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Abstract: Accurate state of charge (SOC) estimation is of great significance for a  

lithium-ion battery to ensure its safe operation and to prevent it from over-charging or 

over-discharging. However, it is difficult to get an accurate value of SOC since it is an 

inner sate of a battery cell, which cannot be directly measured. This paper presents an 

Adaptive Cubature Kalman filter (ACKF)-based SOC estimation algorithm for lithium-ion 

batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the  

second-order resistor-capacitor (RC) equivalent circuit and parameters of the battery model 

are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature 

Kalman filter for battery SOC estimation is introduced and the estimated process is 

presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST) 

and New European Driving Cycle (NEDC) are applied to evaluate the performance of the 

proposed method by comparing with the traditional extended Kalman filter (EKF) and 

cubature Kalman filter (CKF) algorithms. Experimental results show that the ACKF 

algorithm has better performance in terms of SOC estimation accuracy, convergence to 

different initial SOC errors and robustness against voltage measurement noise as compared 

with the traditional EKF and CKF algorithms. 
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1. Introduction 

As energy prices soar and environment pollution increases, electric vehicles (EVs) have become 

greatly considered in the past few years. Lithium-ion battery is currently considered to be the 

development trend of traction battery and has been widely used in EVs because of its high power and 

energy density, high voltage, pollution-free, no memory effect, long cycle life and low self-discharge. 

A battery management system (BMS) is essential for the lithium-ion battery to maximize its 

performance, ensure its safety and extend its life. Estimation for battery state of charge (SOC) is one of 

the most key techniques in the BMS, since SOC indicates the remaining capacity in the battery, which 

is helpful to dispel the diver’s range anxiety, predict the battery’s peak power capability and improve 

the battery’s safety by preventing it from possible over-charging or over-discharging. Nevertheless,  

it is difficult to accurately estimate SOC, because SOC is an inner state of each battery cell that cannot 

be directly measured and is greatly influenced by many factors, including ambient temperature, 

discharging current and battery aging. Therefore, the battery SOC has to be estimated with specific 

estimation techniques according to measured battery parameters, such as voltage, current and temperature. 

Different approaches have been proposed to predict the battery SOC with the development of EVs. 

The existing SOC estimation algorithms can be divided into two categories, namely non-model-based 

type and model-based type. The former is typically based on Ampere-hour (Ah) or Coulomb  

counting [1,2], open-circuit voltage (OCV) [3–5], electrochemical impedance spectroscopy (EIS) [6,7], 

artificial neural networks (ANNs) [8–11] and fuzzy-logic (FL) [12,13]. The Ah counting method 

acquires the SOC by integrating the current over the time. This method is simple and can be easily 

implemented on-board, therefore it has been widely used in practice. However, as an open-loop 

estimation algorithm, Ah counting cannot deal with problems caused by measurement noise and 

inaccurate initial SOC. The OCV-based method obtains the SOC based on an OCV vs. SOC 

relationship. Unfortunately, this method is inappropriate for online applications since the battery has to 

be left in open circuit mode for a long time to reach the steady-state before measuring the OCV. 

Similarly, the EIS-based method estimates the SOC according to internal impedance of the battery and 

it is only suitable for offline applications. The ANNs- and FL-based methods predict the SOC 

according to the nonlinear relationship between the battery SOC and its influencing factors obtained by 

the trained black-box battery models. They do not require detailed knowledge of the battery systems so 

they can be applied to any battery type. Besides, these methods have excellent performance if the 

training data is sufficient to cover the total loading conditions. Nevertheless, it is time-consuming and 

nearly impossible to collect training data covering all of the battery loading conditions. 

