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Abstract: Efficient power generation from low to medium grade heat is an important 

challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles 

(ORCs) constitute an important enabling technology and their research and development has 

emerged as a very active research field over the past decade. Particular focus areas include 

working fluid selection and cycle design to achieve efficient heat to power conversions for 

diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, 

a number of approaches have been developed that address the systematic selection of 

efficient working fluids as well as the design, integration and control of ORCs. This paper 

presents a review of emerging approaches with a particular emphasis on computer-aided 

design methods. 

Keywords: organic Rankine cycle; systematic approaches; design; optimisation; working 

fluid selection 
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1. Introduction 

Over the past decade increasing concerns over climate change and high energy prices have resulted 

in a strong interest to utilize waste or renewable heat sources for power generation. For such applications 

the Organic Rankine Cycle (ORC) is a widely used technology with many installations converting a 

number of heat sources to power in the kW and MW range [1]. The success of the system is largely 

attributable to its simplicity and flexibility: ORCs are simple Rankine cycles similar to those used in 

conventional power plants. ORCs are flexible and can be applied on a wide range of heat source 

temperatures ranging from 80 to 400 °C [2]. They enable cost efficient power generation from a broad 

range of heat sources by replacing water with organic working fluids such as refrigerants and other 

organic molecules to achieve better efficiencies [3]. Although ORCs constitute a proven technology with 

more than 1.5 GWel of capacity installed world-wide in a variety of applications, including industrial 

waste heat recovery [1], geothermal [4–6], solar thermal [7] and biomass power plants [8], the key 

research challenges remain: the identification of high-performance working fluids, the corresponding 

optimal design configuration and operating characteristics of the thermodynamic cycle and the optimum 

integration of the ORCs with the available heat sources. 

The design challenge is due to the very large number of working fluid chemistries as well as structural 

and operating ORC parameters that need to be considered as decision options within a systematic 

problem formulation to identify highly performing systems. The examination of various working fluids 

or alternative ORC configurations can lead to useful insights regarding potential performance 

improvements, yet most published works lack the use of systematic methods, rather relying on 

empirically identified enhancements approached through heuristic treatment of decision options. 

Empirical investigations are often based on knowledge gained from either experimental or theoretical work 

and are clearly useful. Yet the proposed improvements may be limited unless an extensive number of ORC 

working fluid and system characteristics are systematically taken into account during optimization. 

Computer-aided technology is a promising tool to exploit empirical know-how and guide the search 

for novel and efficient technologies as it is capable to cope with the investigation of an enormous range 

of options [9]. Process design and optimization [10], process integration [11], control [12], molecular 

design [13–15] and integrated process and molecular design [16] are examples of systematic  

computer-aided methods with applications in diverse process systems. 

Research and development efforts in ORC have made use of computer-aided tools and methods in 

the past, but they have rarely been used in a systematic context. The use of systematic and robust 

computer-aided methods in the development and operation of ORC technologies has emerged in the last 

few years, but it is still limited compared to the very widespread application of similar tools in other 

technological sectors. Considering the benefits reaped from the application of such tools in other 

industries, there is great scope for widening their utilization in ORC. There is currently a very wide 

community of engineers and scientists in ORC research and development, who are beginning to grasp 

the benefits resulting from use of systematic computer-aided tools. 

This paper aims at presenting a review of available systematic methods for working fluid selection 

and the design, integration and control of ORCs. The scope of the paper is focused on subcritical ORCs. 

It provides a structured and organized account of the merits of selected works for more efficient 
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technological developments and identifies areas for further research into computer-aided tools and 

methods for ORC systems engineering. 

2. Overview 

The basic ORC process for converting heat from a source stream to power consists of a pump, a 

turbine, a heat source recovery section and a condenser and uses an organic compound as the working 

fluid. In the heat recovery section, heat is transferred from the hot source stream to generate high pressure 

working fluid vapor from which power is generated in a turbine. In the condenser, heat is ejected to a 

cold utility from the low pressure working fluid vapor obtained from the turbine outlet. The resulting 

liquid working fluid is repressurized in the pump and the cycle is closed in the heat recovery section. 

The overall design goal is to maximize ORC system performance for a given situation in terms of heat 

sources and heat sinks. Different performance criteria have been used as design objectives in ORC  

studies [17], the most common being the thermodynamic metrics thermal efficiency and exergetic efficiency, 

with economic criteria such as the power production cost being less common due to the difficulties of precise 

cost estimation. 

The development of a high performance ORC system with respect to any typical performance 

criterion requires good design choices to be made across the cycle and its interfaces with the heat sources 

and heat sinks. Important design decisions need to be made with respect to working fluid selection, the 

cycle design and its operating conditions as well as the heat recovery strategy from the available heat 

sources, which may involve one or more source streams (Figure 1).  

 

Figure 1. ORC design decisions and objectives. 

Many design alternatives exist at each level. For instance, a very large number of alternative working 

fluids exist, some of which may have never been proposed for ORC systems before. The identification 

of the best performing working fluid for a given situation requires the ability to systematically screen 

through the alternatives. Similarly, heat may be transferred from multiple available heat sources so that 

many alternative strategies may exist to recover the heat into the working fluid. In addition, cycle 
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operating parameters must be optimized to ensure alternatives are compared on the basis of the best 

possible performance. 

Over the years, a number of systematic approaches have emerged to support the designer in 

optimizing and analyzing alternatives so as to effectively identify the high performing ORC designs for 

a given problem. These will be reviewed in the remainder of this paper. Section 3 will review systematic 

approaches to working fluid selection. Section 4 will provide an overview of cycle optimization 

approaches before approaches to ORC control are reviewed in Section 5. Emerging approaches to the 

integration of ORCs with multiple heat sources will be reviewed in Section 6. 

3. Design and Selection of ORC Working Fluids 

3.1. Working Fluid Selection Applications 

The choice of ORC working fluids is known to have a significant impact on the thermodynamic as 

well as economic performance of the cycle. A suitable ORC fluid must exhibit favorable physical, 

chemical, environmental, safety and economic properties such as low specific volume, viscosity, toxicity, 

flammability, ozone depletion potential (ODP), global warming potential (GWP) and cost, as well as 

favorable process attributes such as high thermal and exergetic efficiency, to name but a few [4,5,17–19]. 

These requirements apply both to pure and mixed working fluids. Existing research is largely focused 

on the selection of pure working fluids, with well over 100 published reports currently available (see 

surveys in [1,20]). An important limitation of pure working fluids is their constant temperature profile 

during phase change [18]. The pinch point encountered at the evaporator and the condenser gives rise to 

large temperature differences at one end of the heat exchanger leading to high irreversibility. The pinch 

point is a point of minimum temperature difference between the heat source and the working fluid side 

of the heat exchanger where the heat transfer is blocked. Working fluid mixtures are more appealing 

than pure fluids because their evaporation temperature profile is variable, following the profile of the 

heat source, as opposed to the flat evaporation profile of pure fluids. This enables an approximately 

stable temperature difference during evaporation, coined as temperature glide, which significantly 

reduces exergetic losses. Despite their usefulness, the published works addressing the selection of mixed 

fluids are considerably fewer. Previously published work [21] has investigated different types of  

multi-component mixtures comprising hydrocarbons, hydrofluorocarbons or siloxanes together with 

important mixture performance measures and constraints that need to be considered for their evaluation. 

