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Abstract: A two-stage algorithm is proposed for the estimation of the fundamental 

frequency of asynchronously sampled signals in power systems. In the first stage, time-domain 

interpolation reconstructs the power system signal at a new sampling time and the 

reconstructed signal passes through a tuned sine filter to eliminate harmonics. In the 

second stage, the fundamental frequency is estimated using a modified curve fitting, which 

is robust to noise. The evaluation results confirm the efficiency and validity of the two-stage 

algorithm for accurate estimation of the fundamental frequency even for asynchronously 

sampled signals contaminated with noise, harmonics, and an inter-harmonic component. 

Keywords: fundamental frequency estimation; two-stage algorithm; time-domain 

interpolation; tuned sine filter; modified curve fitting 

 

1. Introduction 

Sampling-based power measurements are typically carried out using a clock signal that is 

synchronized with the signal from the power system under analysis. However, often there may be no 

means of synchronizing the clock signal to the power system signal, and power measurements are 

instead based on asynchronous sampling of power system signals. These circumstances include 
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industrial measurements and high-precision calibrations in metrology laboratories. Under such 

circumstances, accurate estimation of the fundamental frequency of power system signals is essential 

to minimize the errors caused by asynchronous sampling. 

Numerous studies have estimated the fundamental frequency of asynchronously sampled signals, 

and several interesting results have been published in recent decades. Spectral techniques [1–5] are 

among the most popular approaches because of their low computational burden and feasibility for real-time 

applications. When asynchronously sampled data are processed using a discrete Fourier transform 

(DFT) to extract frequency information, the spectral leakage error is appended to the calculated result. 

Spectral techniques compensate for this leakage error to estimate the fundamental frequency. 

Orthogonal techniques [6–14] are another of the most popular approaches for real-time applications.  

In this approach, filters generate orthogonal signals and complex vectors, which are used to estimate 

the fundamental frequency. However, the calculation accuracy of spectral and orthogonal techniques is 

limited, and does not satisfy the precision required for certain applications. 

In contrast, time-domain techniques, such as curve fitting [15–19] and parametric interpolations [20–23], 

are capable of highly accurate frequency estimation, at the cost of a higher computational burden. 

Curve fitting algorithms are commonly used in time-domain techniques because of their robustness to 

noise. In particular, the four-parameter sine fit (4PSF) algorithm [16] performs close to the Cramer 

Rao lower bound (CRLB), which is the theoretical limit of variance for an unbiased estimator, for 

almost all noise levels [24,25]. The 4PSF algorithm is more suited to less distorted steady-state 

waveforms, since its performance significantly degrades as total harmonic distortion (THD) increases. 

Parametric interpolations, such as cubic spline interpolations [20,21] and Newton interpolations [22,23], 

offer an alternative time-domain approach and are used to modify the sampling rate of an analog-to-digital 

conversion in software. In particular, the time-domain interpolation and scanning (TDIS) algorithm [20] 

reconstructs a waveform by cubic spline interpolation to find a new sampling rate that is an integer 

multiple of the fundamental frequency using a scanning procedure. The phase drift in the reconstructed 

waveform is used to estimate the fundamental frequency and iteratively correct the waveform. The 

TDIS algorithm gives greater frequency errors in the presence of inter-harmonics. In the opposite sense 

to the TDIS algorithm, which modifies the sampled signal to synchronize with the estimated frequency, 

the phase sensitive frequency estimation with interpolated phase (PSFEi) algorithm [26,27] modifies the 

frequency of the sine waves used in curve fitting to synchronize with the sampled data. The PSFEi 

algorithm calculates the phase increase of the fundamental component between two groups within the 

sampled data using the three-parameter sine fit (3PSF) algorithm [28] and then updates the fundamental 

frequency to be consistent with the phase increase. To minimize the effect of harmonic components,  

the phase increase in the final iteration is interpolated to an exact integer number of fundamental cycles. 

The PSFEi gives greater frequency errors in the presence of fluctuating harmonics. 

In this paper, a two-stage algorithm is proposed for accurate estimation of the fundamental 

frequency of asynchronously sampled signals regardless of noise and harmonics. The remainder of the 

paper is organized as follows: frequency estimation using the two-stage algorithm is formulated in 

Section 2, and the performance of the algorithm is evaluated in Section 3 using both computer 

simulations and a hardware implementation. Conclusions are presented in Section 4. 
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2. Two-Stage Algorithm for Estimating a Fundamental Frequency 

Assuming that a power system signal has a purely sinusoidal waveform with a fundamental 

frequency ωf (rad/s), amplitude Af (V or A), and phase θf (rad), the NM-point data uniformly sampled 

with a sampling time Δt can be described in discrete time steps as follows: 

0 0

2π
( ) cos(ω θ ) cos(ω θ ) 1, ,

ωf f f f f f My n A n A n t n N
N

            (1)

where ω0 (rad/s) is a nominal frequency and N0 is the number of samples per cycle at ω0. 