In order to improve the accuracy of SOC estimation, battery model-based and closed-loop 

estimation methods have been further developed. Despite requiring a higher computational cost than 

the Ah method, these methods have merits in terms of self-correcting, online computing and 

availability of the dynamic SOC estimation error range. Thus, they are increasingly popular and more 
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suitable for real-time application than the other types of SOC estimation methods. A famous and 

widely used method is the Kalman filter (KF)-based [14–36] algorithm, which was originally 

developed to estimate state for linear systems. However, the lithium-ion battery is a strong nonlinear 

and time-variable system. Thus, modified KF algorithms have to be used in order to extend the 

application of KF in the nonlinear battery systems. Two commonly used types are extended Kalman 

filter (EKF) [15–28] and unscented Kalman filter (UKF) [29–36]. The EKF transforms a nonlinear 

system into a linear system by linearizing the nonlinear function on the basis of the first-order Taylor 

series expansion. However, the linearizing process inevitably causes large linearization error. Besides 

complicated computation, the Jacobian matrix may lead to the instability of the filter and inaccurate 

estimation for highly nonlinear battery systems. In addition, the case will be severer when more 

complicated OCV-SOC relationships are used and it increases the computational burden of the 

hardware. Unlike the EKF, the UKF introduces an unscented transformation to approximate the state 

distribution through a set of sample points, called sigma points, which capture the mean and 

covariance of the state distribution. It has been demonstrated that UKF has better performance than 

EKF in terms of accuracy and robustness [37,38]. Furthermore, UKF does not need to calculate the 

Jacobian matrix online. Unfortunately, EKF and UKF both suffer from divergence or the curse of 

dimensionality or both [39]. 

In 2009, a new nonlinear filter, called cubature Kalman filter (CKF), for high-dimensional state 

estimation was proposed by Arasaratnam and Haykin [39]. Based on the radial-spherical cubature rule, 

the CKF uses a set of 2n points, where n represents the state-vector dimension, to capture the mean and 

covariance of the states of a nonlinear system with additive Gaussian noise. It is considered to be more 

efficient and stable than the UKF [39–41]. The CKF has been successfully applied in many fields, such 

as mobile-station locating [42], moving-target tracking [43] and spacecraft attitude estimation [44]. 

This paper focuses on the application of the CKF in battery SOC estimation. An adaptive rule for 

the updating of the process and measurement noise covariance is presented to improve the algorithm 

performance. Two typical driving cycles, including the Dynamic Stress Test (DST) and New European 

Driving Cycle (NEDC) are applied to assess the performance of the proposed method by comparing 

with the standard CKF method. The assessment includes estimation accuracy and robustness against 

measurement noise. 

The remainder of this paper is organized as follows. In Section 2, the experimental setup for data 

acquiring and processing is described. Section 3 derives the battery’s state–space equations based on 

the second-order RC equivalent circuit model, and determines parameters of the battery model using 

the least-square method. In Section 4, the principle of standard cubature Kalman filter and the adaptive 

rule for the updating of the process and measurement covariances are introduced in detail. In addition, 

the implementation of adaptive CKF-based SOC estimation algorithm is presented. The experimental 

results are discussed in Section 5, and Section 6 makes conclusions of the paper. 

2. Experimental Setup 

The schematic diagram of the battery test bench is shown in Figure 1. It consists of tested  

lithium-ion battery cells, a programmable power supply for cell charging (ITECH IT6952A, ITECH 

Electronics, Nanjing, China), a programmable electric load for cell discharging (ITECH IT8510, 
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ITECH Electronics, Nanjing, China), a control board for data acquisition, and a host computer for 

monitoring and processing experimental data. The IT6952A power supply can charge the battery cell 

with a maximum current of 25 A at a maximum voltage of 60 V, while the IT8510 electric load is able 

to provide the maximum discharge current of 20 A with the maximum voltage of 120 V. The voltage 

setup accuracy of the IT6952A power supply is within 0.03% + 5 mV, while the error of current sensor 

of the IT8510 electric load is within 0.1%. Battery voltage and current are measured with a sampling 

rate of 10 Hz and transmitted to the host computer every second through RS485 ports. MATLAB 

