formed from condensation fragments and a coke by-product [12]. In order to improve the
yield of phenolic monomers, boric acid and phenol capping agents were compared in base-catalyzed
depolymerization of pruned olive tree branches. When phenol was used as a capping agent, the yields
of the phenolic monomers were higher than with no capping agent or with a boric acid capping agent.
Boric acid did prevent repolymerization, but the char production was higher compared to the phenolic
capping [12].

6. Upgrading of Lignin Monomers

Depolymerized lignin monomers can be further upgraded into industrially relevant chemicals by
biological or chemical processing. The chemical processing can be similar to lignin isolation and lignin
depolymerization, and sometimes there are not clear distinctions between isolation, depolymerization,
and upgrading (as discussed in Section 6.2).

6.1. Progress in Biological Utilization of Depolymerized Lignin Monomers and Lignin Model Compounds

There are two main approaches in the application of microbes to the upgrading of lignin.
One approach is a biotransformation in which only a few catalytic steps are utilized from one target
reactant to one target product. The other approach is to funnel a number of target reactants through
the central metabolism of the microbe and tune the target product based off of industrial relevance.
Chemicals produced from lignin-derived substrates or pure compounds known to be present in lignin
are listed in Table 5.

Table 5. Biological lignin upgrading.

Molecule Class Demonstrated Products

Phenolics Vanillin [107]
Dicarboxylic acids Muconic acid [148], Succinic acid [53]

Fatty acids Fatty acid methyl esters (15–18) [149]
Polyhydroxyalkanoates (PHAs) Short—medium chain length [149,150]

Alpha-hydroxy acids Lactic acid [53]
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6.1.1. Biotransformation

Vanillin can be produced by a number of specialized microorganisms from aromatic molecules
such as eugenol [151–157], isoeugenol [157–168], ferulic acid [154,162,169–186], vanillic acid [172,174],
and green coconut husk [187]. However, the low titers of vanillin and degradation of vanillin by the
microorganisms are problematic [107].

6.1.2. Central Metabolism

Instead of looking at the capability of a microorganism to transform one lignin monomer into
one product, microorganisms can be harnessed to utilize multiple substrates, addressing the challenge
of the heterogeneous nature of lignin. This funneling strategy was demonstrated by microbial
utilization of alkaline pretreated liquor (APL), which contained 35% lignin derived molecules. Both
low molecular weight lignins (200–400 Da) and high molecular weight lignins (as high as 30,000 Da)
were present [53,148–150]. Fourteen taxonomically diverse microorganisms were tested for their ability
to depolymerize lignin, uptake biomass-derived molecules such as aromatic monomers, produce
extracellular oxidative enzymes, and accumulate carbon storage products from the lignin derived
molecules when grown in APL. Amycolatopsis sp., P. putida KT2440, P. putida mt-2, and Acinetobacter sp.
were the top lignin converters, demonstrating 15%–20% lignin conversion in nitrogen limiting
conditions, and 22%–31% lignin conversion in nutrient rich conditions. These species were also able to
utilize a wide molecular weight range of lignin. R. jostii could not depolymerize the high molecular
weight lignin, but R. jostii did convert a high percentage of lignin overall by demonstrating 20% lignin
conversion in nitrogen limiting conditions, and 26% lignin conversion in nutrient rich conditions.

It follows that the top lignin converting species consumed the major aromatic monomers
in the APL and also produced laccase and peroxidase enzymes. The three Pseudomonads and
Cupriavidus necator H16 produced high amounts of laccases, 3–6 mU/mL, in nutrient rich conditions.
P. putida KT2440 produced the most laccase enzymes at day five of the seven-day incubation in
nutrient-rich conditions, a total of 6 mU/mL. Although C. necator H16 was not a top lignin converter,
it produced the most Mn2+ independent peroxidases at 6 mU/mL by day two of the seven-day
incubation. Pseudomonas fluorescens Pf-5, Rhodococcus erythropolis U23A, and P. putida KT2440 all
produced over 3 mU/mL of Mn2+ peroxidases. The three Pseudomonads, C. necator H16, and
Enterobacter lignolyticus SCF1 all produced over 2 mU/mL of Mn2+ oxidizing enzymes in nitrogen
limiting conditions. In nutrient-rich conditions, the three Pseudomonads, C. necator H16 all produced
over 7 mU/mL of Mn2+ oxidizing enzymes with Pseudomonas putida KT2440 producing 11 mU/mL.