Hydrocarbon mixtures were also proposed considering regenerative preheating ORC schemes [22], 

equipment sizing [23] and zeotropic fluids [24] for efficient exploitation of moderate temperature 

geothermal resources. Mixtures of siloxanes or hydrocarbons have been considered [25] to recover wasted 

heat from molten carbonate fuel cells using an ORC. Halocarbon mixtures have been investigated [26] for 

power generation using geothermal heat, indicating significant ORC performance gains compared to pure 

fluids. A binary mixture of fluorocarbons has been investigated [27] at different concentrations employed 

in an ORC system for power generation from solar energy. In a similar context, the utilization of 

hydrocarbon and fluorocarbon mixtures has been investigated [28] at different temperature heat sources in 

ORCs, evaluating the resulting performance gains using ORC operating parameters like inlet/outlet volume 

ratio, mass flow, enthalpy difference of expansion etc. Different combinations of binary and tertiary 
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mixtures have also been evaluated [29] including alkanes, fluorinated alkanes and siloxanes aiming to find 

their optimum concentration. An investigation of organic, ammonia-water and alcohol-water mixtures was 

performed using an optimization method to identify their optimum concentration in ORC and Kalina cycle 

systems [30]. Mixtures of ammonia- water and CO2- water were also considered in two new ORC 

configurations, namely the ORC with liquid-flooded expansion and the ORC with solution circuit [31], 

with the mixtures employed in the second configuration only. An ammonia-water mixture was also 

considered in the context of a Kalina cycle and its performance was compared with an ORC using pure 

ammonia or R134 [32]. Nineteen binary working fluid mixtures were also considered as an alternative to 

ammonia-water, resulting in the conclusion that the highest performers were propane and propylene-based 

mixtures. Binary and tertiary polysiloxane mixtures are considered in a different work [33] for  

ORCs recovering heat from cogeneration plants fed with wood residuals. A zeotropic mixture of 

R227ea/R245fa is analyzed in a subcritical ORC employed for exploitation of geothermal resources [6]. 

Whether pure or mixed working fluids, conventional engineering practice mostly considers their 

selection by testing and comparing various known options from a pre-postulated dataset of several 

available candidates. As a result, the search is limited to an often arbitrarily compiled list of candidates 

containing conventional molecules (e.g., refrigerants, hydrocarbons etc.). Such a small set is extremely 

limiting in view of the vast number of molecules that could be considered as candidate ORC working 

fluids, hence significantly reducing the opportunities for identification of novel and improved options. 

The limited screening of potential working fluid candidates hampers innovation and a systematic 

approach is required to enable wider and more systematic searches. The latter is very relevant to the 

necessity for development of novel chemical compounds which may exhibit favorable characteristics as 

ORC working fluids and may also overcome the performance of existing ones. In conventional practice 

this is only possible through experimental work which is clearly useful and irreplaceable. However, 

experiments involve high costs which are often not justified by the limited performance gains.  

Computer-aided tools may assist experimental work through their predictive capabilities by 

systematically guiding searches to options worth investigating. The rather ad-hoc use of such tools in 

conventional practice prohibits such opportunities. 

3.2. Computer-aided Tools: Main Concepts and Challenges 

The use of computer-aided tools is clearly very appealing for either the design of novel working fluids 

or the selection of commercially available ones, in both cases with optimum performance characteristics. 

The term “design” refers to the determination of a molecular structure regardless of whether such a 

molecule pre-exists or not. The achievement of optimum performance is rather challenging because it 

involves two major requirements: 

a) The exhaustive generation and evaluation of a very wide range of molecular structures prior to the 

selection of the working fluid which exhibits a truly optimum performance. 

b) The utilization of predictive models which are sufficiently accurate to ensure that the performance 

of the selected working fluid is both optimum and rigorously validated prior to its practical 

utilization in an ORC plant. 
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These requirements are conceptually illustrated in Figure 2 with the aim to provide a comparative 

assessment of the general predictive model types available to simulate molecular chemistry 

characteristics and the range of molecules that may be evaluated with each model type within a 

reasonable computational efficiency. The three model types involve computational chemistry methods, 

equations of state (EoS) and group contribution (GC) methods in a representation that implies a 

complementarity due to the existence of shared features that reflect common phenomena and 

functionalities captured by adjacent models of different abstraction (i.e., rigor of the modelling detail). 

The simultaneous utilization of representatives from all model types would be ideal as it would satisfy 

both previous requirements for the identification of optimum and immediately applicable working fluids, 

yet it would have a detrimental effect on computational efficiency. This is also the main reason why 

each type of model may only be used independently but not all types are suitable for the optimum design 

and selection of highly performing working fluids. 

 

Figure 2. Property prediction models with respect to modeling detail and range of molecular 

structures which may be simulated at a reasonable computational effort. 

Computational chemistry methods [34] involve several different techniques such as density functional 

theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) [35] which is based 

on quantum chemistry and addresses liquid phase predictions. Such methods are based on a robust 

representation of the molecular chemistry hence they enable the determination of property features at 

even the atomic or molecular scale. However, the resulting predictions may not be easily transferred into 

molecular parameters which are required to performed mass and energy balances or to determine 

operating conditions at the ORC process level. Furthermore, the simulation of even one molecule often 

requires very extensive computational effort which may range from a few hours to a few days hence 

prohibiting their use to evaluate the vast number of molecules that may be considered as ORC working 

fluids. On the other hand, EoS act as an interface between molecular characteristics and process-level 

properties, while the required computational effort is sufficiently low to use them in an extensive 

evaluation of working fluids. However, chemical or physical parameters required as inputs to 

characterize molecular or mixture behaviors are available for relatively few molecules, prohibiting the 

direct and wide utilization of EoS in the design and selection of working fluids. 

GC methods [36] avoid the bottlenecks of computational efficiency and data unavailability because 

they are based on relatively simpler (hence computationally faster) predictive models than the other two 

methods, while they refer to molecular fragments called functional groups instead of entire molecules. 
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This solves the problem of data unavailability because if the contribution of each functional group in a 

particular property is calculated once, then it remains the same regardless of the molecular structure in 

which it is used (i.e., it is transferable in different molecules). As a result, simpler or complex  

molecular properties are calculated using GC models developed around databases of experimentally  

pre-determined property contributions for each functional group. GC methods provide predictions which 

are sufficiently accurate so that large molecular sets may be easily screened and few selected molecules 

of high performance in desired properties may then be validated using EoS, computational chemistry 

methods or experiments. Despite their obvious advantages they are challenged by the need to pre-specify 

a molecular structure (e.g., an ORC working fluid) in order to calculate its property values. This 

characteristic is also shared with EoS and computational chemistry methods and requires some prior 

knowledge regarding molecular structures that may lead to optimum ORC performance, otherwise the 

exhaustive examination of every possible molecule that exists is unavoidable in order to ensure the 

identification of a truly optimum ORC working fluid. 