R2010a software (MathWorks, Natick, MA, USA) installed in the host computer is used for data 

processing, such as battery parameters determination and SOC prediction. It is well known that the 

performance of lithium-ion battery is highly related with the cathode materials, such as LiFePO4, 

LiCoO2, LiMn2O4 and LiNixCoyMnzO2, where x + y + z = 1. Compared with other materials, layered 

transition-metal oxide LiNixCoyMnzO2 has the merits of high energy density, excellent consistency, 

mild thermal stability, low cost, and low toxicity [45]. Thus, the Samsung LiNixCoyMnzO2 ICR18650-22F 

(Samsung SDI, Seoul, Korea) battery is used in the test. The ICR18650-22F lithium-ion battery has a 

nominal voltage of 3.6 V and a nominal capacity of 2.2 Ah. 

 

Figure 1. Configuration of the battery test bench. 

3. Battery Modeling and Parameters Identification 

3.1. Battery Equivalent Circuit Model 

The Kalman filter was developed based on state-space equations of the system and its accuracy is 

highly dependent on the accuracy of the system model. Thus, a battery model has to be constructed to 

estimate the SOC using Kalman filter-based approach. There are two basic requirements on a battery 

model for SOC estimation. Firstly, it can well simulate the dynamic behaviors of the battery. Secondly, 

the state-space equations can be easily derived according to the model. A commonly used model that 

well meets the above two requirements is the equivalent circuit model (ECM) with lumped  

parameters [46]. The most common ECM is comprised of resistor and parallel resistor-capacitor (RC) 

network(s) connected in series [47]. Although adding more RC networks is a benefit for improving the 

model accuracy, it leads to the increasing of computation complexity [48]. Accordingly, a tradeoff has 
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to be made between the model accuracy and the computational complexity. Herein, the second-order 

RC equivalent circuit model is selected to meet the requirement of tradeoff. As shown in Figure 2, the 

second-order RC battery model consists of an open-circuit voltage Uoc (SOC), a resistor Ro, and two 

parallel RC networks connected in series. The resistor Ro indicates the ohmic resistance caused by the 

accumulation and dissipation of charge in the electrical double-layer, Rp1 and Cp1 are the activation 

polarization resistance and capacitance, respectively, while Rp2 and Cp2 separately are the concentration 

polarization resistance and capacitance. 

 

Figure 2. Schematic diagram of the battery equivalent circuit model. 

3.2. State–Space Equations 

The differential equations of the second-order RC equivalent circuit model shown in Figure 2 can be 

derived as: 
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1 2( )t oc p p o bU U SOC U U R I v      (2)

where Qn is the battery nominal capacity; Up1 and Up2 are the terminal voltage of Cp1 and Cp2, 

respectively; Ut and It are the battery terminal voltage and current, respectively; Uoc represents the 

open circuit voltage (OCV), which is varied with change of SOC value; w1, w2 and w3 are the process 

noise for SOC, Up1 and Up2, respectively; and v represents the measurement noise. 

By selecting x = [SOC, Up1, Up2]T as the state vector, and considering the current It and voltage Ut as 

the input and output variables respectively, the discrete-time state equations of the second-order RC 

battery model can be obtained as: 

1( , )k k k kx f x u w   (3)

( , )k k k ky h x u v   (4)

where xk represents the immeasurable state vector at time step k; uk (=It,k) stands for the input vector;  

yk (=Ut,k) is the observed output; vk (=[v1,k v2,k v3,k]T) and wk are separately the process and measurement 

noises, which are both uncorrelated zero-mean Gaussian white sequences; f (·) and h (·) indicate the 
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process and measurement functions, respectively. Generally, f (·) is linear while h (·) is nonlinear due 

to the nonlinear relationship between the OCV and SOC, which will be illustrated in Section 3.3.  

