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Abstract: The determinations of heat collection rate and heat loss coefficient are crucial 

for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, 

the direct determination requires complex detection devices and a series of standard 

experiments, which also wastes too much time and manpower. To address this problem,  

we propose machine learning models including artificial neural networks (ANNs) and 

support vector machines (SVM) to predict the heat collection rate and heat loss coefficient 

without a direct determination. Parameters that can be easily obtained by “portable test 

instruments” were set as independent variables, including tube length, number of tubes, 

tube center distance, heat water mass in tank, collector area, final temperature and angle 

between tubes and ground, while the heat collection rate and heat loss coefficient determined 

by the detection device were set as dependent variables respectively. Nine hundred fifteen 

samples from in-service water-in-glass evacuated tube solar water heaters were used for 
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training and testing the models. Results show that the multilayer feed-forward neural network 

(MLFN) with 3 nodes is the best model for the prediction of heat collection rate and the 

general regression neural network (GRNN) is the best model for the prediction of heat loss 

coefficient due to their low root mean square (RMS) errors, short training times, and high 

prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively). 

Keywords: water-in-glass evacuated tube solar water heaters; portable test instruments; 

heat collection rate; heat loss coefficient; artificial neural networks; support vector machine 

 

1. Introduction 

Solar water heaters (SWHs) are the most popular way to make use of solar energy, a consequence 

of their technological feasibility and the economic benefits they afford. Typically, the system uses 

solar collectors and concentrators to gather, store, and use solar radiation to heat air or water in 

domestic, commercial, or industrial plants [1]. Of the three types of stationary collector [2], evacuated 

tube solar collectors have substantially lower heat loss coefficient and cost than standard flat plate 

collectors [3]. In China, all-glass evacuated tubular solar water heaters are widely used due to their 

excellent thermal performance, convenient installation, and easy transportability [4,5]. A preliminary 

investigation showed that all-glass evacuated tube solar collectors took an 88% share of the market in 

2003 and 95% in 2009 [6]. The annual production of evacuated solar tubes in China, expanding at an 

annual average growth of 30% in recent years [7], was estimated to be more than 20 million tubes in 

2001 and 350 million tubes in 2009 [8]. 

Many researchers have undertaken significant studies investigating and evaluating the  

thermal performance of water-in-glass evacuated tube solar water heaters both experimentally and  

theoretically [9–12]. Tang et al. [13] developed a detailed mathematical procedure to estimate the daily 

collectible radiation from a single tube of all-glass evacuated tube solar collectors based on solar 

geometry and knowledge of two-dimensional radiation transfer, and the results showed that the annual 

collectible radiation on a tube is affected by many factors such as collector type, central distance 

between tubes, size of solar tubes, tilt and azimuth angles, and use of a diffuse flat reflector.  

Wang et al. [14] performed an experiment and simulation study on a new type of all-glass evacuated 

tubular solar air heater with simplified compound parabolic concentrator (CPC), and the results 

showed the whole system had an outstanding high-temperature collecting performance and the new 

simplified simulation model can meet the general requirements of engineering calculations.  

Çomaklı et al. [11] optimized the size of solar collectors and storage tanks to design more economic 

and efficient solar water heating systems, according to Turkish conditions and relevant Turkish 

standards, with experiments and simulations. Porras-Prieto et al. [15] discussed the influence of 

required tank water temperature on the energy performance and water withdrawal potential of a solar 

water heating system equipped with a heat pipe evacuated tube collector, and the results indicated that, 

as the required tank water temperature increases, the net energy that can be stored by the system falls, 

with differences of over 1000 Wh/m2/day between required tank water temperature of 40 and 80 °C at 

a solar radiation input of 8000 Wh/m2/day (system efficiency range 56%–73%). Zhang et al. [16] 
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investigated the higher coefficient of thermal performance for water-in-glass evacuated tube solar 

water heaters by experiment testing and determined the optimum ratio of tank volume to collector area 

for solar water heater is 57 to 72 L/m2. 

Artificial neural networks (ANNs) have been used in many renewable energy systems in the last 

two decades, especially for solar thermal energy systems and solar radiation. In one work by  

Kalogirou et al. [17], the objective was to train an ANN to predict the useful energy extracted from 

solar domestic hot water systems and the temperature rise of the stored water with minimal input data. 