3.3. Optimization-Based CAMD of Pure Fluids 

The above challenges are efficiently addressed by computer aided molecular design (CAMD) methods 

which combine the merits of GC methods with optimization algorithms. Papadopoulos et al. [4,5,37] 

proposed such an approach where an optimum molecule with desired properties is automatically 

identified based on the computational emulation of a molecular synthesis process (i.e., the iterative 

transformation and evolution of an initial structure using different combinations of functional groups). 

An optimization algorithm guides the synthesis towards optimum structures, using properties as 

performance measures that reflect on molecular or process characteristics. The combination of GC 

methods with optimization also proves useful when a pre-specified database of molecules exists and 

requires fast screening to efficiently identify highly-performing options. CAMD approaches cover a very 

wide range of potentially optimum structures, support the identification of either novel molecular 

structures or conventional but previously overlooked, optimum molecules and rely on robust and 

systematic algorithms. Properties may be calculated by simpler GC models capturing the molecular 

chemistry effects on major ORC operating characteristics. EoS models may also be used (in combination 

with GC representations or not) to directly link molecular structure with ORC process economic and 

operating performance. Figure 3 illustrates the algorithmic steps involved in the optimization-based 

CAMD approach used in Papadopoulos et al. [4,5]: 

• The selection of several functional groups from a database enables the generation of a molecule 

that is tested in terms of chemical feasibility. 

• The desired properties of any feasible molecule are subsequently calculated based on the 

contribution of each functional group in the molecule. 

• Several of these properties are used as a measure of molecular performance, i.e., as objective 

functions in the employed optimization algorithm. The employed properties may directly reflect 

molecular characteristics or ORC process features. 

• The optimization is then used to assess the performance based on specific algorithmic criteria and 

to inflict alterations in the molecular structure using functional groups available in the database,  

in order to generate a new molecule. 
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• This iterative procedure continues until a molecule with the optimum performance is identified, 

based on algorithmic termination criteria that ensure optimality. 

 

Figure 3. Algorithmic steps involved in the optimization-based CAMD approach used in 

Papadopoulos et al. [4,5]. 

Papadopoulos et al. [4,5,37] consider numerous molecular and ORC process-related properties as 

performance criteria in an approach which first employs CAMD to design an inclusive set of optimum 

working fluid candidates and then introduces several of them into ORC process simulations to select few 

that exhibit favorable process performance. At the CAMD stage properties calculated directly as a result 

of the working fluid structure involve density, latent heat of vaporization, liquid heat capacity, viscosity, 

thermal conductivity, melting point temperature, toxicity and flammability. A GC approach has been 

utilized for their calculation such as the one proposed by Hukkerikar et al. [27]. These properties reflect 

the effects of molecular chemistries on different desired ORC operating and design characteristics. For 

example, fluids of high density enable equipment of lower volume, fluids of low viscosity enhance the 

heat transfer hence requiring heat exchangers of lower area, the fluid heat capacity and enthalpy of 

vaporization have different effects on phase-change and superheating with impacts again on the heat 

exchanger sizes and cooling loads and so forth. All these properties are considered as objective functions 

in a multi-objective optimization problem formulation which is solved using Simulated Annealing and 

results in an inclusive set of Pareto optimum molecules. The development of a Pareto front enables the 

identification of useful trade-offs among the properties considered as objective functions, while 

molecules are designed to simultaneously optimize all properties. From a mathematical perspective, in 

this front no working fluid is of higher performance than the others simultaneously in all properties, but 

at least one of the properties of a working fluid is better than the same property of another fluid. At the 

same time, working fluids with worse performance than others in all properties are eliminated and 

steered clear of the non-dominated set [18,19,38]. The resulting candidate molecules in the Pareto front 

are then qualitatively evaluated based on their ozone depletion and global warming potentials 
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considering structural rules from the literature. Selected molecules are introduced into ORC optimization 

in a basic system configuration. The aim of the optimization of the ORC process is to identify the heat 

exchange areas required in the vaporizer and the condenser that enable maximum energy recovery with 

minimum capital cost. The main findings that also illustrate the benefits of the proposed approach are 

the following: 

• Several designed fluids are known chemicals, documented in the online NIST (www.nist.gov) or  

other databases, indicating the ability of CAMD to identify fluids which are readily available  

for utilization. 

• Despite their public or commercial availability, many of the fluids obtained from CAMD have not 

been previously considered for ORC applications, indicating the ability of the method to point 

towards new design directions, overlooked by trial-and-error methods. 

• The fluid 3,3,3-trifluoropropene only differs by a single fluorine atom from 2,3,3,3-tetrafluoropropene 

which has been commercialized in recent years by an international company [39] as an ORC 

working fluid, highlighting opportunities to quickly investigate other options which are very 

similar to the proposed designs. 

• The fluid hexafluoropropane also obtained from CAMD has been mentioned in patents [40,41] as 

an ORC mixture component. 

• Several unconventional and possibly novel working fluid structures were also identified combining 

ether and amine functional groups in fluorinated carbon chains. These groups were later shown to 

result in high ORC thermal efficiency in a study based on molecular thermodynamics [42] which 

accounted for the results of Papadopoulos et al. [4], among other fluids. 

An optimization-based CAMD approach was also proposed by Palma-Flores et al. [43] which has 

similarities and differences with the work of Papadopoulos et al. [4,5,37] (overview of main points in 

Table 1). Palma-Flores et al. [43] solve an optimization-based CAMD problem which exploits group 

contribution methods for prediction of properties and also considers the feasibility of the molecular 

structures through appropriate constraints. Unlike Papadopoulos et al. [4,5] who employ Simulated 

Annealing as the optimization algorithm, Palma-Flores et al. [43] employ a Mixed Integer Non Linear 

Programming (MINLP) model which is solved with a deterministic optimization solver, namely 

DICOPT. Palma-Flores et al. [43] also solve the problem in two stages; first working fluids are designed 

using CAMD, while the resulting fluids are then compared in terms of ORC performance using three 

different process configurations. The CAMD stage is implemented 4 times using different objective 

functions and resulting in 32 working fluids which are further investigated in the second stage. The 

authors consider a more extensive set of functional groups than Papadopoulos et al. [4,5,37] including 

different aromatic and halogen options. Papadopoulos et al. [4,5,37] excluded these options due to issues 

with toxicity, ozone depletion and global warming. The findings of Palma-Flores et al. [43] seem to justify 

their exclusion. The objective functions include different combinations of working fluid liquid heat 

capacity, latent heat of vaporization and Gibbs free energy of formation. The first two properties are 

associated with heating, cooling and phase change operations in the cycle, while the latter is associated 

with the stability of the designed working fluids. Upper and lower bounds are implemented for the 

properties used as objective functions, while bounds are imposed on additional properties including 

critical pressure and temperature, normal boiling point and fusion temperatures. All bounds are obtained 
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by investigation of the corresponding properties of some very common fluids previously utilized in 

ORCs. The authors note that some of the designed compounds have been previously considered in 

research literature but not as ORC working fluids. The authors use their GC models developed from 

literature sources to predict the working fluid properties hence they select several of them to compare 

their own predictions with results obtained from the ASPEN software. The observed deviations are 

mostly less than 5%, although in few occasions larger deviations are also observed. The designed fluids 

are then introduced in ORC process simulations considering three different process configurations; the 

basic ORC configuration, an ORC with an internal heat exchanger for heat recovery and an ORC with 

turbine bleeding and a direct contact heater. The fluids are evaluated considering their thermal efficiency 

in the different systems. 