3.3. Parameters Identification with Forgetting Factor Least-Squares Algorithm 

As shown in Figure 2, parameters needed to be determined include the OCV-SOC equation, Ro, Rp1, 

Cp1, Rp2 and Cp2. In order to acquire the data used to determine the OCV-SOC relationship, a sequence 

of discharging experiments were carried out. The measured data and fitted curves using the sixth-order 

polynomial, shown in Equation (5) [49], are shown in Figure 3. It is clear that the fitted equation can 

well simulate the nonlinear relationship between OCV and SOC. 

6 5 4

3 2

14.7958 36.6148 29.2355

6.2817 1.6476 1.2866 3.4049

OCV SOC SOC SOC

SOC SOC SOC

      

     
 (5)

 

Figure 3. Measured and fitted OCV (open circuit voltage) vs. SOC (state of charge). 

Other parameters consisting of {Ro, Rp1, Cp1, Rp2, Cp2} can be determined using the least-square 

method with the following steps: 

(i) Calculation of transfer function 

By selecting x = It as the input and y = Uoc − Ut as the output, the transfer function of the battery 

model shown in Figure1 can be obtianed as: 
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Assuming τ1=Rp1Cp1 and τ2=Rp2Cp2 yields 
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(ii) Discretization 

Using the bilinear transform rule (
1

1

2 1

1

z
s

T z









, where T is the sample time) [50], the transfer 

function in Equation (7) can be discretized as: 
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where b0 b1, b2, a1 and a2 are undetermined coefficients. 

Then, the time−domain difference equation of Equation can be expressed as: 

1 2 0 1 2( ) ( 1) ( 2) ( ) ( 1) ( 2)y k a y k a y k b x k b x k b x k           (9)

(iii) Resolving 

According to the forgetting factor least−squares algorithm, the parameter vector of the battery model 

can be resolved as follows: 
1θ (Ψ Ψ) ΨT Y  (10)

where θ = [a1, a2, b0, b1, b2]; Y = [λn−3y(3), λn−4y(4), …, y(n)]T is the output sequence, where n is the 

number of sample data and λ (0<λ<1) is the forgetting factor [51]; Ψ = [Ψ1, Ψ2, …, Ψn−2] is the regress 

matrix in which Ψk = λn−2−k[−y(k+2), −y(k+1), x(k+2), x(k+1), x(k)]T. 

(iv) Parameters calculation 

Using the inverse bilinear transform rule ( 1 2 /

2 /

T s
z

T s
 



) [50], the discrete transfer function in 

Equation (8) can be transformed as: 
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By comparing Equations (7) and (11), it can be derived that: 
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By combining of Equations (12)–(16), τ1 = Rp1Cp1 and τ2 = Rp2Cp2, parameters {Ro, Rp1, Cp1, Rp2, Cp2} 

of the battery model can be determined. Herein, sample data collected from DST cycles are applied to 

identify the model parameters. The sample data are shown in Figure 4 and the identified parameters are 

shown in Table 1. 
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Table 1. Identified parameters of the battery model. 

Parameters Ro Rp1 Cp1 Rp2 Cp2 
Values 0.0380 Ω 0.0268 Ω 1125 F 0.0129 Ω 20701 F 

 

Figure 4. Sample data under DST (Dynamic Stress Test) cycles: (a) current; (b) voltage; (c) SOC. 

3.4. Model Validation 

In order to assess the accuracy of the parameter identification, the measured and estimated battery 

voltages are compared in Figure 5. A locally enlarged portion of the first three driving cycles is shown 

in Figure 6a to show more details, and the corresponding voltage error is shown in Figure 6b. It can be 

seen that the maximum and mean relative errors are about 1.918% and 0.206%, respectively. 

Therefore, the battery model can well simulate the dynamic voltage behaviors of the battery. It is 

worth mentioning that online parameter estimation is helpful to improve the model accuracy since the 

fact that battery’s parameters are related to factors, such as the ambient temperature, operating current 

and cycling times. However, it is beyond the scope of this paper. 
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Figure 5. Measured and estimated voltage under DST cycles. 

