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Abstract: The formation of dense spacing fracture network is crucial to the hydraulic fracturing 

treatment of unconventional reservoir. However, one difficulty for fracturing treatment is the 

lack of clear understanding on the nature of fracture complexity created during the treatment.  

In this paper, fracture propagation is numerically investigated to find the conditions needed 

for the stable propagation of complex fracture network. Firstly, starting from a parallel fracture 

system, the stability of fracture propagation is analyzed and a dimensionless number M is 

obtained. Then, by developing a hydraulic fracturing simulation model based on 

displacement discontinuity method, the propagation of parallel fractures is simulated and  

a clear relation between M and the stability of parallel fractures is obtained. Finally, the 

investigation on parallel fractures is extended to complex fracture networks. The propagation 

of complex fracture networks is simulated and the results show that the effects of M on complex 

fracture networks is the same to that of parallel fractures. The clear relation between M and 

fracture propagation stability is important for the optimization of hydraulic fracturing operation. 

Keywords: hydraulic fracturing; localization instability; fluid viscosity; complex  

fracture network 
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1. Introduction 

The formation of dense spacing fracture networks is a common occurrence during the hydraulic 

fracturing treatment of unconventional reservoirs [1,2] and is important to the success of hydraulic fracturing 

operations. For the design of fracturing operations, one of the difficulties is the lack of clear 

understanding on the nature of fracture complexity created during fracturing treatment [2]. However, the 

investigation on the propagation of complex fracture networks is challenging at present. For example, 

fracture propagation in the field can be observed by methods such as micro seismic mapping and pumping 

pressure diagnosis, but the details cannot be measured completely by these observation methods. 

Experiments can be performed in a laboratory [3–5], but it is not easy to relate the experiment results to the 

operation in the field [6]. Comparing with the observation methods and laboratory experiments, numerical 

modelling is much more flexible. Numerical models can be established according to field conditions and 

all the details can be exported for analysis. However, the simulation of fracture network propagation is 

very complex. Proper modelling requires consideration of all the important factors, including natural 

fractures, rock properties, in-situ stress, fluid properties, injection rate, injection of proppant, etc. Many 

models in early stages, such as the PK model [7], PKN model [8], KGD mode [9], pseudo-3D models, 

and planar-3D models [10,11], can only be used in simulating the propagation of fractures with highly 

idealized geometries. Some traditional methods, such as the finite difference method [12], finite element 

method [13], extended finite element method [14–16], discrete element method [17], have been used  

in the simulation of fracture network in recent years, but are computationally demanding and are  

ill-conditioned [17] for the fluid-rock coupling process of hydraulic fracturing. Different from these 

traditional methods, meshless methods [18–20] are free from meshing and with capability to deal with 

moving boundary conditions. Meshless methods are flexible and accurate in simulating fracture propagation, 

but have not been in used in simulating the complex fracture network propagation in hydraulic fracturing. 

Displacement Discontinuity Method (DDM) [21–24], which is a kind of boundary element method,  

is more appropriate for the simulation of complex fracture networks and has been used by more and 

more researchers [2,25–29]. The propagation of complex fracture networks can be simulated within 

shorter CPU time because the rock matrix is not discretized. Moreover, the fracture aperture can be 

calculated with higher precision because a volume integral is not needed. 

However, even with numerical modelling, the investigation of complex fracture networks is still in  

its infancy due to the complexity of the propagation process. The propagation of complex fracture networks 

depends on many factors. Much attention from the hydraulic fracture modeling community has focused 

on the effects of these influence factors on the propagation process. For example, Nagel, et al. [30] 

simulated the propagation of a large number of fractures with 3DEC to investigate the effects of injection 

rate and viscosity on tensile and shear failure. The results show that higher injection rates favor tensile 

failure while the lower injection rates and lower viscosity favors the creation of shear fracture. Riahi and 