Four of the five top lignin converters stored carbon as fatty acids or polyhydroxyalkanoates
(PHAs) under nitrogen-limiting conditions. Acinetobacter sp. was the only top lignin converter that did
not store carbon [149]. P. putida KT2440 stored 0.25 g/L medium chain length PHAs from APL. As a
proof-of-concept, the medium chain length PHAs were subjected to thermal depolymerization and
catalytic dehydrogenation to produce hydrocarbons [150].

Other target compounds can be produced by native lignin-utilizing microbes that have been
subjected to additional metabolic engineering. For example, P. putida KT2440 was engineered to utilize
both the protocatechuate and the catechol branches of the β-ketoadipate pathway to produce muconic
acid. The engineered P. putida KT2440 produced muconic acid from a variety of model aromatic
molecules including catechol, phenol, benzoate, protocatechuate, coniferyl alcohol, ferulate, vanillin,
caffeate, p-coumarate, and 4-hydroxybenzoate. In fed-batch culture, the engineered P. putida KT2440
produced muconic acid at a titer of 13.5 g/L from p-coumarate in 78.5 h. This muconic acid was purified
and converted to adipic acid with a Pd/C catalyst. However, when APL was used as a substrate in
shake flasks, only 0.7 g/L muconic acid was produced. While this production represented 67% yield
of the two major aromatics detected in the APL (p-coumarate and ferulic acid), the titer is much lower
than that observed from pure substrates [148]. This is consistent with the use of biomass-derived
sugars relative to pure substrate [36]. In this case, the APL contained both aromatic and non-aromatic
compounds, and P. putida KT2440 did not convert all aromatics at the same efficiency.
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Making changes to the catechol and protocatechuate pathways might improve production of
target products, such as muconic acid, or change the target products altogether. The position where
catechol or protocatechuate are cleaved affects the amount of succinate, acetyl-CoA, and pyruvate
produced. For example, when the endogenous catechol ortho pathway in P. putida KT2440 was
exchanged with the exogenous catechol meta pathway, the pyruvate yield increased from 23.9 ± 3.1
to 31.0 ± 0.9 percent. When the endogenous protocatechuate ortho pathway was replaced by the
exogenous protocatechuate ortho pathway, the pyruvate yield increased almost five-fold [53].

6.2. Progress in Chemical Utilization

Lignin can undergo many chemical modifications including, but not limited to, alkylation, acylation,
amination, carboxylation, halogenation, oxidation, reduction, nitration, and sulfonation [188].

Figure 4 shows the major thermochemical depolymerization processes in conjunction with the
produced products [188]. Zakzeski describes three categories of catalytic lignin transformations: lignin
catalytic cracking and hydrolysis, lignin reduction, and lignin oxidation. These processes have been
employed with lignin substrates, lignin model compounds, and depolymerized lignin [51].
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Liquefaction processes produce monophenolic compounds that can be converted to liquid fuels
by hydrodeoxygenation [189]. Monomeric, aromatic-based compounds have also been obtained by
steam treatment followed by base-depolymerization to generate two fractions: a monomeric fraction
and a dimeric and trimeric fraction [190]. The yield of the monomeric fraction was as great as 15 wt%
of the initial lignin and included phenolic species such as vanillin, guaiacol, phenol, and catechol.
Monomers provide an opportunity for green aromatic-based compounds [190].

Pyrolysis is viewed as one of the most promising thermochemical technologies for lignin
utilization [191,192]. The main compounds produced from lignin during fast pyrolysis are gaseous
hydrocarbons (i.e., CO2, CO), volatile liquids (methanol, acetone and acetaldehyde), monolignols,
monophenols (phenol, guaiacol, syringol, and catechol) and other monosubstituted phenols [188].