2.1. Tuned Sine Filtering Followed by Time-Domain Interpolation 

Harmonics within a power system signal make accurate estimation of the fundamental frequency 

difficult. To eliminate these harmonics from the power system signal, a sine filter is usually used and 

its reference frequency is typically set to the nominal frequency [11]. When the fundamental frequency 

is equal to the reference frequency, the sine filter can eliminate harmonics from the power system 

signal perfectly. However, when the fundamental frequency deviates from the reference frequency, 

harmonics may not be eliminated effectively. To overcome this drawback, this paper proposes a tuned 

sine filter that adjusts its reference frequency to synchronize with an estimate of the fundamental 

frequency. The filter length should be matched to the number of samples per cycle at the reference 

frequency to keep its ability to eliminate harmonics. To meet this constraint, time-domain interpolation 

is used to reconstruct the power system signal at a new sampling time corresponding to the reference 

frequency, prior to applying the tuned sine filter. 

Assuming that ( 1)ω̂ i
f
  is an estimate of the fundamental frequency at the previous iteration (i – 1), 

which will be used as the reference frequency for the tuned sine filter, the new sampling time ( )ˆ it  is 

given as: 

( )
( 1)

0

2πˆ
ω̂

i
i
f

t
N   (2)

To reconstruct the power system signal at the new sampling time, application of cubic spline 

interpolation to Equation (1) yields: 

( ) ( ) ( )ˆˆˆ ( ) cos(ω θ ) 1, ,i i i
f f f My n A n t n N        (3)

where ( )ˆ i
MN  is the number of samples in the reconstructed signal and is given as ( )ˆ

M
i

N t

t

 
  

. The algorithm 

used to compute the splines and interpolation is taken from [29]. Using the estimate of the fundamental 

frequency as the reference frequency for the tuned sine filter, the coefficients of the filter are given by: 

( 1) ( )
0

0 0 0

2 2ˆˆ( ) sin(ω ) sin(2π ) 1, ,i i
S f

n
H n n t n N

N N N
       (4)

It is noted that the coefficients of the filter are independent of the estimate of the fundamental 

frequency since this has already been considered in the calculation of the new sampling time, given in 
Equation (2). Applying Equation (4) to ( )ˆ ( )iy n  in Equation (3) yields a sine-filtered signal: 
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( ) ( ) ( )
0

ˆˆˆ ( ) | (ω ) | cos(ω θ (ω )) , ,i i i
S f S f f f S f My n A H n t H n N N         (5)

where S| (ω ) |fH  and S(ω )fH  are the amplitude and phase response of the tuned sine filter at ωf, 

respectively. Some minor calculations yield: 

( ) ( ) ( ) ( )
0

ˆˆ ˆˆ ( ) cos(ω ) sin(ω ) , ,i i i i
S f f f f My n C n t S n t n N N           (6)

where: 

S| (ω ) | cos(θ (ω ))f f S f f fC A H H     

| (ω ) | sin(θ (ω ))P f S f f S fS A H H     

2.2. Modified Curve Fitting with an Unknown Frequency 

The 3PSF algorithm performs a least-squares curve fitting on the sampled data to find the DC 

component, and the amplitude and phase of the component at a known frequency [28]. In the 4PSF 

algorithm, the frequency itself is treated as an unknown parameter to be found. Although the 4PSF 

algorithm is more computationally complex, this algorithm is recommended for sampled data 

containing five or more cycles of the power system signal [16,30], because the 4PSF algorithm usually 

determines the frequency to greater accuracy even if it is accurately known a priori. Since the tuned 

sine filter, which is used prior to applying the modified curve fitting, can eliminate the DC component, 

it can be assumed that there is no DC component in the sine-filtered signal given in Equation (6). 

