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Abstract: This study was conducted to develop an artificial neural network (ANN)-based 

prediction model that can calculate the amount of cooling energy during the setback period 

of accommodation buildings. By comparing the amount of energy needed for diverse 

setback temperatures, the most energy-efficient optimal setback temperature could be 

found and applied in the thermal control logic. Three major processes that used the numerical 

simulation method were conducted for the development and optimization of an ANN 

model and for the testing of its prediction performance, respectively. First, the structure 

and learning method of the initial ANN model was determined to predict the amount of 

cooling energy consumption during the setback period. Then, the initial structure and learning 

methods of the ANN model were optimized using parametrical analysis to compare its 

prediction accuracy levels. Finally, the performance tests of the optimized model proved its 

prediction accuracy with the lower coefficient of variation of the root mean square errors 

(CVRMSEs) of the simulated results and the predicted results under generally accepted 

levels. In conclusion, the proposed ANN model proved its potential to be applied to the 

thermal control logic for setting up the most energy-efficient setback temperature. 
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1. Introduction 

With the period in which people spend their daily life in an indoor space having increased to 90%, 

the proper conditioning of the indoor environment quality (IEQ) has become a significant factor of the 

quality of life of the occupants [1]. The IEQ is associated with diverse components such as the thermal 

quality, light quality, air quality, and acoustic quality. In addition to the importance of providing the 

proper IEQ, these components are also deeply related to the building energy efficiency, environmental 

impact, and economic benefits. 

Thermal quality (TQ) is one of the key components of the creation of a proper IEQ. The indoor 

thermal quality is complexly dependent on various thermal factors such as the indoor temperature, 

humidity, mean radiant temperature, and air velocity. These factors are affected by the heat transfer 

between the indoor and outdoor spaces, and by the indoor heat generation. Heat transfer consists of 

heat conduction and convection through building envelopes and solar radiation. In addition, indoor 

heat is generated by the occupants, lighting fixtures, and equipment. Proper planning of buildings can 

effectively control the amount of heat transfer and indoor heat generation [2–4]. 

Moreover, the thermal quality and the energy efficiency of buildings are closely correlated with the 

operating strategy of thermal control systems. Proper operation of heating, ventilating, and air conditioning 

systems (HVACs) can provide comfortable temperature and humidity conditions, and can enhance 

energy efficiency, which would reduce CO2 generation that will decrease environmental damage [5]. 

Numerous studies have been conducted to propose a better control strategy for thermal systems. 

Among these efforts, artificial intelligence (AI), which is the study and design of intelligent agents that 

perceive their surrounding environment and take actions to maximize its chances of success, has been 

increasingly applied in the thermal control algorithm. AI can be successfully applied to the science and 

engineering of making intelligent machines. Thus, it can be defined as theories or methods that increase 

the potential of systems or logics to be used successfully based on their intelligent and smart works [1]. 

An artificial neural network (ANN) is a type of artificial intelligence. It is a computational model 

that uses the biological processes in the human brain [6]. Its advantage is that it does not require 

complex knowledge of system dynamics and can be successfully applied to non-linear systems or 

systems with unclear dynamics [1]. Based on the two major processes—(i) the feed-forward process 

for calculating the output from a series of inputs, and (ii) the back-propagation process for iterative 

self-learning—it was found that the predictive and adaptive controls of the systems are feasible. 

The superiority of the ANN-based models over the existing mathematical models, such as of the 

proportional-integral-derivative (PID) models or regression models, has been widely proven [7].  

The ANN model presented the more accurate prediction results for the heating and cooling loads [8–10] 

and energy consumption [11–17]. The ANN model successfully predicted the thermal comfort level as 

well as indoor temperature conditions [18–20]. In addition, after using the ANN model in the building 

thermal controls, the indoor thermal environment was more comfortably conditioned based on the 
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reduced overcooling and overheating, and the amount of energy consumption of the heating and 

cooling systems was significantly reduced [20–32]. 

Similar to other types of buildings, the thermal environment in accommodation buildings and its 

controls also need to be prudently managed to provide thermal comfort to the occupants and to 

improve the energy efficiency of systems. Despite these similar requirements, hotel rooms have two 

distinctive features. First, their indoor space is generally unoccupied at daytime and occupied at 

nighttime. Thus, thermal comfort is not an important factor at daytime, when the room is empty. 