Lignin is the key biorenewable source of aromatic compounds with phenolics, for example, vanillic
acid, syringic acid, ferulic acid, syringol, guaiacol, and eugenol attracting the interest of polymer
chemists [51,193–196]. They are also valuable building blocks for synthesis of bisphenols [194,197–199],
aliphatic-aromatic polyesters [194,199–201], polyethylene terephthalate mimics [194,202], and epoxy
resins [194,203–205]. Additionally, there is strong interest in the continued development of
polyurethane precursors originating from renewable resources [194].
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6.2.1. Cracking and Hydrolysis of Depolymerized Lignin

In lignin catalytic cracking, the β-O-4 linkage is cleaved, and the carbon-carbon bonds are
relatively unstable [206]. The zeolite H-ZSM-5 has been used for catalytic cracking of pyrolytic
lignin [109,207–210], pyrolytic oil [211], and model compounds obtained from flash pyrolyzed
vegetable biomass [212]. Products obtained from catalytic cracking with H-ZSM-5 can include aromatic
hydrocarbons, aliphatic hydrocarbons, alcohols, and undesired coke product [51]. Other catalysts such
as Pt/Al2-SiO2 [213], supported or non-supported Pt-modified superacid catalysts, and metal-loaded
large pore zeolites have also been successful in catalytic cracking of biomass derived substrates [109].
In the non-zeolite catalytic cracking, products can include aromatics and phenolic compounds [51].

6.2.2. Reduction of Lignin Model Compounds and Depolymerized Lignin

After the lignin is depolymerized using methods described previously in Section 5, the
depolymerized lignin (oil) can be upgraded using similar catalysts. Initial hydrogenolysis or
hydrocracking studies of phenol, o-cresol, anisole, catechol, syringol, and guaiacol revealed that
removal of oxygen for the purpose of increased stability could be done under milder conditions
than required for thermal fragmentation and deoxygenation [214–216]. Hydrodeoxygenation of
guaiacol has yielded phenol or catechol, although phenol is the preferred product at higher
temperatures [214,216]. Depending on the catalyst and temperature, anisole can yield phenol, o-cresol,
and 2,6-dimethylphenol [214,216]. Further hydrodeoxygenation of the phenol (produced from guaiacol
or anisole) can yield benzene and cyclohexane [216]. Excellent conversion of guaiacol and 77%
selectivity of phenol was achieved at 598 K, 5 MPa H2, with a Co-Mo/Al2O3 catalyst [216]. Catechol
has been shown to be more reactive than phenol itself when subject to hydrodeoxygenation with a
Ni-Mo/Al2O3 catalyst at 623 K [217]. A mixture of bio-oil model compounds has also been subject to
hydrodeoxygenation with Co-Mo and Ni-Mo catalysts, and the catechol component of the bio-oil was
converted to phenol [218].

Key conclusions were drawn from studies of hydrodeoxygenation of the lignin-derived phenolic
model compounds. Higher temperatures caused rapid deactivation of the catalyst, which was
attributed to large amounts of water release, coke formation, and loss of sulfur. However, below
523 K, the catalyst stayed active for 50 h [214]. In addition, the alumina supports for catalysts
have shown activity. In fact, when neutral supports such as carbon replaced the alumina, lower
activity was observed. However, polycondensation products and coke formation are thought to be
associated with the alumina support [218]. When an activated carbon supported Co-Mo catalyst
was used instead, there was negligible coke production [219]. The range of lignin-derived model
compounds was increased by the hydrotreatment of 4-methylguaiacol, 4-methylcatechol, eugenol,
vanillin, o,o′-biphenol, o-hydroxydiphenylmethane, and phenyl ether using a Co-Mo/Al2O3 catalyst
(523–598 K, 6.9 MPa). Substituted guaiacols and catechols could react to form thermally stable phenols
at 573 K [220].

In exploring different iron and molybdenum catalysts on lignin-derived model compounds, it was
found that the molybdenum catalysts significantly increased the aromatic bond cleavage, and the iron
catalysts only slightly increased the aromatic bond cleavage. Therefore, molybdenum catalysts are
better candidates for the production of monophenol and benzene in the hydrocracking process [221].
In order to study the effects of a promoter for the supported molybdenum catalyst, lignin-derived
phenolic compounds were subject to hydrodeoxygenation over a Co-Mo/Al2O3 catalyst. It was found
that 4-propylguaiacol was converted to phenol at temperatures lower than 573 K, but at temperatures
greater than 673K, saturated and aromatic hydrocarbons were produced instead. A Ni-Mo catalyst
with a more acidic support was shown to have higher dealkylation activity, which resulted in higher
yields of cresols and phenol [222].