Therefore, the number of modeling parameters in the 4PSF algorithm can be reduced from four to 

three: the fundamental frequency, amplitude, and phase. Assuming that ( )ˆ i
fC , ( )ˆ i

fS , and ( )ω̂ i
f  are 

estimates of Cf, Sf, and ωf in Equation (6) respectively, the sine-filtered signal of Equation (6) can be 

expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

ˆ ˆ ˆˆ ˆˆ ˆˆ ( ) cos(ω ) sin(ω ) , ,i i i i i i i i
S f f f f My n C n t S n t n N N           (7)

To find an iterative form of Equation (7), a Taylor series expansion of the cosine function in 

Equation (7) is taken around the previous frequency estimate ( 1)ω̂ i
f
 : 

( ) ( ) ( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )

( 1) ( ) ( 1) ( ) ( ) ( )

ˆ ˆˆ ˆ ˆcos(ω ) cos((ω ω ) )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆcos(ω )cos( ω ) sin(ω )sin( ω )

ˆ ˆ ˆˆ ˆ ˆcos(ω ) sin(ω ) ω

2
cos(

i i i i i
f f f

i i i i i i i i
f f f f

i i i i i i
f f f

n t n t

n t n t n t n t

n t n t n t



 

 

     

           

        

 ( ) ( )

0 0

π 2π ˆˆ) sin( ) ω i i
f

n n
n t

N N
   

(8)

Similarly, a Taylor series expansion of the sine function in Equation (7) is taken around ( 1)ω̂ i
f
 : 

( ) ( ) ( ) ( )

0 0

2π 2πˆ ˆˆ ˆsin(ω ) sin( ) cos( ) ωi i i i
f f

n n
n t n t

N N
        (9)

Substitution of Equations (8) and (9) into Equation (7) yields: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

( )

0

2π 2π 2π 2πˆ ˆˆ ˆˆ ˆˆ ( ) {cos( ) sin( ) ω } {sin( ) cos( ) ω }

2π 2π 2π 2πˆ ˆ ˆ ˆˆˆcos( ) sin( ) ω { cos( ) sin( )}

2πˆ cos(

i i i i i i i

S f f f f

i i i i i i

f f f f f

i

f

n n n n
y n C n t S n t

N N N N

n n n n
C S n t S C

N N N N

n
C

N

         

      

 ( ) ( ) ( ) ( 1) ( 1)

0 0 0

2π 2π 2πˆ ˆ ˆˆˆ) sin( ) ω { cos( ) sin( )}i i i i i

f f f f

n n n
S n t S C

N N N
      

 (10)

The successive samples in Equation (10) can be written in matrix form: 

( ) ( ) ( )ˆˆ ˆi i i
S y A x  (11)

where: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( )

TT
i i i i i i i i

S S S M f f fy N y N C S        y x  

( ) ( 1) ( 1)0 0 0 0
0

0 0 0 0

( )

( ) ( ) ( ) ( )
( ) ( ) ( 1) ( 1)

0 0 0 0

2π 2π 2π 2πˆ ˆˆcos( ) sin( ) { cos( ) sin( )}

ˆ

ˆ ˆ ˆ ˆ2π 2π 2π 2πˆ ˆˆ ˆcos( ) sin( ) { cos( ) sin( )}

i i i

f f

i

i i i i
i i i iM M M M

M f f

N N N N
N t S C

N N N N

N N N N
N t S C

N N N N

 

 

 
  

 
 
 
   
 

A     

Since the coefficient matrix ( )ˆ iA  with dimensions ( )

0
ˆ( 1) 3i

MN N    is not square, its pseudo 

inverse with dimensions 3 3  is used to find ( )ˆ ix : 

( ) ( ) ( ) 1 ( ) ( )ˆ ˆ ˆˆ ˆ(( ) ) ( )i i T i i T i
S

x A A A y  (12)

Finally, the frequency estimate is updated using the frequency deviation ( )ω̂ i
f  in ( )ˆ ix : 

( ) ( 1) ( )ˆ ˆ ˆω ω ωi i i
f f f

   (13)