Lampe et al. [44,45] proposed an optimization-based method for the design of optimum ORC working 

fluids, namely the continuous molecular targeting (CoMT-CAMD) method (Table 1). Working fluids 

are designed based on a molecular model which allows the use of physical molecular characteristics as 

continuous decision parameters in the optimization problem. The molecular model takes the form of the 

perturbed chain statistical associating fluid theory (PC-SAFT) EoS which considers molecules as chains 

of spherical segments that interact through van der Waals interactions, hydrogen bonds, and polar 

interactions. The parameters considered in this work are the segment number and diameter as well as the 

van der Waals attraction between segments. This physical representation of the working fluid is used to 

calculate the residual Helmholtz energy which allows the calculation of the vapor-liquid equilibria in an 

ORC model. In this respect, the use of an EoS allows the direct employment of an ORC process model 

in fluid design and hence the utilization of a process-related objective function (e.g., ORC power output 

etc.). The resulting working fluids are represented by the optimum values of the segment number, 

diameter and the van der Waals attraction between segments, while Papadopoulos et al. [4,5,37] and 

Palma-Flores et al. [43] obtain optimum molecular structures. The resulting working fluid is therefore 

hypothetical in the sense that it does not necessarily coincide with a real fluid or satisfy chemical 

constraints (e.g., zero free bonds etc.). The authors address this issue by postulating a mapping stage 

where the parameters of the optimum working fluid are compared with the parameters of real working 

fluids contained in a database. The proximity of the optimum working fluid with the database fluids is 

evaluated based on the expected loss in ORC. 

It is worth noting here that an approach for working fluid design and selection which shares similar 

features to Lampe et al. [44,45] has been recently proposed by Roskosch and Atakan [46]. The authors 

perform a reverse engineering design of the working fluid and a heat pump process (which has 

similarities with ORC) using a cubic EoS. Fluids are represented continuously in the optimization 

problem through critical temperature and pressure, acentric factor and liquid heat capacity. The problem 

is solved using non-linear programming (NLP). The resulting optimum solution is then identified based 

on its proximity to fluids available in a database. Additional criteria such as pressure limits, coefficient 

of performance and safety are also considered for the selection of the final fluids from the database. 

CAMD-based approaches addressing the design of refrigerant fluids and/or systems (which also have some 

similarities with ORC) have also been proposed by Samudra and Sahinidis [47], Sahinidis et al. [48], 

Duvedi and Achenie [49] using deterministic MINLP-based formulations and Marcoulaki and Kokossis [50] 

using Simulated Annealing. 
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Table 1. Main points in existing methods for the optimum design of pure ORC working fluids. 

Main Points Papadopoulos et al. [4,5,37] a Palma-Flores et al. [43] c Lampe et al. [44,45] b 

Implemented 

stages 

Stage 1: CAMD optimizing 

molecular structure. 

Stage 2: Evaluation of optimum 

molecules in ORC process 

optimization. 

Stage 1: CAMD optimizing 

molecular structure. 

Stage 2: Evaluation of optimum 

molecules in ORC process simulation. 

Stage 1: CoMT-CAMD optimizing 

molecular parameters and ORC process. 

Stage 2: Mapping of optimum molecular 

parameter values in molecular structures 

of existing molecules. 

Property 

prediction 

method 

GC + EoS; (e.g., standard cubic) GC + EoS; (e.g., standard cubic) 
PC-SAFT + QSPR (for ideal heat 

capacity) 

Working fluid 

optimization 

parameters 

(Stage 1) 

Functional groups (discrete, result 

in optimum structure) 

Functional groups (discrete, result 

in optimum structure) 

Segment number, diameter and van 

der Waals interactions (continuous, 

result in optimum values) 

Optimization 

approach  

(Stage 1) 

Multi-objective optimization, 

Simulated Annealing 

Single objective optimization, 

MINLP solver 

Single objective optimization,  

NLP solver 

Working fluid 

optimization 

criteria  

(Stage 1) 

Density, Enthalpy of vaporization, 

Liquid heat capacity, Viscosity, 

Thermal conductivity, Toxicity, 

Flammability, Melting point 

temperature, Critical temperature, 

Ozone depletion potential 

(qualitative), Global warming 

potential (qualitative). 

Enthalpy of vaporization, Liquid 

heat capacity, ratio of the two, 

weighted sum of the two and the 

standard Gibbs energy of formation 

of an ideal gas. 

ORC net power output. 

Optimization 

criteria  

(Stage 2) 

Unified index considering 

maximization of power output 

revenues and minimization of 

capital costs (vaporizer and 

condenser areas). 

ORC thermal efficiency. 

Expected loss in process performance 

of optimum (theoretical fluid) 

compared to real fluids in a database. 

Identified 

fluids a 

 CF3-CH2-CF3 

(Hexafluoropropane-R236fa) 

 CF3-CH=CH2 

(Trifluoropropene-R1243) 

 CH3-CH2-CH3 (Propane) 

 CH3-O-NH-CH3 

 NH2-CH2-O-CH3 

 HCOOCH3 

 FCH2-O-O-CH2F 

 CH3-O-O-CH3 

 CH3-O-N(OH)-CH3 

 NH2-O-CH2-F 

 CH3-CH2-COO-CH2-F 

 Cl-COO-CH2-CH3 

 CH3-O-O-N(F)-OH 

 CF3-CHF-CF3 

(Heptafluoropropane-R227ea) 

 CF3-CH=CH2  

(Trifluoropropene-R1243) 

 CH3-CH2-CH3 (Propane) 

Heat source temperatures: a 90 °C, b 120 °C, Evaporator working fluid outlet temperature: c 190 °C. 

3.4. Optimization-based CAMD of Mixtures 

The design of mixtures is a considerably more challenging problem than the design of pure fluids;  

it requires the determination of (a) the optimum number of working fluids in the mixture, (b) the optimum 
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mixture composition (i.e., the structure of each mixture component) and (c) the optimum mixture 

concentration (i.e., the amount of each component in the mixture). Papadopoulos et al. [18,19] proposed 

for the first time the design of binary ORC working fluid mixtures through a novel, optimization-based 

CAMD approach which may also be used for the design of mixtures in other applications. The proposed 

approach involves two main stages which are illustrated in Figure 4. The first stage aims to explore and 

identify the highest possible economic, operating, environmental and safety performance limits of a wide 

set of mixtures in an ORC system. This is approached in Stage 1 by searching for chemically feasible 

fluid structures only for one of the two components (i.e., the 1st) of a binary mixture, while emulating 

the mixture behavior of the 2nd component within a much wider structural design space by lifting the 

chemical feasibility constraints. Note that in each stage the proposed approach enables the simultaneous 

mixture and ORC design. The two stages interact to help improve the performance of the obtained 

solutions. The proposed approach builds on the previous work of Papadopoulos et al. [4,5,37] for 

CAMD-based design of pure fluids hence the identification of multiple optimum mixture candidates is 

again accomplished through a multi-objective formulation of the CAMD-optimization problem, treating 

multiple ORC performance measures simultaneously and resulting in a comprehensive Pareto front 

revealing useful structural and property trade-offs among mixture components. Stage 2 serves to 

determine the optimum and chemically feasible structure of the 2nd component for each one of the 

feasible fluids (1st components) already obtained in Stage 1, together with the optimum mixture 

concentration. In Stage 2, the mixture performance limits identified in the previous stage are used as a 

reference point to efficiently avoid sub-optimal choices. The design of binary mixtures could in principle 

be approached directly in Stage 1 (i.e., without the need for a second stage) by implementing chemical 

feasibility constraints on both new fluid structures. However, this may require increased computational 

effort, especially if such an approach is extended to mixtures of more than two components. Instead, the 

effort is reduced in the proposed approach as the user is allowed to review, interpret and analyze the rich 

intermediate insights generated by the multi-objective optimization approach prior to exploiting 

meaningful conclusions between design stages. Optimum solutions are identified in a Pareto sense, enabling 

the exploitation of the often conflicting design objectives. Some of the resulting mixtures are shown in 

Table 2, containing fluids that also favor the ORC performance even when they are used as pure fluids. 