 

Figure 6. Voltage profiles in the first three DST cycles: (a) voltage; (b) voltage error. 

4. Adaptive Cubature Kalman Filter for SOC Estimation 

The cubature Kalman filter (CKF) was first proposed by Arasaratnam and Haykin in 2009 [39]. It is 

based on the third-degree spherical-radial cubature rule and uses a set of points to approximate the 

mean and covariance of the states of a nonlinear system with additive Gaussian noise. The CKF is 

considered to be more accurate and stable in state estimation than the UKF. A comparison of the 

efficiency and complexity of the CKF-, EKF-, UKF- and particle filter (PF)-based SOC estimation 

algorithms for lithium-ion battery has been investigated in [52]. It is concluded that the CKF-based 

method performs better than both the UKF- and the EKF-based methods. Although the PF-based 

method has slightly better estimation accuracy compared to the CKF-based method, it is 

computationally more complex. 
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In standard CKF, process noise covariance and measurement noise covariance both are considered to 

be constant. Nevertheless, it is not the case for a practical battery system in electric vehicles due to 

random disturbance caused by sensor drift and parameter uncertainties caused by time-varying 

behaviors of the lithium-ion battery. Therefore, adaptively updating rules for covariance values of the 

process and measurement noise are required in order to improve performance of the algorithm. In this 

paper, the idea of covariance matching based on the residual sequence of battery model output voltage 

proposed in [31,53] is introduced to the CKF, and a residual-based Adaptive Cubature Kalman filter 

(ACKF) algorithm is developed accordingly. The process of the ACKF algorithm for battery SOC 

estimation on the basis of battery model is summarized as follows: 

(i) Initialization 

a. Initial posteriori error covariance: P0; 

b. Initial process noise covariance: Q0; 

c. Initial measurement noise covariance: R0; 

d. Window size for covariance matching: Lw; 
e. Initial mean 0x and covariance P0 with a random state vector x0 as follows 

0 0[ ]x E x  (17)

0 0 0 0 0[( )( ) ]TP E x x x x    (18)

(ii) Time update 

a. Factorize the error covariance 

1 1( )k kS chol P   (19)

where chol(·) represents a Cholesky decomposition of a matrix returning a lower triangular Cholesky 

factor. That’s to say: 

1 1 1
T

k k kP S S    (20)

b. Calculate the cubature points 
( ) ( )

1 1 1ˆξ 1,2, ,2i i
k k kx S x i n       (21)

where n is the number of state variables and ξ is the set of standard cubature points, which is given by 
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where [1] represents the identity matrix and [1](i) denotes its i-th column vector. For example, 

assuming n = 3 yields: 

1 0 0

[1] 0 1 0

0 0 1

 
   
  

 (23)

c. Propagate the cubature points and calculate the predicted state 
( ) ( )

| 1 1 1χ ( , )i i
k k k kf x u    (24)
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where Qk-1 is the process noise covariance matrix at time step k−1. 

(iii) Measurement update 

a. Factorize the error covariance 

| 1 | 1( )k k k kS chol P   (27)

b. Recalculate the cubature points 
( ) ( )
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c. Propagate the cubature points and calculate the predicted measurement 
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d. Calculate the estimated covariance 
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where Rk-1 is the measurement noise covariance matrix at time step k-1. 

e. Calculate the Kalman gain 
1

| 1 | 1( )xy y
k k k k kK P P 

   (33)

f. Update the predicted state 

| 1 | 1ˆ ( )k k k k k k kx x K y y     (34)

where yk is the measured output at time step k. 

g. Update the error covariance 

| 1 | 1
y T

k k k k k k kP P K P K    (35)

(iv) Adjustment of Qk and Rk 

In this step, the process noise covariance Q and measurement noise covariance R are adaptively 

estimated according to the output voltage residual sequence of the battery model. Thus, Q and R can be 

iteratively updated as: 
T

k k k kQ K F K  (36)
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where Fk is an approximation to the covariance of the voltage residual at time step k and is defined as: 

1w

k
T

k i i
i k L

F e e
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   (38)

where ei is the voltage residual of the battery model at time step i, and Lw is window size for 

covariance matching. 