2.3. Frequency Estimation Procedure 

Figure 1 shows the block diagram for the frequency estimation procedure using the two-stage 

algorithm. Initial estimates for (0)ˆ
fC , (0)ˆ

fS , and (0)ω̂ f  are obtained using 3pDFT [31], a simple and 

efficient algorithm for estimating the fundamental frequency. At the first iteration, a new sampling 

time (1)t̂ is calculated corresponding to (0)ω̂ f  and cubic spline interpolation is applied to reconstruct 

the power system signal at the new sampling time. The reconstructed signal passes through the tuned 

sine filter to eliminate harmonics. Prior to performing the modified curve fitting on the sine-filtered 

signal, the coefficients of (1)Â  are calculated based on (0)ˆ
fC , (0)ˆ

fS , and (0)t̂ . After finding the pseudo 

inverse of (1)Â  as given in Equation (12), the modified curve fitting determines the modeling 

parameters ( (1)ˆ
fC , (1)ˆ

fS , and (1)ω̂ f ) and the frequency estimate (1)ω̂ f  is updated using (1)ω̂ f . The thi  

iteration is the same as the first iteration, but uses the most recent estimates ( 1)ˆ i

fC  , ( 1)ˆ i
fS  , and ( 1)ω̂ i

f
  

instead of the initial estimates (0)ˆ
fC , (0)ˆ

fS , and (0)ω̂ f . Since curve fitting algorithms with an unknown 

frequency double the number of significant digits in the frequency estimate at each iteration and 
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converge very rapidly, six iterations have been considered more than adequate [30]. In this paper,  

six iterations are repeated to produce an accurate frequency estimate. 

 

Figure 1. Frequency estimation procedure for the two-stage algorithm. 

3. Performance Evaluation 

To evaluate the performance of the two-stage algorithm, results were compared with those obtained 

using the TDIS, 4PSF, and PSFEi algorithms. All four algorithms were tested using two approaches: 

computer simulations and a hardware implementation. 

3.1. Computer Simulations 

3.1.1. Number of Cycles in the Data Window 

While the sampling time and length of the data window were fixed (i.e., 30t us   and 8192MN  ), 

the number of cycles in the data window was varied by varying the fundamental frequency of the test 

waveform, which consisted of a single-tone sine wave and a 60 dB white noise signal. In the simulations, 

the number of cycles in the data window was varied between 3 and 20, which corresponds to the 

fundamental frequencies between 12.207 Hz and 81.380 Hz. The root-mean-square (RMS) error of 

frequency estimation after 1000 repetitions at each number of cycles is shown in Figure 2, together 

with the CRLB. The 4PSF and PSFEi algorithms perform close to the CRLB for all numbers of cycles; 

the TDIS algorithm performs well, but is marginally worse than the 4PSF and PSFEi algorithms for six 

cycles or more within the data window. It was also found that the two-stage algorithm needs at least 

eight cycles in the data window to perform close to the CRLB. 

(0) (0) (0)ˆ ˆ ˆ, ,f f fC S 

( ) ( ) ( )ˆ ˆ ˆ, ,i i i
f f fC S 

( )ˆ it

( )ˆ it

( )ˆ iA

( ) ( 1) ( )ˆ ˆ ˆi i i
f f f    

Mi i

1i i 

Yes

No
( )ˆ Mi
f
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Figure 2. RMS error of frequency estimation with an increasing number of cycles in the data window. 

3.1.2. Noise Level 

Simulations with noise were performed using a single-tone sine waveform with a random phase and 

fundamental frequency of 61.2 Hz. The signal-to-noise ratio (SNR) varied from 0 dB to 100 dB with a 

noise increase of 10 dB. The RMS error of frequency estimation after 1000 repetitions at each SNR 

level is shown in Figure 3. As with previous tests, the 4PSF and PSFEi algorithms perform close to the 

CRLB for all noise levels, and the two-stage algorithm also performs close to the CRLB. The TDIS 

algorithm performs approximately 1.2-fold worse than the others. 

 

Figure 3. Root-mean-square (RMS) error of frequency estimation with increasing noise level. 

3.1.3. Harmonics 

The simulated test waveforms have the following form: 

0

( ) ( )sin( ω θ ) ( )
H

h f n h
h

y n A n h t e n


     (14)
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Tests were run with fundamental frequencies varying within 60 ± 5 Hz, with a random phase θh  for 

each harmonic. The other parameters in Equation (14) were set as follows: ( ) 60 dBe n  , 10H  , 

1( ) 1A n  , ,even ( ) 0.01hA n S  , 1,odd ( ) 0.2hA n S   , where S was an integer multiplier from 0 to 4 used 

to increase the amplitudes of the even and odd harmonics. The maximum error of frequency estimation 

after 1000 repetitions at each level of THD is given in Figure 4. The performance of the 4PSF 

algorithm significantly degrades as the multiplier S and, therefore, the THD increases. The PSFEi, 

TDIS, and two-stage algorithms perform with greater accuracy regardless of THD level, with the two-stage 

algorithm exhibiting slightly improved performance over the PSFEi and TDIS algorithms. 