Second, energy efficiency may not be among the occupant’s concerns. Normally, the occupant pays 

the designated lodging charge without an extra fee for indoor thermal conditioning. The occupant may 

operate the heating and cooling systems in excess of their required degree. For example, general hotel 

users do not recognize the necessity of the setback application or the proper setback temperature of 

heating and cooling systems. 

Thus, an active management process is required for the proper operation of thermal control systems 

in accommodation. The optimal setback temperature for heating and cooling systems needs to be 

considered in the expert system for improving energy efficiency. From this aspect, this study aimed at 

proposing an artificial neural network (ANN) model that can predict the amount of cooling energy 

needed during the setback period for various setback temperatures. The proposed ANN model 

calculates the amount of cooling energy during the unoccupied period for the diverse degrees of 

setback temperature of the cooling system. The optimal setback temperature, which consumed the least 

amount of cooling energy, can be applied as the most energy-efficient strategy. 

The proposed ANN model in this study will be applied to the control logic which will be developed 

in the future study. With the use of the optimal setback temperature in the control logic, energy 

efficiency in accommodation buildings is expected to be improved. 

2. Development of a Prediction Model 

A logic framework for indoor thermal control systems, which can deliver indoor thermal comfort 

and building energy efficiency in a synthetic manner, has been proposed by Moon and Kim [1].  

For improving the thermal comfort and building energy efficiency, the set-point and setback 

temperatures were mentioned to be optimally determined using the prediction models such as ANN. 

Three major processes, as shown in Figure 1, were performed in this study for the development of 

an ANN-based prediction model. The first process involved the organizing of the initial model.  

In this process, the input, hidden and output neurons, initial number of hidden layers, and learning 

methods were determined. The second process optimizes the initial values of the ANN model such as 

the number of hidden layers and the learning methods to produce more stable and accurate outputs.  

The third step evaluates the prediction performance of the optimized ANN model. The accuracy of the 

prediction results of the ANN model was analyzed by comparing the predicted values with the 

numerically simulated values. The proven prediction accuracy of the ANN model showed its potential 

to be successfully applied to the control logic. 
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Figure 1. Development process of the prediction model. 

2.1. Development of the Initial Model  

The composition of the initial ANN model is shown in Figure 2 and summarized in Table 1. 

MATLAB (Matrix Laboratory) [30] and its neural network toolbox were used to develop the initial 

ANN model. The input variables for the prediction of the output variable, which is the amount of 

cooling energy consumption during the setback period (ENSETBACK, kWh), were composed of the setback 

temperature (TEMPSETBACK, °C), outdoor air temperature (TEMPOUT, °C), average outdoor air temperature 

from an hour earlier to the last control cycle (TEMPOUT, AVE, nStep-60~nStep-1, °C), average outdoor air 

temperature from two hours earlier to an hour earlier (TEMPOUT, AVE, nStep-120~nStep-61, °C), average 

outdoor air temperature from three hours earlier to two hours earlier (TEMPOUT, AVE, nStep-180~nStep-121, °C), 

average outdoor air temperature from four hours earlier to three hours earlier  

(TEMPOUT, AVE, nStep-240~nStep-181, °C), average outdoor air temperature from five hours earlier to four hours 

earlier (TEMPOUT, AVE, nStep-300~nStep-241, °C), average outdoor air temperature from six hours earlier to 

five hours earlier (TEMPOUT, AVE, nStep-360~nStep-301, °C), and daytime setback period (ENSETBACK, minutes). 

 

Figure 2. Structure of the initial ANN model. 
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Table 1. Composition of the initial prediction model. 

Parameters Components and values 

Structure 

Input layer 

Number of neurons: 9 
i) TEMPSETBACK 
ii) TEMPOUT, nStep 

iii) TEMPOUT, AVE, nStep-60~nStep-1 
iv) TEMPOUT, AVE, nStep-120~nStep-61 

v) TEMPOUT, AVE, nStep-180~nStep-121 
vi) TEMPOUT, AVE, nStep-240~nStep-181 
vii) TEMPOUT, AVE, nStep-300~nStep-241 
viii) TEMPOUT, AVE, nStep-360~nStep-301 

ix) PERIODSETBACK 

Hidden layer 
Number of neurons: 19 using 

Nh = 2Ni + 1 [11,33] 
Number of hidden Layer: 1 

Output layer 
Number of neuron: 1 

i) ENSETBACK 

Transfer function 
Hidden neurons Tangent sigmoid 

Output neurons Pure linear 

Training method 

Goal 0.01 kWh (mean square error) 