An approach addressing the optimization of working fluid mixtures for ORC is presented in  

Molina-Thierry and Flores-Tlacuahuac [51]. The number of working fluids participating in the mixture, 

the type of working fluids that form the mixture and the mixture concentration are optimized together 

with the ORC operating conditions. The working fluids that are used to perform mixture combinations 

are selected from a pre-specified set of three, eleven or six pure fluids in the performed case studies. 

This is different to Papadopoulos et al. [18,19] who identify the optimum structure of both working 

fluids participating in binary mixtures, simultaneously with the ORC operating conditions and without 

having a set of pre-specified options.  
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Figure 4. Algorithmic steps involved in the optimization-based CAMD approach for 

simultaneous mixture and ORC design used in Papadopoulos et al. [18,19]. 

Table 2. Main points in methods for optimum design and selection of ORC working fluid mixtures. 

Main Points Papadopoulos et al. [18,19] d Molina-Thierry and Flores-Tlacuahuac, [51] e 

Implemented stages 

Stage 1: CAMD optimizing 1st and 

theoretical 2nd structure, concentration and 

ORC process. 

Stage 2: CAMD optimizing 1st and 2nd 

structure, concentration and ORC process. 

Optimizing number and type of working fluids 

in mixture (generated from a pre-specified set 

of pure fluids), mixture concentration and 

ORC process. 

Property prediction 

method 
GC + EoS (e.g., standard cubic) GC + EoS (e.g., standard cubic) 

Working fluid 

optimization 

parameters (Stage 1) 

Functional groups (discrete, result in optimum 

structure), concentration (continuous) 

Preselected set of pure fluids used to form 

mixture combinations (discrete),  

concentration (continuous) 

Optimization 

approach (Stage 1) 

Multi-objective optimization, Simulated 

Annealing 

Single objective optimization, testing of 

several objectives, MINLP solver 

Working fluid and 

process 

optimization 

criteria (Stage 1) 

Exergetic efficiency, thermal efficiency, 

flammability of each fluid, mixture maximum 

and minimum flash points (constraint), 

mixture azetropic concentration (constraint). 

Change of the enthalpy of vaporization at the 

cycle high pressure level, specific net work 

output, first and second law efficiency, area in 

between profiles (temperature-enthalpy) of the 

working fluid and heat source or sink on the 

heat exchanger 

Optimization 

criteria (Stage 2) 
Same as Stage 1 Not applicable 

Uncertainty in 

mixture selection 

Considered through a systematic non-linear 

sensitivity analysis approach 
- 

Identified fluids 

 CF3-CH2-CH3/FCH2-O-(CH2)2-CH3 

 CF3-CH2-CF3/FCH2-O-CH2-CF3 

 (CH3)-C/FCH2-O-C-(CH3)3 

 RC318 (refrigerant)-n-Pentane (case B) 

 R245ca- n-Pentane (case B) 

 FC4-1-12-n-Butane (case C) 

Heat source temperatures: d 90 °C, e 90–150 °C. 
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The authors present details on the employed ORC model which involves vapor-liquid equilibrium 

and other calculations using models similar to Papadopoulos et al. [18,19]. They employ a single 

objective formulation, trying five different simple or complex objective functions during optimization 

and considering three different case studies. The optimization results in the same binary mixture 

components in the first case study, with changes observed only in the mixture concentration depending 

on the employed objective function. In the second case study the authors use the first law efficiency as 

an objective function and solve the optimization problem for several different heat source temperatures. 

The mixture compositions and concentrations change significantly. Although in some cases the results 

indicate mixtures consisting of four components, only two of them are in significantly high 

concentration, the remaining two are traces. The third case study addresses the optimization problem 

independently for two objective functions indicating that the choice of the objective function affects both 

the optimum mixture characteristics (composition, concentration) and performance. One case finds a 

binary mixture as the optimum solution, while the other finds a mixture consisting of five working fluids 

in significant concentrations. The obtained mixtures are not comparable with Papadopoulos et al. [18,19] 

because the latter used different functional groups. The authors note that in the future they will also 

consider uncertainty as well as process control (discussed in the subsequent sections). 

3.5. Uncertainty in Predictions 

The use of predictive models for the calculation of working fluid or ORC process properties involves 

uncertainty regarding the accuracy of the obtained predictions. Uncertainty is mainly observed in the 

employed GC, thermodynamic or process models and results in over- or under- estimation of the predicted 

thermodynamic or process behavior of the investigated or designed fluids. The use of different prediction 

models or input parameters for the calculation of the same property may result in values that deviate. While 

deviations may be significant for particular fluids, others may exhibit similar property values regardless of 

the employed property prediction model. Lampe et al. [45] illustrate the impact of the working fluid 

structure on the ORC net power output through their continuous molecular representation using the 

geometric and interaction parameters. The reported three-dimensional diagram indicates areas with very 

steep non-linear changes as well as areas with smoother changes. In other words, the sensitivity of the 

employed model under the influence of different fluids may vary significantly. In the case that 

experimental measurements are available it is possible to determine the accuracy of the predictive models 

and hence ensure that by accounting for predictive inaccuracies the designed or selected fluids represent 

realistic ORC performance options. However, experimental measurements exist for very few working 

fluids under very specific conditions. It is therefore necessary to utilize a systematic method which enables 

the validation of the obtained predictions with respect to their expected accuracy, regardless of the 

availability of experimental measurements or the predictive capability of the available models. 