 

Figure 4. Maximum error of frequency estimation with increasing THD. 

3.1.4. Fluctuating Harmonic Component 

The simulated test waveforms with a fluctuating harmonic component of order k have the 

following form: 

0,

( ) ( )sin( ω θ ) (1 sin(ω )) sin( ω θ ) ( )
H

h f n h k k k n f n k
h k

y n A n h t A B t k t e n
 

          (15)

where ωk is the frequency of fluctuation, which was set to vary randomly within 7 ± 2 Hz; Ak is the 

amplitude of the fluctuating harmonic component, which was set to 0.5; and Bk is the depth of 

fluctuation, which was set to 0.1. The other parameters were identical to those used in Section 3.1.3, 

except that here the integer multiplier S was set to 1. The order of the fluctuating harmonic component 

was varied from 2 to 10, and the maximum error of frequency estimation after 1000 repetitions for each 

fluctuating harmonic order is given in Figure 5; comparison between Figures 4 and 5 shows that the 

maximum errors for most of the algorithms are significantly worse when one of the harmonics 

fluctuates. Performance slightly improves as the fluctuating harmonic order increases. This is most 

likely because spectral leakage from a fluctuating harmonic closer to the fundamental frequency has a 

greater effect on the estimate. 
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Figure 5. Maximum error of frequency estimation with increasing order of the  

fluctuating harmonic. 

To evaluate the effect of modulation depth, the order of the fluctuating harmonic was set to 3  

and Bk was varied from 0 to 1.0 in 0.1 increments. The maximum error of frequency estimation after 

1000 repetitions for each modulation depth is shown in Figure 6. Similar to the effect seen when 

changing the fluctuating harmonic order, an increase in spectral leakage due to greater modulation 

depth has an adverse effect on the performance of the PSFEi, TDIS and two-stage algorithms.  

The 4PSF algorithm is more influenced by THD level and a fluctuating harmonic component does not 

have a significant effect on its performance. 

 

Figure 6. Maximum error of frequency estimation with increasing modulation depth of the 

third harmonic. 

3.1.5. Fluctuating Inter-Harmonic Component 

The simulated test waveforms with a fluctuating inter-harmonic component of index x have the 

following form: 



Energies 2015, 8 9291 

 

 

0

( ) ( ) sin( ω θ ) (1 sin(ω )) sin( ω θ ) ( )
H

h f n h x x x n f n x
h

y n A n h t A B t x t e n


          (16)

where ω x  is the frequency of fluctuation, which was set to vary randomly within 7 ± 2 Hz; and xB  is 

the depth of fluctuation, which was set to 0.1. Other parameters were identical to those used in  

Section 3.1.3, except that the integer multiplier S was set to 1. The inter-harmonic amplitude Ax was 

varied from 0 to 0.7 in 0.1 increments. The maximum error of frequency estimation after 1000 

repetitions for each of the inter-harmonic amplitude is given in Figure 7. At each repetition, index x 
was randomly varied from 1.5 to 10. The contamination of the fundamental component caused by the 

inter-harmonic component leads to increasing estimation errors for the TDIS, PSFEi, and two-stage 

algorithms with increasing inter-harmonic amplitude. Again, a fluctuating inter-harmonic component 

does not have a significant effect on the performance of the 4PSF algorithm. 

 

Figure 7. Maximum error of frequency estimation with increasing inter-harmonic amplitude. 

3.1.6. Computational Burden 

Table 1 lists the average time taken to complete a frequency estimate in the simulations for each of 

the algorithms. The algorithms were implemented in MATLAB, and all simulations were run on a 

personal computer with an Intel Core i7 processor running at 4.0 GHz. The TDIS and two-stage 

algorithms required significantly more time than the 4PSF and PSFEi algorithms, which is due to the 

time-domain interpolation. 

Table 1. Average time required for one frequency estimation (ms). 