In another study by Kalogirou et al. [18], different ANNs were used to predict the collector parameters 

describing the instantaneous efficiency, the incidence angle modifier coefficients at longitudinal and 

transverse directions, the collector time constant, the collector stagnation temperature, and the collector 

heat capacity. Kalogirou et al. also used ANNs to predict the performance of large solar systems.  

The ANN method was used to predict the expected daily energy output for typical operating conditions, 

as well as the temperature level that storage tank can reach by the end of the daily operation cycle [19]. 

In addition, Kalogirou et al. used the neural network method in the long-term performance of 

thermosiphon domestic solar water heating systems [20] and to model the starting-up of a solar steam 

generator [21]. An application of ANNs to predict the in situ daily performance of solar air collectors 

was also presented by Lecoeuche et al. In this study, the output of the ANN was the outlet temperature of 

the collector, and inputs to the network were the solar radiation and the thermal heat loss coefficients [22]. 

However, the most important coefficients of thermal performance (CTP), the heat collection rate 

and heat loss coefficient, are very difficult to determine because the test conditions to assess the 

thermal performance of SWHs should follow GB/T 19141-2011 [23]: 

(i) The test period is 8 h, including 4 h before solar noon and 4 h after; 

(ii) The daily solar irradiation shall be higher than 16 MJ/m2; 

(iii) The daily average surrounding temperature shall be between 8 and 39 °C; 

(iv) The daily average surrounding air speed shall be less than 4 m/s; 

(v) The initial temperature in the storage tank shall be 20 ± 1 °C. 

According to the conditions for testing above, the least time required to obtain the heat collection 

rate of a new solar water heater in Beijing, China is 15 days, which is time-consuming and strenuous [24]. 

Generally, the detection device is used for the determination. In addition, these 915 water-in-glass 

evacuated tube solar water heaters come from one company. Due to the high cost of detection,  

the company entrusted us to develop this model to predict the operation performance, which could be 

employed to predict the performance. 

The “portable test instruments” (Table 1), which we employed here, are highly convenient and 

effective to determine the relevant parameters of water heaters, but not available for the determination 

of heat collection rate and heat loss coefficient directly. To address these problems, here, we propose a 

series of machine learning models based on experimental data to predict the heat collection rate and 

heat loss coefficient of solar water heaters. We used the “portable test instruments” to measure the 

some independent variables, including tube length, number of tubes, tube center distance, heat water 

mass in tank, collector area, final temperature and angle between tubes and ground. Then we input 

these independent variables into ANNs and obtain the predicted heat loss coefficient and the heat 

collection rate. The heat loss coefficient and the heat collection rate in field measurement were 
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determined by a “PDT2013-1” detection device (as shown in Figure 1), developed by the China 

Academy of Building Research, one organization cooperating with this paper. Parameters that can be 

precisely obtained from “portable test instruments” were set as independent variables, which are all 

relevant to the values of heat collection rate and heat loss coefficient, including tube length, number of 

tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle 

between tubes and ground. The final temperature could be defined as the stable final temperature in the 

tank after the heat loss test. The temperature could be measured by digital thermoelectric thermometer 

with thermocouple. The sampling point was placed at the outlet of SWH, while the heat collection rate 

and heat loss coefficient obtained from the “PDT2013-1” and relevant equations were set as dependent 

variables. The solar irradiation and the ambient temperature are different under different climatic 

conditions. Meanwhile, the final temperature could be determined by the solar irradiation and the 

ambient temperature to a great extent. Therefore, different climatic conditions could result in different 

final temperatures, and furthermore the heat collection rate will be different. This is why we just chose 

the final temperature as the independent variable, without taking into account the solar irradiation and 

the ambient temperature in our model. ANNs and support vector machine (SVM) were developed to 

“learn” the experimental data and give predictions of the two dependent variables. Comparisons 

among different models were made in order to find out the most suitable model for the prediction of 

heat collection rate and heat loss coefficient. 

 

Figure 1. Schematic diagram of detection device of the determination for water-in-glass 

evacuated tube solar water heaters.  