Papadopoulos et al. [18,19] proposed a sensitivity analysis approach which facilitates the 

identification of parameters with high influence in the overall working fluid-ORC system performance, 

the quantification of the overall system sensitivity with respect to these parameters and the incorporation 

of sensitivity metrics during the decision-making involved in the optimum working fluid selection. The 

proposed method identifies ORC process performance areas that present steeper or smoother changes for 

different fluids under the simultaneous influence of multiple different parameters for each fluid and 
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determines the parameters with the highest influence in the changes. The method was implemented in the 

selection of optimum ORC working fluid mixtures and may be also be used for the selection of pure 

working fluids. It is based on the development of a sensitivity matrix which incorporates the derivatives of 

the ORC performance measures (e.g., thermal or exergetic efficiency etc.) with respect to model 

parameters and constitutes a measure of the variation of the employed model under the influence of 

infinitesimal changes imposed on model parameters. The sensitivity matrix is decomposed into major 

directions of variability to identify the largest in magnitude eigenvector. This represents the dominant 

direction of variability for the system, causing the largest change in the performance measures. The 

entries in the dominant eigenvector determine the major direction of variability in the multiparametric 

space and indicate the impact of each parameter in this direction. Having identified this direction it is 

not necessary to explore all directions of variability (i.e., combinations of parameters) arbitrarily hence 

reducing the dimensionality of the sensitivity analysis problem. The dominant eigenvector is then 

exploited in a sensitivity index which accounts for all performance indices simultaneously within a wide 

variation range explored also through an appropriate parameter. In this respect, the optimum working 

fluid mixtures which resulted from CAMD were also evaluated in terms of the accuracy in the 

performance predictions. Some mixtures that exhibited high ORC performance seemed to be very 

sensitive in changes in certain model input parameters; in case that these parameter values are not 

sufficiently accurate the predicted performance will drop significantly. The predicted performance of 

several other mixtures that exhibited low sensitivity would not be affected even if the model input 

parameter values were less accurate. 

3.6. Simultaneous vs. Integrated Design Approaches 

The reviewed cases reveal that the design and/or selection of working fluids follows two  

major approaches: 

 An approach that supports the simultaneous working fluid and ORC design and/or selection 

(Palma-Flores et al. [43]; Lampe et al. [44,45]; Papadopoulos et al. [18,19]; Molina-Thierry and 

Flores-Tlacuahuac [51]). 

 An approach that supports the integrated working fluid and ORC design and/or selection 

(Papadopoulos et al. [4,5,37]). 

In most of the above cases the pure or mixed working fluid structure(s) are designed using a CAMD 

approach. There is also an option of determining an optimum pure working fluid or the mixture 

composition and concentration from a pre-specified list of working fluids (of known structures) or their 

combinations. This may be done either through a simultaneous or an integrated approach. 

 The meaning of simultaneous is that decisions regarding the working fluid structure, composition 

or concentration (in case of mixtures) are taken within the same optimization algorithm that 

identifies the optimum ORC operating and/or sizing characteristics. The advantage of a 

simultaneous approach is that the working fluid and ORC interactions are accounted for together 

and drive the optimization search to identify an optimum solution. This is reasonable because a 

working fluid is an inherent component of the ORC system in which it is utilized. However, 

simultaneous approaches may suffer from combinatorial complexity if the design options in both 
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the working fluid and ORC sides are extensive. The relevant reviewed works incorporate a basic 

ORC structure into working fluid design in order to identify fluids directly based on their impact 

in the ORC process. It would be ideal to also consider the structural characteristics of the ORC 

(e.g., recuperation, pressure levels etc.) simultaneously with working fluid design but this would 

lead to an intractable optimization problem due to the vast number of potential options and the 

non-linearities of the employed models. For example, Palma-Flores et al. [43] consider more 

complex ORC structures in simulations performed after the optimum working fluids  

were identified. 

 The meaning of an integrated design approach is that working fluids are first designed using fluid 

properties as objective functions and the obtained fluid(s) are then introduced in a full ORC model 

simulation or optimization, as in the case of pure fluid design presented in Papadopoulos  

et al. [4,5]. Integrated design approaches evolved from the need to decompose the CAMD and 

process design problems so that an extensive search space (e.g., working fluid and process 

structures, operating parameters etc.) may be considered within reasonable computational 

efficiency. The key to the efficient integration of a CAMD and a process design stage is to identify 

the working fluid(s) that will subsequently facilitate high performance in ORC optimization, while 

avoiding the premature exclusion of useful fluid options. In a broader sense simultaneous approaches 

could become part of the problem decomposition rationale employed in integrated approaches. This 

is because at some point optimum working fluids and process characteristics obtained from the 

simultaneous design stage will have to be transferred to a subsequent, independent design stage to 

perform optimizations either using more detailed and realistic models or exploring a much wider 

design space. Integrated approaches address the problem of obtaining and transferring useful and 

inclusive design information in the subsequent stage. 

Table 3. Merits and shortcomings of considered methods and objective functions in fluids design. 

 Merits Shortcomings 

Fluid selection from 

a pre-specified list 

Few options to investigate in an optimum selection 

problem of reduced size, ORC model may be used, 

selection may also be based only on molecular properties, 

commercially available fluids may be used directly 

The consideration of few options limits the search, 

arbitrarily excluded working fluids may be the 

ones that maximize ORC performance, novel 

working fluids may not be identified 

Simultaneous 

design methods 

Directly link molecular characteristics with ORC process 

performance, novel working fluids may be identified 

Require an ORC model, which may however 

reduce computational efficiency if modeling rigor 

is increased 

Integrated design 

methods 

Enable the consideration of a more extensive design 

space and/or more detailed models in each design stage, 

maintain manageable computational effort, novel 

working fluids may be identified 

Require efficient integration between stages to avoid 

excluding important designs early on in the search 

Molecular 

properties as 

objectives 

Easy to calculate and implement through GC methods, 

no need for an ORC model, appropriate for CAMD and 

multi-objective formulations 

Indirectly reflect on ORC process performance 

characteristics, not appropriate for use in  

single-objective formulations 
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Table 3. Cont. 

 Merits Shortcomings 

ORC process 

performance 

indices as 

objectives 

Directly link CAMD with ORC performance, provide 

associations with cost/profit characteristics (e.g., net 

generated work) or direct use of them, support more 

realistic solutions when more detailed models are used 

Detailed ORC models may impact on computational 

efficiency, associations to cost/profit through less 

detailed models may be limited to specific ORC 

characteristics, overlooking other important costs, 

depending on the model detail 

Single-objective 

formulations 
Easy to implement, result in a single optimum solution 

The use of different properties as the objective 

function is likely to result in different optimum 

working fluids 

Multi-objective 

formulations 

Handle multiple and often conflicting objectives 

simultaneously, result in a rich set of working fluids, 

appropriate for molecular properties 

More difficult to implement than  

single-objective formulation 

Table 3 provides an overview of merits and shortcomings. Note that simultaneous and integrated 

approaches are not related to the type of the employed optimization algorithm which may either be 

stochastic such as Simulated Annealing etc. (Papadopoulos and Linke [52]) or deterministic such as 

NLP- or MINLP-based algorithms etc. (Cavazzuti [53]) in both cases. Optimization algorithms are 

discussed in the next section. 

3.7. Single- vs. Multi-objective Optimization and Types of Objective Functions 

Regardless of the employed approach, molecular properties are often used as working fluid screening 

or design criteria because they indirectly reflect on ORC process performance. For example, high 

working fluid density may enable a reduction in the required fluid amount hence equipment of lower 

size may be used. High thermal conductivity enables heat exchangers of lower areas and so forth. In 

single-objective optimization formulations the use of a molecular property as objective function may 

lead to optimum working fluids which are different depending on the selected property. They may also 

be different to the results obtained from a simultaneous approach. These challenges are best addressed 

by the use of a multi-objective optimization formulation in the working fluid design stage (Table 3). In 

such a case: 

 There is no need to select one of the properties as an objective function in order to guide CAMD 

into the identification of a single optimum molecule, while there is no need to set upper and lower 

bounds (which are often not known a priori) in the remaining properties which are used as 

constraints. This is very important because there are many working fluid properties that may be 

considered as objective functions and a multi-objective formulation does not have limitations on 

how many may be included. 