Epoch 1,000 times 

Learning rate 0.6 [34] 

Moment 0.4 [34] 

Algorithm Levenberg-marquardt [1,35–37] 

Number of data sets 
196 using 

Nd = (Nh – (Ni + No)/2)2 [12] 

Data management technique Sliding-window method 

The relationship between the setback temperature and the amount of energy consumption, as well as 

between the setback period and the amount of energy consumption, had been proven in the previous 

study [38]. The current and past outdoor temperatures also showed a significant relationship with the 

amount of energy consumption for thermal conditioning in buildings. The input values for each neuron 

were normalized between 0 and 1 using Equation 1. The normalized values were represented as  

23 to 40 °C for TEMPSETBACK, −20 to 40 °C for TEMPOUT and TEMPAVE, and 0 to 10 hours for 

PERIODSETBACK. 

(VALACT−VALMIN) / (VALMAX−VALMIN) (1)

The amount of cooling energy consumption (ENSETBACK) from the ANN model indicated the 

summation of the cooling energy during the setback period and the cooling energy needed to restore 

the indoor temperature to the normal set-point temperature. For example, when the setback 

temperature is 30 °C during the setback period and the normal set-point temperature is 23 °C, the 

cooling system will condition the indoor temperature to keep it at 30 °C during the setback period.  

To achieve this, a certain amount of cooling energy will be consumed. Moreover, when the setback 

period ends the set-point temperature returns to normal. For a certain period, the cooling system needs 
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to work to restore the indoor temperature to 23 °C. This is the cooling energy required to normalize the 

indoor temperature. Since the cooling energy for the restoration was increased when the setback 

temperature was higher, the optimal setback temperature must be determined to reduce the overall 

cooling energy consumption. 

The number of hidden layers was initially determined as 1, and the number of hidden neurons,  

as 19, using the equation in Table 1. For the transfer functions, tangent-sigmoid and pure linear 

functions were used for the hidden and output neurons, respectively. In addition, a 0.0 minute goal, 

1000 times epoch, 0.6 learning rate, 0.4 moment, and the Levenberg-Marquardt algorithm were used 

for the model training. The optimal number of hidden layers, learning rate, and moment were found in 

the optimization process. 

A total of 196 data sets for initial training were collected based on the equation in Table 1, and the 

sliding-window method was used to manage the training data sets. In addition, 100 data sets for model 

optimization and 100 data sets for performance evaluation were prepared. Data sets for model training 

and evaluation were numerically collected incorporating and MATLAB (Matrix Laboratory) software [39] 

and TRNSYS (Transient Systems Simulation) [40]. 

Nine identical modules were modeled for data collection, and the data sets were collected from a 

module at their center, as shown in Figure 3. Figure 4 shows the modeling result of the test building. 

The features of the test location, dimensions, envelope insulation, infiltration rate, internal gain, and 

applied system are summarized in Table 2. The cooling system in the 56a-TRNFlow component was 

not confined to have a specific type. Instead, the method and capacity of the heat removal from the 

space were determined as convective and 8901 kJ/hr, respectively. The roles of seven types of 

components of TRNSYS software are summarized in Table 3.  

 

Figure 3. Test building (unit: mm). 
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Figure 4. Composition of the simulation model. 

Table 2. Features of the test building. 

Components Contents 

Site 

Location and 
weather data 

Seoul, South Kroea (latitude: 37.56°N, longitude: 126.98°E) and TMY2 

Climate 
conditions 

Hot and humid in summer: 23.5 °C of air temperature and 72.7% of 
relative humidity from June to September in average 

Cold in winter: 1.7 °C of air temperature and 59.1% of relative humidity 
from November to February in average 

Dimension 

Module 
26.64 m2 

3.6 m wide × 7.4 m deep × 2.7 m high 

Window 
1.8 m2 

2.0 m wide × 0.9 m high 

Envelope 
insulation 
[m2 K /W] 

[41] 

Exterior walls 2.801 

Interior walls, 
roof and floor 

0.492 

Windows 0.353 

Infiltration rate [41] 0.7 ACH 

Internal gain 
1 occupant with seated, light work, typing 

1 computer and printer 
5 W/m2 lighting fixtures 

Applied system [42] Convective cooling: 8901 kJ/hr heat removal 
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Table 3. Roles of the TRNSYS components. 