Damjanac [31] performed a series of comparative studies with UDEC to establish the effects of injection 

rates, the connectivity and size distribution of natural fractures on a stimulated area. It was found that 

higher injection rates resulted in smaller stimulated shear area. Fu, Johnson, and Carrigan [17] simulated 

the fracturing process with dozens of natural fractures to investigate the effects of principal stress 

orientation and stress anisotropy. It was found that fracture networks propagate along the maximum 

principle stress direction and the fracture network is more complex when the stress is isotropous. 
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McClure and Horne [32] investigated the conditions required for shear stimulation and showed that 

stimulations may occur through a mixture of the opening and sliding of preexisting fractures and the 

propagation of new fractures. Zhang and Jeffrey [26] simulated the fracturing process under two 

injection types and it was found that equal rate injection is better than equal pressure injection in creating 

complex fracture network. Zhuang, et al. [33] investigated the feasibility of utilizing hard rock for 

compressed air energy storage. For rock cavern with fracture, higher fluctuation of pressure and 

temperatures are found, which is unfavorable for system stability. Rabczuk, et al. [34–37] proposed a 

meshless method that is able to treat the nucleation of fractures and complex patterns involving fracture 

branching and crossing in a simple and effective way. Aside from the works above, the propagation of 

complex fracture networks has also been investigated by many other researchers [2,25,27,28,33].  

To sum up, the effects of many factors on the propagation of complex fracture networks have been 

investigated. However, most of the results on complex fracture network are descriptive. The descriptive 

results are helpful in telling us how to achieve complex fracture networks, but is not easy to be used in 

determining the optimal fracturing parameter. 

One of the difficulties for the investigation on the propagation of complex fracture networks is the 

large number of influence factors. The propagation of complex fracture network depends on so many 

factors that it is very difficult to quantify the effects of all these factors just by numerical modelling. 

Fortunately, the effects of these factors are not independent. For example, Guo, et al. [38] investigated 

the effects of flow rate and fluid viscosity on fracturing process and suggested that the influence of flow 

rate and viscosity can be expressed as their product and thus there is no need to investigate the effects of 

viscous coefficient and injection rate individually. That is, the appropriate theoretical analysis is helpful 

in finding the key factors and in reducing the number of influence factors. Therefore, to get clear relations 

between the influence factors and the propagation of complex fracture networks, hydraulic fracturing 

process is theoretically analyzed before numerical modelling in this paper. First, by analyzing the 

propagation of parallel fracture systems, a dimensionless number that account for the stability of the 

propagation is obtained. Both fluid properties and rock properties are in consideration during the derivation 

of the dimensionless number. And then, by simulating the propagation of parallel fractures and complex 

fracture networks, the effects of the dimensionless number is quantified.  

2. The Propagation of Parallel Fracture 

2.1. The Propagation Stability 

Consider a possible idealized picture of fracture system development in unconventional  

reservoir [39]. The first set of fractures, roughly orthogonal to the borehole, are formed at the locations 

of casing perforations. Then, secondary fractures of denser spacing, roughly orthogonal to the primary 

fractures, are formed. For theoretical purposes, the propagation of complex fracture networks can be 

idealized to multiple stages of parallel fracture propagation. The formation of dense spacing fracture 

networks requires the stable propagation of these parallel fractures without localization, i.e., the lengths 

of each fracture keep equal during propagation [39]. The fracture lengths could keep equal only when 

the propagation speed of the shorter fractures is no slower than that of the longer fractures, which requires 

the energy consumption for fracture propagation is less for the shorter fractures. For the two sets of 
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fractures as shown in Figure 1, a1 and a2 are the lengths of the two sets of fractures respectively and  

a1 < a2, the length difference ܽߜ ൌ |ܽଶ െ ܽଵ| will not increase when 

1 2

F F

a a

 


 
 (1)

where F is the energy consumption, i.e., the energy consumption for the propagation of the shorter 

fractures is less than that of the longer fractures. The analytical expression of F is difficult to be given 

because it depends on many factors, for example, the fracture length, fracture aperture, viscosity of fluid, 

and most importantly, interactions between fractures. Therefore, the energy consumption will be 

analyzed under very ideal conditions in this part. The aim of the analysis is to find how these factors 

affect the stability of fracture propagation and which is the key factor. 