 

Figure 7. Schematic of the ACKF (adaptive cubature Kalman filter)-based SOC estimation algorithm. 

The schematic diagram of the proposed ACKF-based SOC estimation algorithm is shown in  
Figure 7. After initialization, the estimated state vector ˆkx  and the estimation error covariance Pk can 

be firstly achieved according to the prediction and update processes. The voltage residual error ek is 

computed on the basis of the measurement equation of the battery model. Afterwards, the process 

noise covariance Qk and the measurement noise covariance Rk are obtained though the voltage 
residual-based updating law. Then, ˆkx , Pk, Qk and Rk are used for the next prediction and update 

processes. The battery SOC can be recursively estimated by repeating the above procedure. 
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5. Results and Discussion 

5.1. Estimation Results without Measurement Noise 

In this section, experimental data collected from two typical driving cycles, including the 360 s 

Dynamic Stress Test (DST) cycle and the 1184 s New European Driving Cycle (NEDC) are applied to 

evaluate the performance of SOC estimation algorithms under the typical loading conditions of EVs. 

The profiles under the DST cycles are shown in Figure 4 in Section 3.3, and that under the NEDC 

cycles are illustrated in Figure 8. 

 

Figure 8. Current and SOC under NEDC (New European Driving Cycle) test: (a) current; (b) SOC. 

The proposed method was compared with the widely used EKF and the standard CKF algorithms in 

terms of estimation accuracy, convergence rate and computational complexity. The comparison results, 

including root mean square error (RMSE), convergence rate to 5% SOC error from different initial 

SOCs and execution time are summarized in Table 2. As an example, the SOC estimation results at 

80% initial SOC under DST and NEDC cycles are separately shown in Figures 9 and 10, where the 

black solid-line presents the reference SOC computed using Coulomb counting method with accurate 

current values, the green chain-line represents the estimated value using the EKF algorithm, the blue 

dotted-line indicates the estimated value using the traditional CKF algorithm, while the red dashed-line 

describes the estimated value using the proposed adaptive CKF (ACKF) algorithm. It can be found that 

although the ACKF takes more computational cost, it can improve both the estimation accuracy and 

convergence rate in comparison with the EKF and CKF algorithms. For example, the RMSE is reduced 

from 1.2% to 0.6% under DST cycles with accurate initial SOC compared with CKF, and from 1.2% to 

0.5% under NEDC cycles. The average convergence rate can be improved about 20% compared with 

EKF, and about 45% compared with CKF. In addition, the proposed ACKF can reduce the fluctuation 

of SOC estimation compared with both the EKF and CKF methods. 
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Figure 9. SOC estimation results under DST test: (a) SOC; (b) SOC error; (c) zoom figure for (b). 

Table 2. Comparison of SOC estimation without measurement noise.  

Methods 
Initial 

SOC 

Execution 

time 

DST NEDC 

Maximum 

error 
RMSE

Convergence 

rate 

Maximum 

error 
RMSE 

Convergence 

rate 

EKF 100% 0.76 s 4.0% 0.8% 1 step 4.3% 0.7% 1 step 

80%   1.3% 108 step  1.2% 105 step 

70%   1.8% 205 step  1.7% 203 step 

60%   2.3% 310 step  2.2% 270 step 

CKF 100% 1.36 s 3.8% 1.2% 1 step 3.8% 1.2% 1 step 

80%   1.6% 160 step  1.6% 155 step 

70%   2.0% 350 step  2.0% 300 step 

60%   2.4% 405 step  2.4% 390 step 
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Table 2. Cont. 