2. Materials and Methods 

2.1. Experimental 

According to the determination methods of independent and dependent variables in this research, 

915 water-in-glass evacuated tube solar water heaters (in service for one year) were precisely 

determined by the “portable test instruments” and the PDT2013-1 (China Academy of Building 

Research, Beijing, China) detection device developed by the national center for quality supervision and 

testing of solar heating systems. Forty-eight PDT2013-1 detection devices were employed to measure 

the heat collection rate and heat loss coefficient (USL) simultaneously. Table 2 shows the statistical 

results of the experimental data. 
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Table 1. “Portable test instruments” for the determination of parameters of water-in-glass 

evacuated tube solar water heaters. 

Parameters Portable Test instruments Accuracy Picture 

Final temperate of water Digital thermoelectric thermometer ±0.5% 

Hot water mass in tank Electric platform scale ±1.0% 

Diameter, tube center distance,  
tube length, collector area 

Taper ZSH-3 ±0.5% 

Table 2. Descriptive statistic of the variables for 915 samples of in service water-in-glass 

evacuated tube solar water heaters. 

Item 

Tube 

Length 

(mm) 

Number 

of Tubes 

TCD 

(mm) 

Tank 

Volume 

(kg) 

Collector 

Area (m2) 

Angle 

(°) 

Final 

Temp. 

(°C) 

HCR 

(MJ/m2) 

HLC 

(W/(m3K)) 

Maximum 2200 64 151 403 8.24 85 62 11.3 13 

Minimum 1600 5 60 70 1.27 30 46 6.7 8 

Range 600 59 91 333 6.97 55 16 4.6 5 

Average 1811 21 76.2 172 2.69 46 53 8.9 10 

Standard 

deviation 
87.8 5.8 5.11 47.0 0.73 3.89 2.0 0.48 0.77 

Notes: Tube Center Distance (TCD), Temperature (Temp.), Heat Collection Rate (HCR), Heat Loss Coefficient (HLC). 

2.2. Artificial Neural Networks (ANNs)  

ANNs [25–27] are strong machine learning approaches with functions of estimation and 

approximation based on input values. Interconnected neural networks are usually made up of neurons 

that can calculate values from inputs and adapt to different situations. Therefore, ANNs are widely 

used in numerical predictions and pattern recognitions. Currently, ANNs have become very popular in 

inferring a function from observation, especially when objects of study are too complex to be dealt 

with human brains. In our studies, two kinds of ANNs were used for model developments, multilayer  

feed-forward neural networks (MLFNs) and general regression neural network (GRNN). 

2.2.1. Multilayer Feed-Forward Neural Networks (MLFNs) 

MLFN, trained with a back-propagation (BP) learning algorithm, is one of the most popular ANNs 

in scientific research [28–30]. Figure 2 is the schematic structure of an MLFN, with input, hidden, and 
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output layers. Each single neuron interconnects with all neurons in the contiguous layer and each pair 

of connected neurons is connected via adaptable synaptic weights (Figure 3). As shown in Figure 3, 
the connection between the i th and j th neuron is characterized by the weight coefficient ij  and the 

threshold coefficients i  and j  [28]. The weight coefficient reflects the degree of importance of the 

given connection in the neural network. ix  and jx  are the output values of the i th and j th neurons, 

respectively. Knowledge is mainly stored as a set of connection weights, corresponding to synapse 

efficacy in human brain [31,32]. The process of training is the modification of connection weights until it 

satisfies users’ needs. During the training process, weights are adjusted in order to acquire the desired 

output [33].  

 

Figure 2. Structure of the multilayer feed-forward neural network (MLFN). 

 

Figure 3. Connection between neurons i  and j .  

2.2.2. General Regression Neural Network (GRNN) 

GRNN was firstly designed by Specht [34]. It has strong prediction capacity in prediction and 

pattern recognition [35]. The features of the GRNN are fast learning, consistency, and optimal 

regression with large number of samples [35]. Being similar to MLFN, GRNN consists of a series of 

interconnected neurons and layers. A typical GRNN has four layers: input, pattern, summation, and 

output, which are shown in Figure 4 [35]. The input layer keeps corresponding inputs and transfers 

input vector x to the pattern layer. The pattern layer consists of neurons for each training datum.  

Any test input applied to the network is first subtracted from the pattern layer neuron values. Either 

squares or absolute values of subtracts applied to exponential activation function will be summed. 

Results are transferred to the summation layer. Dot product of the pattern layer outputs and weights are 

added by summation layer neurons. As can be seen in Figure 4, weights are shown by A and B, and 
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( )f x K  denotes the weighted outputs of the pattern layer, where K  is a Parzen window associated 

constant [26]. ( )Yf x K  denotes multiplication of pattern layer outputs and training data output Y  values. 