The first kind of energy consumption is the fracture surface energy, which satisfies 

1 2

F F

a a

 
  

 
 (2)

where   is the fracture energy. Therefore, the fracture surface energy does not contribute to the stability 

of fracture propagation, which is the same as that of cooling fractures [39]. 

The second kind of energy consumption is the viscous dissipation of fluid. Assuming the  

pressure gradient caused by fluid viscosity equals ∂p/∂y, then the pressure drop along the fracture equals 

a∂p/∂y. Therefore, when a fracture extends a small length δa, the energy input needed is proportional to 

aδa ∂p/∂y, then  

1 2
1 2

,  
Q p Q p

a a
a y a y

   
 

   
 (3)

where Q is the viscous dissipation of fluid. It is clear that 

1 2

Q Q

a a

 


 
 (4)

i.e., the viscous dissipation is stronger for the longer fractures and the Equation (1) is satisfied by U. 

Therefore, fluid viscosity helps to keep the stability. 

The third kind of energy is the strain energy of the elastic solid. Different from fracture energy and 

viscous dissipation, the strain energy is conservative. However, the strain energy could be treated as energy 

consumption when neglecting the shrink of fracture, which is a reasonable assumption as fluid pressure 

increases with fluid injection. Moreover, the shrinking of a fracture can be partly suppressed by the pumping 

of proppant. The analytic expression of the strain energy can be given in the special circumstance when 

a << s, where a is the fracture length and s is the fracture spacing. The stress interaction between fractures 

is ignorable when a << s, then fracture aperture w satisfies [40] 

 
   22

2

14
1w r pa

E

a r

a





  (5)

where E is Young’s modulus, ν is Poisson’s ratio, p is the fluid net pressure, r is the distance to the 

fracture tip. Considering the stress intensity factor, KI can be calculated by the fracture aperture near 

fracture tip [41] 
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The fluid pressure can be estimated by Equations (5) and (6),  

2π
IC

K
p

a
  (7)

i.e., fluid pressure decreases with the propagation of fracture at initial stage, where KIC is the tensile 

mode fracture toughness. As the strain energy U is equal to the energy inputted Einput by injecting fluid 

quasi-statically and ∂Einput/∂V = p, so we have 

U
p

V





 (8)

where U is the strain energy, V is fracture volume, which is proportional to a2 at initial stage. Considering 

a1 < a2, we have 

1 2

U U

a a

 


 
 (9)

that is, the Criterion (1) is not satisfied by U when a<<s. The analytic expression of U cannot be given 

when the fractures are much longer. However, due to the opening of the longer fracture, the in situ stress 

at the tip of the shorter fracture is bigger than the longer one, i.e., higher fluid pressure is needed for the 

growth of the shorter fracture. Therefore, the energy consumption for the propagation of the shorter 

fracture is bigger than the longer one. That is, the Equation (9) still exists when the fractures are longer. 

In conclusion, the propagation is not stable when considering the strain energy. 

 

Figure 1. Two sets of hydraulic fractures starting from the same wellbore. 

From the analysis above, it is clear that the propagation stability of parallel fractures depends on  

two mechanisms, i.e., the viscosity of fluid and the elasticity of rock. Moreover, the effects of the  

two mechanisms are opposite. The viscosity of fluid helps to keep the stability while the elasticity of 

solid leads to the instability. Therefore, the propagation stability of hydraulic fractures depends on the 

competition between these two mechanisms. 
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2.2. The Dimensionless Number 

The competition between the viscosity of fluid and the elasticity of rock can be quantified by defining 

a dimensionless number Μ, which is the ratio between the fluid pressure caused by viscosity and the 

initiation pressure of rock. For a system of parallel fractures with fracture spacing equal to s, the fluid 

pressure caused by viscosity can be quantified by the pressure drop within characteristic length s. As the 

volumetric flux q of fluid in fracture is given by [26]  

3

12μ

w
q p    (10)

then the drop of fluid pressure p  equals 

3

12 μq s
p

w
   (11)

where μ is fluid dynamic viscosity, p  is the gradient of fluid pressure, w is fracture aperture. For the 

parallel fracture system, the fracture aperture satisfies 

ps
w

E
  (12)

where p is the net pressure of fluid, E is the Young’s modulus of rock. As there is only type I failure in 

the parallel fracture system, a fracture extends when  

I ICK K  (13)

where KI is the tensile mode stress intensity factor, KIC is the fracture toughness. KI can be calculated by 