Algorithm 
Figure number 

2 3 4 5 6 7 

4PSF 8.3337 8.2824 8.1042 8.3044 8.2134 8.5206 
PSFEi 12.388 11.279 10.444 11.102 10.710 11.762 
TDIS 463.98 465.78 459.23 466.76 462.63 481.13 

Two-stage 254.12 348.07 331.07 341.41 339.56 355.14 
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3.2. Hardware Implementation 

Tests using real waveforms with known characteristics are a useful indicator of the performance of 

the algorithms under real conditions. A system for efficient implementation and comparison of the 

algorithms was developed at Korea Testing Laboratory (KTL), a representative accreditation authority 

in South Korea for the testing and calibration of measurement equipment. As shown in Figure 8,  

an electrical power quality calibrator (Fluke 6105A) generates calibration voltage and current signals, 

which were sampled using the data acquisition system developed for the KTL power measurement 

calibration service. In the data acquisition system, a current shunt (Fluke A40B) converts the calibration 

current signal to a shunt voltage signal. Two digitizing multi-meters (Agilent 3458A) encode the 

calibration voltage signal and the shunt voltage signal into digital outputs at a 16-bit resolution. During 

the encoding process, a waveform generator (Agilent 33500B) produces an EXT TRIG signal to 

synchronize the operation of the two multi-meters. Integrated software on a host computer controls the 

two multi-meters through a GPIB and gathers the sampled data, which are used for power measurement 

calibration. All four algorithms are implemented as sub-programs to estimate the fundamental frequency 

of the calibration voltage signal, sampled at 8.192 kS/s for 8192-point data. 

 
No. Device Name 

1 Electrical power quality calibrator (Fluke 6105A) 
2 Waveform generator (Agilent 33500B) 

3,4 Digitizing multi-meter (Agilent 3458A) 
5 Current shunt (Fluke A40B) 
6 Host computer 

Figure 8. Hardware implementation for tests using real waveforms. 

Table 2 summarizes the maximum errors of frequency estimation when tests were run at a 

fundamental frequency of 60 Hz. Two calibration voltage levels (110 V and 220 V) were used in the 

tests and all algorithms demonstrated similar performance regardless of the calibration voltage level 

and harmonic. In particular, the maximum errors of the two-stage algorithm are maintained stably 
between 69.5416 10  and 69.9564 10 . 
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Table 2. Maximum errors of frequency estimation with a fundamental frequency of 60 Hz 

(10−6 × Hz/Hz). 

Voltage H1 = 110 V, θ1 = 0 H1 = 220V, θ1 = 0 

Harmonic 
H3 = 10% H3 = 10% H49 = 10% H49 = 10% H3 = 10% H3 = 10% H49 = 10% H49 = 10% 

θ3 = 0 θ3 = π θ49 = 0 θ49 = π θ3 = 0 θ3 = π θ49 = 0 θ49 = π 

4PSF 6.6318 12.492 9.9227 9.6065 8.7664 11.733 9.5059 9.7659 

PSFEi 9.4811 9.9378 9.9649 9.6864 9.6831 9.4355 9.8214 9.9948 

TDIS 11.623 8.4567 9.3250 9.1283 10.472 9.7417 9.0150 9.0917 

Two-stage 9.5266 9.8951 9.9366 9.6903 9.5992 9.5416 9.7377 9.9564 

4. Conclusions 

A two-stage algorithm is proposed for estimation of the fundamental frequency of asynchronously 

sampled signals in power systems. In the first stage, time-domain interpolation reconstructs the power 

system signal at a new sampling time and the reconstructed signal passes through a tuned sine filter. 

The tuned sine filter retains its ability to eliminate harmonics by adjusting its reference frequency to 

synchronize with an estimate of the fundamental frequency. Prior to applying the tuned sine filter, 

time-domain interpolation renders it possible to match the filter length of the tuned sine filter to the 

number of samples per cycle in the reconstructed signal. In the second stage, the fundamental 

frequency is estimated using a modified curve fitting, which is robust to noise. Since the tuned sine 

filter eliminates the DC component in addition to harmonics, the DC component is removed from the 

modeling parameters of the modified curve fitting. 

The performance of the two-stage algorithm was evaluated using computer-simulated signals, 

which were asynchronously sampled and contaminated with noise, harmonics, and an inter-harmonic 

component. The comparison showed that the two-stage algorithm required approximately eight cycles 

within the data window to provide a level of performance similar to CRLB, and enabled estimation of 

the fundamental frequency accurately under a range of conditions. In particular, the two-stage 

algorithm could estimate the fundamental frequency with greater accuracy than the other algorithms in 

the presence of high levels of THD, a fluctuating harmonic component and a fluctuating inter-harmonic 

component. The two-stage algorithm was then implemented on a KTL data acquisition system with  

16-bit resolution. The results of this implementation demonstrate both the efficiency and validity of the 

two-stage algorithm, and show that it can achieve accurate estimations of the fundamental frequency in 

practical conditions. Therefore, the two-stage algorithm may be considered useful for high-precision 

applications, such as calibrations in metrology laboratories. 
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