At the output layer, ( )f x K  is divided by ( )Yf x K  to estimate the desired Y.  

 

Figure 4. Structure of the general regression neural network (GRNN). 

2.3. Support Vector Machine (SVM) 

A support vector machine (SVM) is a novel machine learning algorithm based on statistical learning 

theory [36,37], which mainly uses the central concept called “kernel” for learning tasks. Kernel 

machines provide a modular framework that can be adapted to various tasks and domains with the use 

of different kernel functions (i.e., linear, polynomial, radial basis, or sigmoid) and the base algorithm [38]. 

Due to its principles, SVM has good performance in solving both prediction and classification problems. 

Figure 5 shows the main structure of SVM. The letter “K” represents kernels [39]. As can be seen from 

Figure 5, small subsets extracted from the training data by relevant algorithm consists of the SVM.  

For prediction and classification, choosing suitable kernel functions and appropriate parameters is 

important to get good prediction accuracy. With the development of computer science, there are 

currently many software packages that are helpful for us in developing the SVM [40,41]. 

 

Figure 5. Main structure of the support vector machine. 
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3. Results and Discussion 

3.1. Model Development 

According to the determination capacity of “portable test instruments”, for an in service water-in-glass 

evacuated tube solar water heater, precise values of tube length, number of tubes, tube center distance, 

heat water mass in tank, collector area, final temperature and angle between tubes and ground can be 

easily obtained outdoors, while the heat collection rate and heat loss coefficient can only be 

determined by the detection device after being dismantled. To avoid complex disassembly and obtain 

the heat collection rate and heat loss coefficient in real time, here we aim at using machine learning 

techniques including ANNs and SVM to develop a series of prediction models for the heat collection 

rate and heat loss coefficient. Due to the large scale of data groups we acquired from experiments, the 

number of data groups in the testing set was large enough to help us evaluate the performance of the 

models. Also, if the number of data groups in the training set was not large enough (compared to that 

of the testing set), the training processes of models may had the risk of over-fitting. One of the 

empirical proportion settings for the testing set is lower than 20%, and we found that the setting of 

15% proportion for the testing set to the total samples can ensure that a large number of experimental 

data groups (778 in total) were trained, and meanwhile, there was still a large number of data groups 

(137 in total) were tested. Therefore, 85% data groups, including the independent variables (tube 

length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature 

and angle between tubes and ground) and dependent variables (heat collection rate and heat loss 

coefficient) measured from 915 samples of in service water-in-glass evacuated tube solar water heater 

were set as the training set, while the remaining 15% were set as the testing set. The SVM model was 

developed by Matlab software. The ANN prediction models were constructed by the NeuralTools® 

software (trial version, Palisade Corporation, New York, NY, USA) [42–44]. The GRNN and MLFN 

were chosen as the learning algorithms of ANNs.  

Root mean square (RMS) error, required training time, and prediction accuracy (under the 

tolerances of 30%, 20%, and 10%, respectively) are used as indicators to measure the performances of 

the SVM and ANNs. Training times representing the required time for developing a complete learning 

machine were recorded during the training process of a model. The RMS errors were calculated from 

Equation (1) and the prediction accuracies were calculated from Equation (2): 

2

1
( )

RMS error

n

i ii

tot

Z O

n



 

 (1) 

Prediction accuracy 100%good

tot

n

n
  , (2) 

where iZ  is the predicted value, iO  is the actual value, and totn  is the number of tested samples.  

goodn  is the number of tested samples with good predicted results under a certain tolerance. 

The nodes of MLFN models were set from 2 to 39, from which we could find out the change 

regulation of the MLFN models when dealing with the development processes. Each model was 

trained for 20 times using different components of training and testing sets, then the mean RMS errors 
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in testing, mean training times, and mean prediction accuracies were acquired. Tables 3 and 4 show the 

development results for the prediction of heat collection rate and heat loss coefficient, respectively, 

using the mean RMS error in testing, mean training time, and mean prediction accuracy as the 

indicators for showing the performances of the models. 