Equation (6), then we have 

I

Ew
K

s
  (14)

Considering Equation (13), then  

ICK s
w

E
  (15)

Considering Equation (11), then  

3

3

μ

IC

q E
p

sK
   (16)

Considering Equations (12) and (15), we have  

IC
C

K
p

s
  (17)

where pC is the initiation pressure, which is the net fluid pressure needed for fracturing the rock.  

Then we have 

3

4

μ

C IC

p q E

p K


  (18)
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As the net pressure of fluid is proportional to the elastic energy of rock and p  is caused by the 

viscosity of fluid, the dimensionless number Μ can be defined as 

3

4

μ

IC

q E

K
   (19)

It is clear that M represents the competition between the viscous dissipation of fluid and the strength 

of rock deformation.  

The dimensionless number M is closely related to the stability of the fracture propagation. However, 

it is difficult to know how the stability varies with M. Moreover, the theoretical analysis above is 

implemented based on very ideal circumstances. To investigate the propagation stability of fracture 

under more general circumstances and to get the clear relation between M and the stability, numerical 

modelling will be implemented in the following sections. 

3. Numerical Model 

A DDM based model is developed in this paper. As a kind of boundary element method, DDM solves 

fracture aperture with very high precision because the theoretical solution of elastic mechanics is directly 

used [40]. Therefore, the competition between fluid viscosity and solid elasticity can be accurately evaluated.  

The following assumptions are used in the model: 

(1) The domain of rock matrix is infinite and the rock matrix is homogeneous, isotropous,  

linear elastic [40].  

(2) The rock matrix is impermeable [6,26,42]. 

(3) The fluid is Newtonian [6,26,42]. 

(4) The flow in fracture system is single phase and laminar [6,26,42]. 

The elastic equilibrium equations for a system of N fracture elements are [26]: 
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
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



    

    

 



x x x x x

x x x x x

 (20)

where x = (x, y) is the coordinate, w is the normal displacement discontinuity, v is the shear displacement 

discontinuity, lr is the length of fracture r, σn is the normal stress and τs is the shear stress, obeying 

Coulomb’s frictional law characterized by the coefficient of friction λ 

τ λσs n  (21)

that can act in parts of fractures that are in contact, and vanishes along the separated parts. Along the 

opened fracture portions, we have σn = pf. In addition, σ1 and τ1 are the normal and shear stresses along 

the fracture direction respectively caused by far-field stress. Gij are the hyper singular Green’s functions, 

which are proportional to the plane strain Young’s modulus [26]. K is the three dimensional correction 

coefficient proposed by Olson [43]. Using the parameters given by Wu and Olson [44], K can be written as 
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where h is layer thickness perpendicular to the simulation plain, d is the distance between points x1 and x2.  

The fluid flow in fracture system follows the Equation (10) and the global mass balance requires 

δ
0

δ
fv

q
t L

 
    

 (23)

where vf is fluid volume, which is no bigger than fracture volume. L is fracture segment length, q  is 

the gradient of flow rate along fracture.  

The fracture growth is based on the maximum hoop stress criterion, with the maximum mixed-mode 

intensity factor reaching a critical value [26,45] 

 0
0 0

θ1
cos 1 cosθ 3 sinθ

2 2 I II ICK K K      (24)

where KI and KII are stress intensity factors, KIC is tensile mode fracture toughness, θ is the fracture 

propagation direction relative to the current fracture orientation and satisfies [26,45] 

 sinθ 3cosθ 1 0I IIK K    (25)

The interaction between hydraulic and natural fractures is also simulated based on the above criterion. 

When a hydraulic fracture encounters a natural fracture, it will across the natural fracture when the tensile 

stress is strong enough. Therefore, a virtual fracture element is added at another side of the natural fracture 

to check the stress condition. The stress intensity factor of the virtual fracture is calculated with the  

in situ stress at the tip of the virtual fracture and the fluid pressure at the crossing point. The hydraulic 

fracture will across the natural fracture when the Equations (24) and (25) are satisfied. This method for 

dealing with fracture interaction has clear physical background and is easily implemented under the 

framework of DDM. 