Components Roles 

Type9c 
Reading the TMY2 weather file 

Transferring the weather data to the Type16a, Type33e, and Type56a-TRNFlow 

Type16a 
Calculating the amount of solar radiation on the test building surface 

Transferring the data to Type69b 

Tpe69b 
Calculating the sky temperature 

Transferring the data to the Type56a-TRNFlow 

Type33e 
Calculating the outdoor dew-point temperature 

Transferring the data to Type69b 

Type56a-TRNFlow 
Calculating the indoor temperature of the test building 

Transferring the data to Type 155 

Type155 
Connecting the MATBAL and ANN models 

Producing training data sets 
Type65d-2 Producing the output file 

Data sets for training, optimization, and evaluation were collected during the cooling season from 

June 01 to September 30. Different degrees of TEMPSETBACK from 23 °C to 40 °C were applied to 

obtain the ENSETBACK. The PERIODSETBACK was fixed 10 hours assuming the unoccupied period was 

from 8:00 to 18:00. Thus, a variety of ENSETBACK according to the change of TEMPSETBACK was 

collected for model training, optimization, and evaluation. Examples of data sets, which are composed 

of a series of input variables and one output variable, are presented in Table 4. 

Table 4. Composition of the training data sets. 

Data sets 1 2 3 4 5 

Input components (actual value in 

parenthesis, °C for TEMP and 

minutes for PERIOD) 

TEMPSETBACK 
0.00 

(23.00) 

0.00 

(23.00) 

0.00 

(23.00) 

0.00 

(23.00) 

0.00 

(23.00) 

TEMPOUT, nStep 
0.65 

(19.07) 

0.67 

(20.15) 

0.66 

(19.65) 

0.70 

(21.78) 

0.68 

(20.72) 

TEMPOUT, AVE, nStep-60~nStep-1 
0.64 

(18.29) 

0.65 

(19.28) 

0.65 

(19.10) 

0.68 

(21.01) 

0.66 

(19.70) 

TEMPOUT, AVE, nStep-120~nStep-61 
0.64 

(18.17) 

0.63 

(17.54) 

0.63 

(18.04) 

0.66 

(19.47) 

0.63 

(17.70) 

TEMPOUT, AVE, nStep-180~nStep-121 
0.65 

(18.89) 

0.60 

(15.83) 

0.62 

(16.99) 

0.63 

(17.96) 

0.60 

(15.73) 

TEMPOUT, AVE, nStep-240~nStep-181 
0.66 

(19.62) 

0.59 

(15.51) 

0.61 

(16.58) 

0.63 

(17.90) 

0.59 

(15.19) 

TEMPOUT, AVE, nStep-300~nStep-241 
0.67 

(20.34) 

0.60 

(15.97) 

0.61 

(16.54) 

0.64 

(18.66) 

0.59 

(15.49) 

TEMPOUT, AVE, nStep-360~nStep-301 
0.68 

(21.06) 

0.61 

(16.45) 

0.61 

(16.53) 

0.66 

(19.43) 

0.60 

(15.82) 

PERIODSETBACK 
1.00 

(600) 

1.00 

(600) 

1.00 

(600) 

1.00 

(600) 

1.00 

(600) 

Output component, minutes  

(actual value in parenthesis, kWh) 
ENSETBACK 

126.00 

(5.19) 

192.00 

(7.91) 

157.00 

(6.47) 

146.00 

(6.02) 

172.00 

(7.09) 
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2.2. Optimization of the Initial Model  

To produce more accurate and stable prediction results from the prediction model, the structure and 

the training methods of the initial ANN model were optimized using a parametrical optimization 

process based on the method used in the previous study [2,34,43]. 

The numbers of hidden learning rates and moments were sequentially optimized. When the first 

component (i.e., the number of hidden layers) was used with a target variable to be optimized, the 

other components (i.e., the learning rate and moment) were fixed as the initial values. After the optimal 

value of the first component was determined, the next component (i.e., the learning rate) was 

optimized. In this case, the first component (i.e., the number of hidden layers) was fixed as the optimal 

value, and the last component (i.e., the moment) was fixed as the initial value. This process was 

conducted until the optimal value of the last component (i.e., the moment) was found. The parametrical 

values used to optimize each component are summarized in Table 5. 