Methods 
Initial 

SOC 

Execution 

time 

DST NEDC 

Maximum 

error 
RMSE

Convergence 

rate 

Maximum 

error 
RMSE 

Convergence 

rate 

ACKF 100% 1.89 s 3.8% 0.6% 1 step 3.8% 0.5% 1 step 

80%   1.2% 88 step  1.1% 90 step 

70%   1.6% 160 step  1.5% 155 step 

60%   2.1% 255 step  2.0% 250 step 

 
Figure 10. SOC estimation results under NEDC test: (a) SOC; (b) SOC error; (c) zoom figure for (b). 

5.2. Estimation Results with Measurement Noise 

In practice, it is difficult to always get accurate measurement values from an online battery system 

due to noise caused by factors, such as the electromagnetic interference (EMI) generated by electronic 

equipment on EVs and temperature drift of sensors. To further evaluate the robustness of the proposed 
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ACKF algorithm against measurement noise, a sequence of voltage error shown in Figure 11 is added 

to the measured voltage. The total voltage error profile vs. time is shown in Figure 11a, and a locally 

enlarged portion is shown Figure 11b to illustrate more details. The SOC estimation results with 

voltage measurement noise under DST and NEDC cycles are shown in Figures 12 and 13, respectively. 

In both Figures 12 and 13, the black solid-line presents the reference SOC values, the green chain-line 

represents the estimated SOC using the EKF algorithm, the blue dotted-line indicates the estimated 

SOC using the traditional CKF algorithm, and the red dashed-line describes the estimated SOC using 

the ACKF algorithm. The corresponding maximum error and RMSE of SOC estimation are 

summarized in Table 3. 

With all the results shown in Table 3 and Figures 11−13, it is clear that SOC estimation errors using 

the EKF approach are highly increased due to the introduction of the voltage noise, while those using 

CKF and ACKF are slightly increased. For example, the maximum error using EKF increases from 

4.0% to 8.7%, and the RMSE increases from 0.8% to 3.6% under DST cycles. However, it is not the 

case for the CKF and ACKF algorithms. As for the ACKF, the maximum error is slightly increased, 

while the RMSE is even slightly reduced due to the adaptively updating of the voltage covariance. It is 

accordingly demonstrated that the proposed ACKF algorithm is greatly robust to measurement noise 

compared with the EKF and CKF algorithms. 

 

Figure 11. Voltage noise: (a) voltage noise vs. time; (b) zoom figure for (a). 

Table 3. Comparison of SOC estimation with measurement noise. 

Methods 
DST NEDC 

Maximum error RMSE Maximum error RMSE 

EKF 8.7% 3.6% 9.1% 3.7% 

CKF 4.8% 1.5% 4.8% 1.5% 

ACKF 4.3% 0.5% 4.3% 0.4% 
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Figure 12. SOC estimation results with voltage noise under DST test: (a) SOC; (b) SOC error. 

 

Figure 13. SOC estimation results with voltage noise under NEDC test: (a) SOC; (b) SOC error. 

6. Conclusions 

In this paper, an Adaptive Cubature Kalman filter (ACKF) algorithm is presented to accurately 

estimate SOC of the lithium-ion batteries in electric vehicles. The commonly used second-order RC 

equivalent circuit is applied to simulate the nonlinear behaviors of the lithium-ion battery and establish 
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the battery state-space equations. The OCV-SOC relationship is fitted using the sixth-order polynomial 

and the other RC parameters of the battery model are determined by the forgetting factor least-squares 

algorithm. The principle of adaptive cubature Kalman filter for battery SOC estimation is introduced 

and the estimated process is presented in detail. Two typical driving cycles, including the Dynamic 

Stress Test and New European Driving Cycle, are applied to assess the performance of the proposed 

method by comparing with the traditional EKF and CKF algorithms. Experimental results indicate that, 

although the proposed ACKF algorithm takes more computational time compared with EKF and CKF, 

it is helpful to improve the SOC estimation accuracy and convergence to different initial SOC error. 

Furthermore, it is more robust against voltage measurement noise than EKF and CKF. 
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