Table 3 shows that the mean RMS errors of the presented models are very close. The lowest mean 

RMS error exists in the MLFN with 12 nodes (0.14) and the second lowest mean RMS error exists in 

the MLFN with 3, 4, 7, 9, 10, 11, and 14 nodes respectively, which are all 0.15. The mean RMS errors 

of the SVM and GRNN are obviously higher than those of the MLFNs presented in Table 3 (0.29 and 

0.33, respectively). In terms of the prediction accuracies, the mean prediction accuracies of the models 

are all 100% under the tolerance of 30%. Under the tolerance of 20%, most of the mean prediction 

accuracies of models are higher than 99.8%. When the tolerance is decreased to 10%, the MLFN with 

3 and 12 nodes has the highest mean prediction accuracies among all models (98.33% and 98.57%, 

respectively). However, considering the mean training time of the models, the MLFN with 3 nodes has 

a significantly shorter mean training time. Comprehensively, the MLFN with 3 nodes (MLFN-3) can be 

considered as the best model for the prediction of heat collection rate due to its low RMS error,  

short training time, and high prediction accuracies under different tolerances. 

Table 3. Results of prediction models for heat collection rate. 

Model Type 

Mean RMS 

Error in 

Testing 

Mean 

Training 

Time 

Mean Prediction 

Accuracy  

(30% tolerance) 

Mean Prediction 

Accuracy  

(20% tolerance) 

Mean Prediction 

Accuracy  

(10% tolerance) 

SVM 0.29 0:00:10 100% 99.85% 95.11% 

GRNN  0.33 0:00:14 100% 99.82% 94.42% 

MLFN (2 Nodes) 0.17 0:05:57 100% 99.96% 97.08% 

MLFN (3 Nodes) 0.15 0:07:12 100% 100% 98.33% 

MLFN (4 Nodes) 0.15 0:08:35 100% 100% 97.21% 

MLFN (5 Nodes) 0.17 0:10:03 100% 99.96% 97.03% 

MLFN (6 Nodes) 0.17 0:11:23 100% 99.96% 96.89% 

MLFN (7 Nodes) 0.15 0:13:39 100% 100% 97.31% 

MLFN (8 Nodes) 0.19 0:14:35 100% 99.89% 96.54% 

MLFN (9 Nodes) 0.15 0:15:45 100% 100% 97.18% 

MLFN (10 Nodes) 0.15 0:17:56 100% 100% 97.62% 

MLFN (11 Nodes) 0.15 0:19:10 100% 100% 97.19% 

MLFN (12 Nodes) 0.14 0:20:47 100% 100% 98.57% 

MLFN (13 Nodes) 0.16 0:21:51 100% 99.96% 97.01% 

MLFN (14 Nodes) 0.15 0:23:12 100% 100% 97.31% 

MLFN (15 Nodes) 0.17 0:24:19 100% 99.96% 96.92% 

MLFN (16 Nodes) 0.19 0:26:05 100% 99.89% 96.43% 

MLFN (17 Nodes) 0.16 0:29:05 100% 100% 95.72% 

MLFN (18 Nodes) 0.23 0:28:50 100% 99.82% 96.33% 

MLFN (19 Nodes) 0.19 0:30:20 100% 99.89% 96.57% 

MLFN (20 Nodes) 0.2 0:32:26 100% 99.89% 95.92% 

... ... ... ...  ... ... 

MLFN (39 Nodes) 0.22 1:07:44 100% 99.85% 95.41% 
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Likewise, in terms of the prediction of heat loss coefficient, mean RMS errors are also similar 

among different models (Table 4). This shows that although the prediction accuracies of all the models 

presented in Table 4 are 100% under the tolerance of 30%, the GRNN has the highest prediction 

accuracies under the tolerances of 20% and 10%, respectively, and also has the significant advantage 

of comparatively low mean RMS error (0.71) and short mean training time (8 s). During our 

experiments, considering the RMS error, training time, and prediction accuracies under different 

tolerances, GRNN is regarded as the best prediction model for heat loss coefficient.  

Table 4. Results of prediction models for heat loss coefficient. 