For validation, we refer for comparison to the model of Wu and Olson [28] for the fracture configurations 

of a single horizontal wellbore with two initial fractures (Figure 2a) and two horizontal wellbores with 

one fractures each (Figure 2b). These are the most classic configurations and have been simulated in 

many works [2,27,28,30,44,46]. The correct simulation of these configurations requires the precisely 

solving of the stress field and fluid pressure, and the correct calculating of the stress intensity factor. 

These two configurations are simulated with the parameters listed in Table 1, which is the same to that 

of Wu and Olson [28]. The results are shown in Figure 3. For the initial configuration as shown in  

Figure 2a, the two fractures propagate away from each other. For the initial configuration as shown in 

Figure 2b, the two fractures grow toward each other. In summary, our model compares favorably with 

previous models. 
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Figure 2. Two initiation fractures in (a) a horizontal wellbore and (b) two horizontal wellbores. 

Blue lines represent horizontal wellbores, and red lines represent initial fractures. 

Table 1. Input parameters (After Wu and Olson [28]). 

Parameter Value 

q 8.8 × 10−4 m3/s/m 
μ 1.0 cP 
E 3.0 × 1010 Pa 

Poisson’s Ratio 0.35 
h 120 m 

KIC 1.0 × 106 Pa.m0.5 
Far-field stress σx = σy = 47 MPa 

 

Figure 3. Comparison of propagation paths for initiation fractures in (a) a horizontal wellbore 

and (b) two horizontal wellbores. The line width represents the fracture aperture. 
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4. Numerical Analysis 

4.1. Parallel Fracture 

The propagation of the parallel fracture system as shown in Figure 1 is first simulated. The aim of the 

simulation is to investigate the conditions needed for the controlling of length difference during the 

propagation. There are infinite number of fractures in Figure 1. However, the infinite number of fractures 

can be divided into two periodically appeared sets. Therefore, with periodical boundary condition at the 

left and right side, the infinite number of fractures in Figure 1 can be simulated by only two fractures as 

shown in Figure 4. The periodical boundary condition is implemented by calculating the induced stress 

of a fracture as the fracture appears periodically at the left and right sides.  

 

Figure 4. The simulation setting. 

Fluid is injected into the wellbore with the constant rate q, which is also the sum of the injection rate 

into the two fractures. The allocation of flow rate depends on the pressure profile along the wellbore. 

Therefore, the injection rates for the two fracture may be different and may vary during the simulation. 

However, as the conductance of the wellbore is much bigger than the fractures, the pressure along the 

wellbore is approximately uniform and the inlet pressures of the two fractures are approximately equal.  

The in situ stress is set to be isotropic. The layer thickness h in Equation (22) is set to be infinite and 

three dimensional effect is ignorable. A small initial length difference is assigned to the system because 

small disturbance always exists in actual case. The initial lengths of the fractures are a1,0 = 0.25 s,  

a2,0 = 0.275 s, where s is the fracture spacing. The propagation is simulated under the parameters listed 

in Table 2. The variations of the lengths of the two fracture sets, a1 and a2, are outputted for analysis. 

The simulation is ended when a1 > 7.3 s or a2 > 7.3 s. 

The propagations of the parallel fractures under different values of M are shown in Figure 5. The 

propagation length is defined as the average length of the two fractures. When Μ = 0.058, one fracture 

propagates while the propagation of another fracture is totally suppressed. When Μ = 0.58, the shorter 

fracture begins to propagate when the length of another equals to 4s approximately. When Μ = 0.73 and 

Μ = 0.92, the initially shorter fracture begins to propagate almost at the same time with the longer 

fracture and the length difference increases with propagation length. When Μ = 5.8 and Μ = 58, the two 

fractures propagate simultaneously, and the length difference is smaller than the results when M is 

smaller. The propagation is leaded by the two fractures alternately as the shorter fracture could always 
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catch up the longer one. Therefore, the lengths of the two fractures will keep equal approximately during the 

propagation process. In conclusion, the stability of fracture propagation increases with M. 