One hundred data sets were collected for the ANN model optimization from the identical simulation 

model explained in Section 2.1. The coefficient of variation of the root mean square errors 

(CVRMSEs) (Equation 2) of the predicted values (Si) and the simulated values (Mi) were calculated 

for each parametrical value. The value that produced the smallest CVRMSE was determined as the 

optimal value of each component. 

Table 5. Parametrically tested values for optimizing the ANN components. 

Components to be optimized Parametrical values to be tested 

Number of hidden layer 1 2 3 4 5 6 7 8 9 10 
Learning rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Moment 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

CVRMSE
∑ Mi Si

n
/Mavr 100 (2) 

2.3. Performance Evaluation of the Optimized ANN Model 

The prediction performance of the optimized ANN model was tested using the 100 data sets. 

Through the comparison of the CVRMSEs of the predicted (Si) and simulated (Mi) amounts of cooling 

energy, the prediction accuracy and stability of the developed ANN model was validated. This validity 

will support the applicability of the proposed ANN model to the thermal control logic for improving 

building energy efficiency. 

3. Results Analysis 

3.1. Initial Model and Optimization 

The performance of the initial model was statistically investigated using the analysis of variance 

(ANOVA) test and the mean squared errors (MSE) between the collected data from simulation and the 

predicted data from the ANN model for the amount of heat removal during the unoccupied period.  

For 100 cases, the R2 between simulated values and predicted values was 0.4886 as shown in Figure 5 
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and summarized in Table 6, and the MSE was 0.768 kWh2. Based on this initial model, the 

optimization process was conducted for more accurate and stable prediction. 

 

Figure 5. Relationship between the simulated values and the predicted values for the 

amount of heat removal during the unoccupied period. 

Table 6. ANOVA test result between the simulated values and the predicted values. 

Independent 
variables 

Unstandardized 
coefficients t Significance. 

ANOVA 

B Std. error R2 F(1, 54) Significance. 

Predicted Values 0.658 0.068 9.677 <0.001 0.489 93.642 <0.001 

The comparison results for the prediction accuracy of the ANN models, which had different values 

for the structure and learning method, were compared for determining optimal ANN model as shown 

in Figures 6–8. The accuracy was compared with the difference between the predicted values from the 

ANN model (Si) and the simulated values (Mi). 

In the first step for finding the optimal number of hidden layers, the least CVRMSE between Si and 

Mi was produced with three hidden layers, as presented in Figure 6. At this step, the learning rate and 

moment were fixed as initially determined at 0.6 and 0.4, respectively. The CVRMSE (%) ranged from 

27.72% to 76.02% for the one to 10 hidden layers. The least value, when the ANN model used three 

hidden layers, was 27.72%, whereas the initial model with one hidden layer produced a much higher 

value: 41.14%. Thus, the modified ANN model was changed to have three hidden layers. 

In the second step for determining the optimal value of the learning rate, the learning rate was 

parametrically changed from 0.1 to 1.0, as shown in Figure 7. The number of hidden layers was set as 
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three, as found in the previous step, and the moment was fixed at its initial value of 0.4. The CVRMSE 

values ranged from 27.72% to 42.27%. The lowest value was presented when the initial value of the 

learning rate (0.6) was applied. Thus, the learning rate of the ANN model was not revised to 0.6. 

The third step was conducted to find the optimal value of the moment. Identical to the previous step, 

the moment was parametrically changed from 0.1 to 1.0, as shown in Figure 8. At this step, the number 

of hidden layers and the learning rate were fixed at the optimal values of 3 and 0.6, respectively. The 

CVRMSE ranged from 22.77% to 43.91%, and the lowest value was produced from a model with a 

moment of 0.2. The amount of MBE was 22.77%. Thus, the optimal model was determined to have a 

moment of 0.2. Based on the three steps conducted for finding the optimal structure and learning 

methods of the ANN, it was decided that the optimal ANN model has three hidden layers, a 0.6 

learning rate, and a moment of 0.2. 

 

Figure 6. Mean bias error (MBE) by a different number of hidden layers. 

 

Figure 7. MBE by a different learning rate. 
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Figure 8. MBE by a different moment. 

3.2. Performance of the Optimized Model 

The performance of the optimized ANN model was evaluated according to its prediction accuracy. 