Model Type 

Mean RMS 

Error in 

Testing 

Mean 

Training 

Time 

Mean Prediction 

Accuracy  

(30% tolerance) 

Mean Prediction 

Accuracy  

(20% tolerance) 

Mean Prediction 

Accuracy  

(10% tolerance) 

SVM 0.73 0:00:10 100% 98.81% 82.31% 

GRNN  0.71 0:00:08 100% 99.38% 83.14% 

MLFN (2 Nodes) 0.75 0:05:47 100% 98.44% 81.43% 

MLFN (3 Nodes) 0.74 0:06:46 100% 98.51% 81.97% 

MLFN (4 Nodes) 0.78 0:08:22 100% 98.17% 80.69% 

MLFN (5 Nodes) 0.74 0:09:44 100% 98.61% 82.54% 

MLFN (6 Nodes) 0.73 0:10:56 100% 98.76% 82.63% 

MLFN (7 Nodes) 0.77 0:12:30 100% 98.13% 81.03% 

MLFN (8 Nodes) 0.76 0:14:07 100% 98.44% 81.64% 

MLFN (9 Nodes) 0.75 0:15:33 100% 98.65% 81.86% 

MLFN (10 Nodes) 0.76 0:17:02 100% 98.43% 81.55% 

MLFN (11 Nodes) 0.79 0:18:21 100% 97.97% 80.74% 

MLFN (12 Nodes) 0.9 0:19:37 100% 93.32% 75.14% 

MLFN (13 Nodes) 0.75 0:21:05 100% 98.66% 81.43% 

MLFN (14 Nodes) 0.78 0:22:38 100% 98.04% 81.03% 

MLFN (15 Nodes) 0.8 0:24:27 100% 97.36% 80.78% 

MLFN (16 Nodes) 0.73 0:25:31 100% 98.35% 82.22% 

MLFN (17 Nodes) 0.88 0:26:59 100% 93.93% 76.23% 

MLFN (18 Nodes) 0.8 0:28:30 100% 96.41% 80.67% 

MLFN (19 Nodes) 0.79 0:30:06 100% 97.43% 80.93% 

MLFN (20 Nodes) 0.88 0:31:25 100% 93.86% 76.61% 

... ... ... ...  ... ... 

MLFN (39 Nodes) 1.05 1:04:57 100% 89.61% 71.52% 

3.2. Model Analysis 

To analyze the results of the best models for heat collection rate and heat loss coefficient, we should 

firstly divide the model development process of an ANN into two parts, the training and testing 

processes. The training process reveals the fitting results of an ANN, showing whether the training set 

was fitted properly and, at the same time, the capacity for recall of the model, which acts like the 

memory function of a human brain; the testing process reveals the prediction results of an ANN after 

training, showing whether the model can be applied to practical applications. Therefore, both training 

and testing results cannot be neglected when evaluating the precision and robustness of an ANN model. 



Energies 2015, 8 8824 

 

 

3.2.1. The MLFN-3 for Heat Collection Rate 

Typical training results (Figure 6) and testing results (Figure 7) of the MLFN-3 for the prediction of 

heat collection rate are illustrated to show the robustness and precision of the model. It is significant 

that after the training process, the predicted values are close to the actual values (Figure 6a), which 

indicates that the MLFN-3 has a comparatively strong capacity for recalling the data in a training set. 

Residual values (Figure 6b,c) are also highly concentrated to zero, showing that the non-linear fitting 

results of the model are reliable.  

In terms of the testing results, predicted values are also close to the actual values in the testing set 

(Figure 7a), indicating that the MLFN-3 has a very strong prediction capacity for heat collection rate. 

Residual values are also generally close to zero (Figure 7b,c). All these testing results prove that the 

MLFN-3 is a powerful tool to predict the heat collection rate based on the input of independent variables. 

(a) (b) 

(c) 

Figure 6. Training results of 778 samples using the MLFN-3 for the prediction of heat 

collection rate. (a) Predicted values versus actual values; (b) residual values versus actual 

values; (c) residual values versus predicted values. 
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(a) (b) 

(c) 

Figure 7. Testing results of 137 samples using the MLFN-3 for the prediction of heat 

collection rate. (a) Predicted values versus actual values; (b) residual values versus actual 

values; (c) residual values versus predicted values. 

3.2.2. The GRNN for Heat Loss Coefficient 

For the prediction of heat loss coefficient, the training results (Figure 8) and testing results (Figure 9) 

are illustrated to show the robustness and precision of the GRNN. It can be seen that after the training 

process, though there are some deviations, the predicted values generally correspond to the actual 

values in the training set (Figure 8a). The predicted values of heat loss coefficient are close to the 

actual values in the range between 10 and 11. The residual values (Figure 8b,c) also prove that more 

than one third of the residual values are very close to zero. In addition, although the rest of the 

predicted values (approximately two thirds of the values in the training set) have some deviation from 

their actual values, the deviations are all in a controllable range, with their residual values only ranging 

from −1.8 to 2.4. Therefore, the GRNN is also considered as a good model in a certain range of heat 

loss coefficient values.  