Table 2. Input parameters. 

Parameter Value 

q In range [1.0 × 10−4, 1.0 × 10−1] m3/s/m 
μ 0.1 cP 
M In range [0.058, 58] 
E 1.8 × 1010 Pa 

Poisson’s Ratio 0.2 
h Infinite 

KIC 1.0 × 106 Pa.m0.5 
Far-field stress σx = σy = 5.0 × 107 Pa 
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Figure 5. The paths of fracture length under different values of M. (a) M = 0.058,  

(b) M = 0.58, (c) M = 0.73, (d) M = 0.92, (e) M = 5.8, (f) M = 58. 
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Figure 6 shows the variation of max(δa) with M, where max(δa) is the maximum fracture length 

difference during the simulation, as illustrated in Figure 5a,e. When M < 0.2, max(δa) = 7.3 s, i.e., there 

is no propagation for the initially shorter fracture. It is clear that max(δa) decreases with Μ when M > 0.2. 
Moreover, the decrease is not uniform. When M∈[0.2,1.0], the decrease of max(δa) is very steep. By 

contrast, when M > 1, the decrease of max(δa) is slow. That is, the stability of the propagation increases 
rapidly with M when M∈[0.2,1.0] while the increase of the stability is very limited when M > 1.0. 

Therefore, we should try our best to increase the value of M to improve the propagation stability when 

M < 1.0 during the hydraulic fracturing operation. 
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Figure 6. The variation of length difference with M. 

4.2. Complex Fracture Network 

The investigation on parallel fractures is extended to complex fracture network in this part. The 

propagation processes of complex fracture network under the same value of M as the points (a)–(d) 

shown in Figure 6 are simulated.  

The natural fracture network is created by a discrete fracture network model [31] with the parameters 

listed in Table 3. The fracture length follows a power law distribution [31], i.e., n(l) l−α, where n is the 

occurrence of a fracture with length l, α is a site specific value [31]. Two sets of fractures are in 

consideration. The angles between the fractures and the positive direction of x axis equal to π/3 and 2π/3 

respectively. P21 is used to measure the fracture density [31] and P21 = 6.0 m−1 in Figure 7. The poorly 

connected natural fracture network is used so that the fracturing process is dominated by the propagation 

of hydraulic fracture, which is similar to the parallel fracture system. However, because fracture energy 

has no effect on the propagation stability, the results are similar to that of a well-connected natural 

fracture network [39]. 

Fluid is injected with constant rate from the center of the simulation region. The value of M cannot 

be calculated directly by Equation (19) because q in Equation (19) refers to the flow rate in single 

fracture. Given the injection rate qinj, q is calculated by q = qinjs/L, where s is the average spacing between 

natural fractures and L is the width of the simulation region. The rock and fluid properties are equal to 

the simulation of parallel fractures in Section 4.1. The in situ stress anisotropy equals to 0.5 MPa with 



Energies 2015, 8 9872 

 

 

the direction of maximum principle stress shown in Figure 7. The three dimensional effect is considered 

and the layer thickness h in Equation (22) is set to be 0.5 m. The simulation is finished when any 

hydraulic fracture reaches the boundary of the simulation region. 

 

 

Figure 7. The final fracture configurations under different values of M. Fracture width is 

represented by curve width and fluid net pressure is represented by color. (a) M = 0.18,  

(b) M = 0.58, (c) M = 1.8, (d) M = 5.8.  

Figure 7 shows the final configurations of the complex fracture network under different values of M. 

When M = 0.18, as in Figure 7a, a dominated fracture grows from center along the maximum principle 

stress direction. Meanwhile, the growths of all other fractures are suppressed. The fluid pressure is nearly 

uniform at most parts of the hydraulic fractures. This implies the fluid viscosity is very weak during the 

fracturing treatment. Only one fracture propagates with fluid injection, which is similar to that of the 

parallel fracture system when M is very small. When M = 0.58, as in Figure 7b, more fractures propagate 

with fluid injection because fluid viscosity is stronger. When M = 1.0 and M = 5.8, as shown in Figure 7c,d, 

a large number of fractures grow from the injection point simultaneously along different directions and 

an elliptic shaped fracturing zone is formed. The stimulated area is bigger than that of M = 0.18.  