 Such an approach results in a Pareto front which consists of many working fluids, instead of one 

obtained in a single-objective case. The Pareto fluids represent multi-fold and rich trade-offs in the 

entire ORC performance spectrum. They can be incorporated as discrete options in a subsequent 

comprehensive ORC design stage (see next section) where the optimization and computational 

efficiency remain manageable (Papadopoulos and Linke [16]). 
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As shown in Table 1 the optimum working fluids obtained from the integrated design approach of 

Papadopoulos et al. [4,5] are very similar to those obtained by the simultaneous approach of Lampe  

et al. [44,45]. Papadopoulos et al. [4,5] were able to capture such working fluids without the use of an 

ORC model in the course of working fluid CAMD (hence the computations were fast) due to the use of 

multiple property objective functions. Note that the results are comparable because the heat source 

temperatures are quite close and the fluids are pure. Papadopoulos et al. [37] reported that for heat source 

temperatures between 70–90 °C the rank ordering of working fluids in terms of ORC performance 

remained the same. Similar findings with respect to the selected fluids have been previously reported by 

Papadopoulos and Linke [38] who compared a simultaneous and an integrated multi-objective CAMD 

approach in a different application (i.e., solvents for industrial separations). 

The type of properties that could be used as objective functions in a single- or multi-objective CAMD 

working fluid formulation have been thoroughly discussed in Stijepovic et al. [17], while insights have 

also been discussed in Papadopoulos et al. [4] and Palma-Flores et al. [43]. 

In the case of pure fluids: 

 Stijepovic et al. [17] investigated the impact of different working fluid properties in the cycle 

thermal, exergetic efficiency and economics as a function of heat transfer areas and net generated 

work. It was found that high values of fluid compressibility factor and low values of saturated 

liquid molar volumes favor all three criteria. Fluids of high molecular weights favor thermal 

efficiency and of high isobaric heat capacities favor exergetic efficiency and economic performance, 

whereas low enthalpy of vaporization also favors the same criteria. Low critical pressure, high 

saturated liquid thermal conductivity and saturated gas volume favor economic performance. 

 Palma-Flores et al. [43] report that the molecules resulting from minimization of liquid heat 

capacity and of a complex objective that combines a weighted sum of enthalpy of vaporization, 

liquid heat capacity and standard Gibbs energy of formation of an ideal gas result in higher thermal 

efficiency and work output. 

In the case of mixtures: 

 Papadopoulos et al. [18] finds that exergetic efficiency increases at a higher rate than thermal 

efficiency decreases, as the concentration moves from pure component to approximately equal 

amounts of components in the mixture. The use of a multi-objective approach appears helpful. 

 Molina-Thierry and Flores-Tlacuahuac [51] find that the first law efficiency is the most appropriate 

objective to use in a single objective formulation. 

Note that objective functions associated with costs are clearly useful but difficult to use when the 

goal is to design or screen for efficient working fluids. Even when an ORC model is used as part of 

working fluid design it is mainly based on a thermodynamic representation which indirectly associates 

cost with indices like net generated power. Papadopoulos et al. [4] note that about 90% of process costs 

are associated with heat exchangers. Although it would be desirable to calculate heat exchanger areas in 

the course of working fluid design, it is not practical mainly due to data limitations (e.g., heat transfer 

coefficients etc.). Furthermore, there are also numerous and complex economic performance indices 

which influence the optimum solution but are impractical to use in working fluid design due to 

limitations in the rigor of the employed model. Kasaš et al. [54] note that only those process models with 
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sufficient levels of accuracy are suitable for generating proper optimal designs using the correct 

economic criterion. Such issues are discussed in the next section. 

4. Optimization Approaches for Organic Rankine Cycles 

4.1. Main Concepts and Computational Challenges 

The careful selection of the working fluid is instrumental to the performance of the ORC as discussed 

above. Equally importantly, an ORC process configuration needs to be determined to enable efficient 

power generation for the given heat source(s). In addition, the cycle operating conditions need to be set 

such that the chosen performance criterion is maximized. The overall design problem requires discrete 

decisions on the selection of structural design alternatives such as alternative heat exchanger options or 

selection of the number of cycles to integrate as well as optimization of the continuous variables 

associated with operating conditions and equipment sizes. Systematic approaches can aid the exploration 

of the design options to guide the identification and selection of efficient overall designs. The 

computational challenges are similar to those observed in working fluid design. A very large number of 

structural and operating options need to be considered as part of the ORC flowsheet in order to identify 

an optimum system of high efficiency, whereas sufficiently accurate process models are also required 

so that the obtained designs are realistic. The three general model types that may be considered for the 

design of ORCs involve (Figure 5): 

(a) Computational fluid dynamic (CFD) models for detailed equipment design [55]. 

(b) Process level models that incorporate thermodynamic calculations with equipment details for 

equipment sizing within the flowsheet. 

(c) Thermodynamic cycle models which account for energy balances and phase change operations. 

 

Figure 5. Equipment, process and flowsheet models with respect to modeling detail and range 

of design decision options which may be simulated at a reasonable computational effort. 

The simultaneous utilization of representatives from all model types would be ideal but 

computationally impractical. Each model type may be used independently but not all types are suitable 

for the optimum design of ORC flowsheets. CFD models capture local heat and/or mass transfer 

phenomena within the equipment with great detail, but the computations are time consuming. Process 

level sizing models enable the consideration of economic performance measures to evaluate different 

flowsheet alternatives and allow the consideration of an increased range of decision options within 
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reasonable computational efficiency. However, the use of such models in the course of working fluid 

design or selection (i.e., with the molecular structure as an additional design parameter) may be limited 

by the lack of data (e.g., prediction models of heat transfer coefficients for different working fluids are 

quite complex [56]) and by the high combinatorial complexity of the design problem. Finally, 

thermodynamic analysis models enable the consideration of a much wider range of process and 

flowsheet design decision options, they have been used in the course of working fluid design as shown 

in the previous section and provide useful insights about different ORC flowsheet configurations prior 

to proceeding into a more rigorous evaluation. 

The literature is abound with works that explore cycle operating conditions and structures largely 

through sensitivity analyses via repeat simulation studies to identify efficient settings for selected 

designs and given heat sources and sinks. The limitation of such contributions lies in the need for prior 

knowledge of an ORC configuration which may lead to good performance. Although empirical 

knowledge is very useful, the trial-and-error testing of different ORC configurations is likely to enable 

incremental performance improvement. Such contributions will not be reviewed here; instead, we will 

limit our focus to emerging systematic approaches to design efficient ORC systems. A number of such 

optimization-based approaches have been proposed in the last few years. The general ORC design 

optimization problem for such approaches can be stated as: Given a heat source stream and ambient 

conditions, determine the optimal cycle configuration and design parameters that maximize ORC 

performance with respect to chosen performance criteria. Notice that in this formulation it is not 

necessary to pre-specify an ORC structural or operating profile that will be optimized. Structural and 

operating ORC parameters may become decision variables in an optimization search which is guided 

toward the optimum solution by the chosen performance criteria through an algorithmic sequence. This 

does not eliminate the need for empirical knowledge which may be used to focus the design space into 

significant decision options or to interpret the design results in terms of their practical applicability. 