As mentioned before, the traditional hydrodeoxygenation catalysts discussed above encounter
problems with deactivation by coke formation and poisoning by water [51]. With the common problems
of traditional catalysts in mind, different metals and supports were tested for hydrodeoxygenation
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of anisole. Zirconia and ceria supports were found to be the most effective, and in a comparison of
a Ni-Cu/ZrO2 and Ni-Cu/CeO2, the former produced mostly aromatics from anisole, and the latter
almost fully converted anisole to cyclohexane. In addition, rhodium catalysts performed well for
the production of aromatics in some cases [223]. In the interest of using supported platinum-group
catalysts, which are known to be more active than sulfided molybdenum catalysts and can be used at
lower temperatures, Ru/C and Pd/C were tested for catalytic hydroprocessing of guaiacol. Substrate
hydrogenation and loss of aromaticity were observed using both catalysts [224]. Similarly, Pd/C, Pt/C,
or Ru/C combined with mineral acids were used to completely hydrogenate and deoxygenate phenols,
guaiacols, and syringols to produce cycloalkanes and methanol [225]. Hydrotreatment of pyrolytic
lignin with a Ru/C catalyst produced cycloalkanes, alkyl substituted cyclohexanols, cyclohexanol,
and linear alkenes [140]. The catalyst types discussed above such as Ru/C are therefore too active for
maintaining the aromaticity of the lignin model compounds or depolymerized lignin [51].

In order to try to maintain the aromaticity, guaiacol or catechol was subject to reductive
deoxygenation in the presence of α-terpinene and a vanadium or alumina catalyst at atmospheric
pressure. Phenol and methyl-substituted phenols were produced at high yield and selectivity [226].

Electrocatalysis has been researched as a possible route for efficient lignin degradation by
hydrogenation [51]. Electrocatalysis of the model lignin compound 4-phenoxyphenol with Raney
Ni and Pd supported on alumina and carbon showed high efficiencies of electrohydrogenolysis to
phenol [227].

A few studies have been done with homogeneous catalysis of lignin-derived phenolic
compounds. A di-µ-chlorobis (η4-1,5-hexadiene)-dirhodium(I) complex catalyzed the lignin-derived
model compounds 4-propelphenol, eugenol, 1,2-dimethoxy-4-propylbenzene, and 2,6-dimethoxy-4-
propylphenol. The temperature was 298 K and the medium was two-phase hexane/aqueous [228].

6.2.3. Oxidation of Lignin Model Compounds and Depolymerized Lignin

In the oxidation of lignin model compounds, the goal is to create more complex aromatic
molecules, which could be industrially relevant. Although oxidation of lignin historically comes from
the pulping industry, this review will focus on upgrading of monomers by oxidation. The Ng/MiO
catalysts have been shown to oxidize phenolic, nonphenolic, monomeric, and dimeric lignin
model compounds. Vanillyl and veratryl alcohol were oxidized to acids, aldehydes, and quinones
(49% yield) and polymeric products [229,230]. In another oxidation study of lignin model compounds,
methylrhenium trioxide was used to catalyze the oxidation of isoeugenol or trans-ferulic acid in the
presence of hydrogen peroxide to produce vanillin [231]. Wet oxidation of ferulic acid was carried
out by single metal, bimetal, multimetal, and multimetal oxide alumina or kaolin supported catalysts.
Cu-Mn/Al2O3 was the most stable catalyst studied and it was the second most active catalyst [232].
An electrocatalysis study carried out the anodic oxidation of lignin model compounds in methanol,
and it was shown that the Cα-Cβ bond was cleaved [233].

In the study of homogeneous catalysts for oxidation, the idea of biomimicry has been used [51].
Originally iron and manganese porphyrin catalysts were used to better understand the enzymatic
degradation of lignin, and it was shown that the iron porphyrin catalysts cleave the Cα-Cβ and oxidize
lignin model compounds [234].

Metalloporphyrin catalysts are well studied in the selective oxidation of hydrocarbons and
therefore are of interest for selective oxidation of lignin and lignin model compounds and have
been reviewed by Crestini and Tagliatesta [51,235]. High conversion (67%) was achieved in the
oxidation of veratryl alcohol with free and ion-exchange resin-immobilized Fe(TPPS) and Mn(TPPS)
complexes using KHSO5 as an oxidant [236]. Several other metalloporphyrin or metalloporphyrin-like
catalysts have been used to oxidize lignin model compounds including iron(III) and manganese(III)
meso-tetraphenylporphyrin and phthalocyanine complexes [237], iron porphyrin catalysts [238],
and trisodium tetra-4-sulfonatophthalocyanineiron(III) [239]. The incorporation of a variety of ring
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substituents, the incorporation of axial ligands, and the immobilization of the metalloporphyrin can
improve stability, tenability, and recyclability of the catalyst [51].