The fluid pressure decreases from the injection point to the boundary of the simulation region,  

which implies the fluid viscosity is much stronger than that of M = 0.18. 

The behavior of complex fracture networks shows a remarkable similarity with that of parallel  

fracture system: 
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(1) The complexity of fracture network increases with M while max(δa) decreases with M.  

(2) The increment of the fracture network complexity is very significant when M increases from 

0.58 to 1.8. Be similarly, the decrease of max(δa) is very significant when M increases from 

0.58 to 1.8. 

(3) The variations of both max(δa) and fracture network complexity are not significant when M 

increases from 1.8 to 5.8. 

These results indicate that the stability of parallel fracture system is equivalent to that of complex 

fracture network. Therefore, the quantitative results obtained from a parallel fracture system are 

applicable to complex fracture network.  

Table 3. Input parameters. 

Parameter Value 

Model Width and Height 4.0 m 
P21 6.0 m−1 
α 3 

Fracture Angle π/3 and 2π/3 
Maximum Fracture Length 0.3 m 
Minimum Fracture Length 0.1 m 

Layer thickness h 0.5 m 
Far-field stress σmax = 5.0 × 107 Pa 

Far-field Stress Anisotropy 0.5 MPa 
Maximum Principle Stress Angle 5π/6 

5. Discussion and Conclusions 

In this work, the stability of hydraulic fracture propagation in unconventional reservoir is analyzed. 

A dimensionless number M is deduced to account for the stability. It must be noted that the analysis is 

based on very ideal assumptions, for example, the parallel fracture system, the constant pressure gradient 

caused by viscosity. The real fracturing process is too complex to be investigated just by theoretical 

analysis. Therefore, numerical simulation is implemented to find the clear relation between M and the 

propagation stability. 

The dimensionless number M is one of the most important factors that influence the propagation of 

the fracture network, but not the only one. There are many other factors which have great effects on 

hydraulic fracturing. For example, as discussed by Bazant, et al. [39], the pumping of proppant helps to 

prevent the instability by preventing the close of fractures. The in situ stress is also important, the fractures 

tends to propagate along the maximum principle stress direction. Therefore, the length difference of 

fractures will be bigger and thus the propagation tend to be instable when the anisotropy of in situ stress is 

stronger. The brittleness of the rock is important, but the effects of brittleness have been considerate in 

the definition of M. Considering the Equation (19), the brittleness index B related to hydraulic fracturing 

could be defined as  

3

4
IC

E
B

K
  (26)
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then the dimensionless number M can be expressed as M = qμB. From the definition of B above, it is 

clear that the brittleness index B is not just the simple ratio of rock elastic and rock strength. By contrast, 

the effects of rock brittleness on the fluid-rock coupling process of hydraulic fracturing are closely 

related to the brittleness index defined as Equation (26). Therefore, we suggest the Equation (26) can be 

used in quantifying the brittleness of rock on fracturing process other than the existed brittleness indexes, 

such as the brittleness indexes related to the rock strength, stress-strain curve, loading and unloading test, 

hardness and mineralogical composition, etc., which were not proposed for the hydraulic fracturing process. 

The investigation on the stability of hydraulic fractures shows that: 

(1) The competition between fluid viscosity and solid elasticity, which can be quantified by the 

dimensionless number M, is one of the controlling factors of the stability of hydraulic  

fracture propagation.  

(2) The stability of the parallel fracture propagation increases rapidly with M when M∈[0.2,1.0] 

and increases slowly with M when M > 1.0. 

(3) The propagation of the parallel hydraulic fracture is stable and the two sets of fractures extend 

alternately when M > 1.0. 

(4) The behavior of complex fracture networks is the same to that of parallel fractures under the 

same value of M.  

(5) For formations with poorly connected natural fracture network, a complex fracture network can 

be formed when M > 1.0 while only a single dominated fracture propagates when M < 0.2. 
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