In terms of the testing results, in the testing set, the predicted values (Figure 9a) are very close to the 

actual values when the values are in the range between 10 and 11. Above or below this range there 

may be some deviations when predicting. However, residual values (Figure 9b,c) show that the 

deviations are acceptable since all residual values are approximately ranging from −1.5 to 2.0. Also,  

in practical situations, most of the heat loss coefficient of water-in-glass evacuated tube solar water 

heater is in the exact range between 10 and 11 and the average of the values is 10 (as Table 2 shows). 
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The RMS error (0.71) and prediction accuracy (100%) of the GRNN also show that the GRNN is a 

good predictor for heat loss coefficient. Therefore, in spite of the partial deviation phenomenon in the 

testing results, the GRNN is still acceptable and can be considered as the best model for the prediction 

of the heat loss coefficient. 

(a) (b) 

(c) 

Figure 8. Training results of 778 samples using the GRNN for the prediction of heat loss 

coefficient. (a) Predicted values versus actual values; (b) residual values versus actual 

values; (c) residual values versus predicted values. 

(a) (b) 

Figure 9. Cont. 
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(c) 

Figure 9. Testing results of 137 samples using the GRNN for the prediction of heat loss 

coefficient. (a) Predicted values versus actual values; (b) Residual values versus actual 

values; (c) Residual values versus predicted values. 

3.3. Robustness Analysis 

According to the principles of the ANN algorithm, the initial values created in the “hidden box” are 

chosen at random. Therefore, the reproducibility of an ANN cannot be neglected. Since confirming the 

reproducibility of an ANN requires a large number of repeated experiments, here we test the 

reproducibility MLFN-3 and GRNN for the prediction of heat collection rate and heat loss coefficient 

via repeating the same experiments. One hundred twenty repeated experiments were done in order to 

see the fluctuations of the ANNs. Repeated experiments of the MLFN-3 for the prediction of heat 

collection rate (Figure 10a) show that although fluctuation exists in the change of RMS errors, there is 

no “sudden jump” during the 120 repeated experiments. All RMS errors of the model are below 0.18. 

Results show that the MLFN-3 is robust for the prediction of heat collection rate. Repeated 

experiments of the GRNN for the prediction of heat loss coefficient (Figure 10b) show that the GRNN 

is highly robust during repeated experiments, with only tiny fluctuations. Results show that the GRNN 

for the prediction of heat loss coefficient has an excellent reproducibility. 

(a) (b) 

Figure 10. Repeated experiments of (a) the MLFN-3 for the prediction of heat collection 

rate and (b) the GRNN for the prediction of heat loss coefficient. 
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3.4. Comparison with Conventional Methods 

According to conventional methods for the determination of heat collection rate and heat loss 

coefficient, technicians should accomplish a series of steps using the detection devices (Figure 11). 

The water-in-glass evacuated tube solar water heaters should be dismantled at first. However, for the 

determination for the in service heaters, the disassembly of the heater is highly inconvenient and will 

cause damage to instruments. What is worse, a completed conventional determination process requires 

at least 15 days. After a series of complicated determination processes, the heat collection rate and heat 

loss coefficient should be obtained by Equations (3) and (4), respectively: 

1 2 3( )a i
s

a H a t t a
q
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  
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     
(4)

where qs is the heat collection rate; H is the amount of solar radiation; ta is the ambient temperature;  

ti is the initial temperature of water in tank; S is the area of tubes and a1, a2 and a3 are the coefficients; 

Us is the heat loss coefficient according to the ISO 9459-2 [45]; w  is the water density; Cp,w is the 

specific heat of water; Vs is the heat water mass in the tank; tis is the initial temperature of water;  

tfs is the final temperature of water; tas(av) is the ambient average temperature; V is the volume of water; 

and   is the duration time of heat loss coefficient experiments.  