For the evaluation, data sets from the simulation model explained in Section 2.1 were required to be 

checked. Figure 9 shows the relationship between the setback temperature and the amount of heat 

removal by the cooling system. As the higher setback temperature was applied during the unoccupied 

period, the amount of heat removal was decreased. When the setback temperatures were over 30 °C, 

the amounts of heat removal were all close to 0.0 kWh, which means the indoor temperature did not 

reach the degree requiring cooling operation. Thus, for the performance evaluation of the ANN model, the 

data sets were collected for cases when the setback temperatures between 23 °C and 30 °C were applied. 

 

Figure 9. Relationship between the setback temperature and the amount of heat removal. 
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The amount of heat removal was vastly different for the same setback temperature. For example, the 

amount varied from 0 to around 5 kWh for the same 20 °C setback temperature. This phenomenon was 

due to the different outdoor temperature conditions. For a day when the current and past outdoor 

temperatures were higher, a larger amount of heat removal was required. Thus, the outdoor 

temperature conditions of the current control cycle and the past cycles were used as input variables. 

The simulated data (Mi) were compared with the predicted data from the ANN model (Si).  

As shown in Figure 10, the predicted data from the ANN model (red-solid-line) had a pattern similar to 

that of the simulated data from the simulation model (blue-dot-line). The y-value of the chart refers to 

the amount of cooling energy during the setback period. 

 

Figure 10. Comparison of the simulated results with the prediction results. 

For the 100 cases, the average difference between the simulated and predicted results was 0.57 kWh, 

which was 17.07% of the average cooling energy of the simulation. The difference ranged from 2.47 kWh 
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that can calculate the amount of cooling energy needed during the setback period of accommodation 
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(1) The initial ANN model for predicting the amount of cooling energy needed was developed to 

have nine input neurons, which were strongly related to the output neuron, 19 hidden neurons, one 

hidden layer, and one output neuron. In addition, a 0.6 learning rate and a moment of 0.4 were used for 

the learning methods; 

(2) Through the optimization process using the parametrical analysis of the prediction performance 

of the initial ANN model, the model was modified to have three hidden layers, a 0.6 learning rate, and 

a moment of 0.2, which presented the lowest CVRMSE value between the simulated results (Mi) and 

the predicted results (Si); 

(3) The performance tests of the optimized ANN model showed that it presented a lower CVRMSE 

value under the generally accepted levels. Thus, the prediction accuracy of the developed ANN model 

was proven, so when the model is applied to the thermal control logic, the most energy-efficient 

setback temperature is expected to be used. 

From the development and evaluation process, the optimized ANN model in this study presented its 

prediction accuracy and potentials applicable to the control logic. A further study is required for 

developing the thermal control logic after applying the proposed ANN model and for testing its 

performance. The performance tests need to be conducted by applying the model to real buildings and 

to the numerical computer simulation method. Using the extensive data analysis from the real building 

and computer simulation, the stability of the model such as an over-fitting problem will be thoroughly 

investigated, and based on which, the applicability of the proposed model will be supported. In 

addition, the ANN model and the thermal control logic will be developed to cover the heating system. 

After the application of the predictive and adaptive control logics, the indoor thermal environment of 

accommodation buildings is expected to be conditioned more energy-efficiently. 
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Nomenclature: 

TEMPSETBACK setback temperature, °C 

TEMPOUT, nStep outdoor air temperature in the current control cycle, °C 

TEMPOUT, AVE, nStep-60~nStep-1 average outdoor air temperature from nStep-60 to nStep-1, °C 

TEMPOUT, AVE, nStep-120~nStep-61 average outdoor air temperature from nStep-120 to nStep-61, °C 

TEMPOUT, AVE, nStep-180~nStep-121 average outdoor air temperature from nStep-180 to nStep-121, °C 

TEMPOUT, AVE, nStep-240~nStep-181 average outdoor air temperature from nStep-240 to nStep-181, °C 

TEMPOUT, AVE, nStep-300~nStep-241 average outdoor air temperature from nStep-300 to nStep-241, °C 

TEMPOUT, AVE, nStep-360~nStep-301 average outdoor air temperature from nStep-360 to nStep-301, °C 

PERIODSETBACK setback period during the daytime, minutes 

ENSETBACK 
predicted amount of cooling energy consumption during the setback 

period, kWh 

Ni number of neurons in the input layer 

Nh number of neurons in the hidden layer 

No number of neurons in the output layer 

VALACT actual value of each input variable 

VALMIN minimal value of each input variable 

VALMAX maximal value of each input variable 

Si value predicted by the ANN model 

Mi numerically simulated value 

MAVE average of Mi 

n number of cases 
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