Simple metal salt-based catalysts have been used for oxidation of lignin and lignin model
compounds. Co(II) acetate and Mn(II) acetate were used as catalysts in the single-electron oxidation of
a lignin model compound, and it was found that the oxidation occurred primarily by cleavage of the
Cα–Cβ bond [240].

A well-known example of adding value to lignin monomers involves the oxidative production
of vanillin from spent sulfite liquor. A 227,000 kg/year facility was built for this purpose in Thorold,
Ontario in 1945 and by 1981 was producing 3.4 × 106 kg/year, accounting for more than half of the
world vanillin market [241]. However, the disposal of the waste generated by this process eventually
led to this process falling out of favor, with the Thorold plant closing in 1987.

7. Economic Analysis of Lignin Utilization Strategies

The adage that “you can make anything from lignin except money” is well-known in the biofuels
and pulp and paper industries. The technological advances reviewed here regarding lignin recovery,
depolymerization and upgrading are chipping away at this long-held belief. This establishment of
lignin as a source of value appears to be critical to the economic viability of the biorefinery concept.
An economic analysis of the utilization of lignocellulosic biomass relies on a number of factors
including cost of the biomass feedstock, capital costs, operating costs, and the market size and selling
price of the target product(s). The utilization of a lignin “waste” stream in an existing lignocellulosic
biomass processing facility could provide an additional source of income for the facility. However,
a detailed analysis is needed to determine if the additional income from selling lignin or a lignin-based
product would exceed the required capital and operating costs for producing the purified lignin
and/or lignin-based product, as highlighted by the example of vanillin production. Since existing
lignocellulosic biomass processing facilities often utilize lignin for process heat and electricity, it would
also be important to determine what fraction of the available lignin should be diverted to upgrading.
The advantage of choosing a platform chemical as a target product is that it provides flexibility. Instead
of targeting one product and one application, a platform chemical that can be converted into a variety
of downstream products would help with marketability.

Multiple reports have concluded that selling lignin as a co-product contributes to the economic
viability of biofuels. A comprehensive 2013 report by the US National Renewable Energy Laboratory
(NREL) concluded that achievement of the target value of 3.00 US dollars per gallon of gasoline
equivalent fuel required lignin valorization [242]. Kautto et al. modeled the organsolv-based
production of ethanol from hardwood with lignin, furfural, and acetic acid as co-products [243].
Consistent with the NREL conclusion, the value of the lignin product was a strong determinant of the
minimum ethanol selling price. Specifically, a value of 1.00 US dollars per kg of lignin was required for
the ethanol to be sold at market price. Analysis of the production of ethanol from corn stover using
ionic liquids for biomass deconstruction concluded that if 65% of the lignin was recovered and sold,
a lignin selling price of 2.62 US dollars per kg was sufficient to meet the market price for ethanol [244].
Finally, at least one technoeconomic analysis has included a specific upgrading method for the lignin.
Chen and Fu modeled the production of ethanol from corn stover with lignin plastic composite and
compressed natural gas as co-products, where the natural gas is produced from the spent fermentation
media [245]. This analysis predicted that inclusion of these two co-product streams resulted in a 19%
decrease in the ethanol production cost.

Studies have also compared how different lignin utilization strategies impact the process
economics, though these have mainly compared the use of lignin to produce steam and electricity
to the use of lignin as a soil amendment. Petrou et al. [246] compared corn stover-based ethanol
processes in which lignin is burned to produce electricity and steam to processes in which lignin
is modified to produce lignosulfonates and/or geomaterial. This study concluded that burning the
lignin to produce steam and excess electricity was the top economic performer, but that the scenario



Energies 2016, 9, 808 17 of 28

in which lignin was used as a geomaterial was the best in terms of environmental performance [246].
Pourhashem et al. [247] analyzed the production of ethanol from agricultural residues, such as corn
stover and barley straw, with the use of lignin as a soil amender, as a coal substitute to produce
electricity or for the on-site production of electricity. The use of lignin as a soil amender was deemed
the best in terms of both greenhouse gas intensity and capital cost.

As the technologies associated with lignin recovery and upgrading develop, future economic
analyses can incorporate these processes and provide additional insight into which routes are the most
promising for industrial use.
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