To revolutionize the determination method, the novel method we propose here can avoid the 

disassembly to the heaters and meanwhile save time. The determination process using our novel 

method is presented in Figure 12, showing that the independent variables in our study can be inputted 

into the ANNs after being obtained by “portable test instruments”. The precise predicted results of heat 

collection rate and heat loss coefficient can be obtained precisely from the output of the ANNs. The 

use of “portable test instruments” in combination with ANNs can save time and give highly precise 

predicted results. However, this new method was only suitable for water-in-glass evacuated tube solar 

water heaters from one Chinese company. The model here could be employed for the prediction of the 

heat collection rate under the conditions of the Chinese standard GB/T 19141 [23]. 

 
(a) 

Figure 11. Cont. 
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(b) 

Figure 11. Flow chart of the conventional method for determining (a) heat collection and 

(b) heat loss coefficient. 

 

Figure 12. Flow chart of the novel method using “portable test instruments” combined 

with ANNs for determining heat collection rate and heat loss coefficient. 

4. Conclusions 

Here, the best prediction models for heat collection rate and heat loss coefficient of water-in-glass 

evacuated tube solar water heaters are proposed after detailed model development and analysis. 
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Results show that the MLFN-3 has the best prediction results for heat collection rate and the GRNN 

has the best prediction for heat loss coefficient due to their low RMS errors, short training times, and 

high prediction accuracies. In practical applications, the determination of heat collection rate and heat 

loss coefficient can be undertaken outdoors using “portable test instruments”. Data of independent 

variables obtained by “portable test instruments” can be inputted into the ANNs and the precise 

predicted values of heat collection rate and heat loss coefficient can be obtained rapidly in the output 

of the models. Therefore, using our novel determination techniques with the combination of “portable 

test instruments” and ANNs can acquire the heat collection rate and heat loss coefficient easily and 

quickly. However, ANNs are developed totally based on the training of experimental data, which may 

neglect the inner principles and theories between the independent and dependent variables, which is 

what we call the “black box.” Although it is a major advantage of ANNs, it leads to difficulties in 

studying the exact causalities between the independent and dependent variables, which may also be 

hard for us to remove unnecessary noise when training. Future studies may find it difficult to optimize 

the design of assembly conditions of water-in-glass evacuated tube solar water heaters using ANN 

methods. Fortunately, with a large-scale experimental data like the large sample size in this study, 

noise can be eliminated with a proper training process, ensuring good predicted results. With the help 

of this study, the determinations of heat collection rate and heat loss coefficient no longer need to be 

undertaken in a laboratory after dismantling the solar water heater, which can avoid probable damage 

to related instruments and at the same time enormously reduce manpower, experimental time, and 

unnecessary operations. Further studies will be aimed at two explorations: (i) developing a robust 

software in both personal computer (PC) and mobile phone platforms, in order to assist the practical 

measurements using the novel method; and (ii) optimizing the assembly conditions of water-in-glass 

evacuated tube solar water heaters with higher heat collection rates and lower heat loss coefficients, 

using high-throughput screening based on ANNs. However, the developed models were only suitable 

for water-in-glass evacuated tube solar water heaters from one Chinese company. The model here 

cannot be used for the prediction of the heat collection rate under other conditions than the ones stated 

within Chinese standard GB/T 19141. 
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Abbreviations 

H: the amount of solar radiation, MJ/m2 

ta: the ambient temperature, °C 

ti: the initial temperature of water in tank, °C  

S: the area of tubes, m2 

USL: the heat loss coefficient according to GB/T 19141, W/(m3K) 

US: the heat loss coefficient to ISO 9459-2, W/K 

w : the water density, kg/m3 

Cp,w: the specific heat of water, kJ/(kg °C) 

Vs: the heat water mass in tank, kg 

tis: the initial temperature of water, °C  

tfs: the final temperature of water, °C 

tas(av): the ambient average temperature, °C 

V: the volume of water, m3 

 : the duration time of heat loss coefficient experiments, s 

qs: the heat collection rate, MJ/m2 

iZ : the predicted value, MJ/m2 or W/(m3K) 

iO : the actual value, MJ/m2 or W/(m3K) 

totn : the number of tested samples, no unit 

goodn : the number of tested samples, no unit 

a1, a2, a3: the regression coefficients, no unit 

SWH: solar water heater 

ANNs: artificial neural networks 

SVM: support vector machine 

MLFN: multilayer feed-forward neural network 

GRNN: general regression neural network  

RMS: root mean square 
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