Earlier works focus at optimizing the design and/or operating parameters of ORC systems, whilst the 

most recent contributions attempt to consider alternative configurations in optimization approaches. 

4.2. Reviewed Approaches 

The reviewed works are organized into three categories based on the way that the cycle and working 

fluids are selected (Tables 4–6). Franco and Villani [57] were amongst the first to present an optimization 

scheme to help the identification of efficient design parameters for an ORC in a binary geothermal power 

plant. They propose to decompose the ORC optimization problem into three subsystems, the heat 

recovery cycle, the heat recovery exchanger and the cooling section. The three subsystems are evaluated 

in an overall iterative scheme where operating characteristics of the cycle are determined based on the 

optimization of the heat recovery and cooling system sizes. The performance measures are the first and 

second law efficiencies as well as the brine consumption from implementation of the system for a 

geothermal heat source. Six pre-selected working fluids are considered together with three ORC 

structures (supercritical, dual pressure level, ORC with superheater) which are all evaluated. Details on the 

implementation of the optimal search and convergence properties have not been provided. 

With a different application focus, Salcedo et al. [58] propose a multi-objective optimization 

formulation for an integrated system of a solar ORC and a reverse osmosis desalination plant. The 
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approach allows to explore the equipment sizes and operational conditions of a predefined system 

configuration and considers two objectives: Cost of water produced and the life cycle global warming 

potential. The resulting MINLP problem is solved by exhaustive enumeration using a deterministic 

nonlinear optimization algorithm. With respect to a standard ORC configuration, Wang et al. [59] 

propose an optimization approach to determine optimal design parameters using global search schemes 

in the form of meta-heuristics. The approach allows one to determine the optimal turbine inlet pressure 

and temperature as well as temperatures against heat sources and sinks. The ratio of net work to heat 

transfer as an indicator of cost is maximized as the design objective. A Genetic Algorithm is 

implemented to solve the nonlinear continuous optimization problem.  

Table 4. Cycle operating/sizing parameters are optimized for different, pre-determined cycle 

structure and working fluid combinations. 

Authors Optimization Approach Decision Parameters Objective Functions 

Franco and 

Villani [57] 

Iterative hierarchical 

identification of optimum 

ORC size and operating 

parameters for each 

combination 

Six pure working fluids, sizes of 

cooling systems and recovery heat 

exchanger, three cycle structures 

(supercritical, dual pressure level, ORC 

with superheater)  

First, second law efficiency, 

brine consumption 

Salcedo  

et al. [58] 

MINLP problem, deterministic 

nonlinear algorithm 

Equipment sizes, operating conditions, 

one cycle structure 

Cost of water produced in 

desalination plant, global 

warming potential 

Wang et al. 

[59–61] 

Genetic algorithm [59,62],  

multi-objective genetic 

algorithm [60,61] 

Turbine inlet pressure and temperature, 

temperatures against heat sources and 

sinks [59,60], geometry of ORC heat 

exchanger [61], one cycle structure 

Net power output to total 

heat transfer area [59], 

exergetic efficiency and 

capital cost [60], pressure 

drop, heat transfer area [61] 

Xi et al. [62] Genetic Algorithm 

Three regenerative cycle structures, six 

pure working fluids, operating 

parameters 

Exergetic efficiency 

Walraven  

et al. [63,64] 
Deterministic NLP 

Eight pure working fluids, tube 

diameters, baffle spacing in heat 

exchangers, two different cycle 

structures 

Levelized cost of electricity 

[63], net present value [64] 

Victor  

et al. [30] 
Simulated Annealing 

Composition of working fluid mixture, 

ORC, Kalina cycle 
Thermal efficiency 

Wang et al. [60] later proposed the solution of a problem considering two objectives simultaneously, 

the exergetic efficiency and the capital cost. The Pareto frontier is determined using a multi-objective 

Genetic Algorithm. Xi et al. [62] propose a Genetic Algorithm based approach for parameter optimization 

of regenerative ORC configurations to achieve maximum exergetic efficiency.  

The application of the approach is illustrated with a study of three different cycle configurations and six 

different working fluids in an exhaustive search. At the level of equipment design, Wang et al. [61] 

optimize the geometry of ORC plate heat exchanger condensers using a multi-objective Genetic Algorithm 

to explore the nondominated solutions with respect to pressure drop and heat transfer area. 
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Walraven et al. [63] present a parameter optimization scheme for single and multi-pressure ORCs 

that takes into account the geometry of shell-and-tube heat exchangers for the heat recovery section as 

well as models for dry cooling. Multi-pressure ORCs are represented by flowsheets where the working 

fluid is compressed in two or more loops at different temperature levels. Dry cooling refers to air cooled 

condensers. In contrast to the more prominent global search algorithms based on meta-heuristics, the 

optimization problem is solved using a local deterministic NLP solver to determine the optimized ORC 

design parameters such as tube diameters and baffle spacing that yield the maximum Net Present Value 

of the system. Structural variants are again explored through repeat solutions of pre-selected 

configurations. Earlier, Walraven et al. [64] presented a similar optimization scheme that uses the 

Levelized Cost of Electricity as the objective function taking into consideration wet and air cooling.  

Wet cooling refers to a water-cooled tower. 

Moving beyond pure component working fluids, Victor et al. [30] consider ORCs and Kalina cycles 

with working fluid mixtures and propose an optimization approach to determine the optimum working fluid 

composition that maximizes the thermal efficiency of the cycle. The optimization problem is implemented 

using the Simulated Annealing meta-heuristic to perform a global search of the solution space. 

Gerber and Marechal [65] proposed a multi-period, multi-objective optimization approach to 

determine optimal configurations for geothermal systems while accounting for seasonality. Multi-period 

optimization is used to enable the incorporation of parameter variation in the design procedure. The 

optimization is based on the expected value of the objective function for a given parameter variability. 

Usually, parameter variation is imposed through the consideration of multiple parameter realizations taken 

from the selected parameter space as discrete instances of the plant (periods) [66]. The overall approach 

employs an evolutionary algorithm across the multiple periods considered and draws on process integration 

approaches and the solution of single period mixed-integer linear programming (MILP) problems to 

determine the optimal configurations with respect to objective functions including the investment and 

operating cost and the exergetic and energetic efficiency. The problem involves the selection or 

combination of different energy technologies for the exploitation of geothermal fields at different depths. 

Among other technologies, two ORCs are considered, one single-loop and one with intermediate  

draw-off. The decision parameters for the ORCs involve the evaporation and saturation temperature in 

both cases as well as draw-off split fraction and condensation temperature in the second case. 

Taking into account structural ORC design decisions, Pierobon et al. [67] propose an optimization 

approach to simultaneously explore design parameters and structural alternatives for ORC 

configurations and single working fluid options from a predefined set of candidates. The approach 

implements a Genetic Algorithm to simultaneously explore the design space for three objective 

functions: The Net present Value, the total system volume and thermal efficiency. The approach 

simultaneously determines the best working fluid from a predefined set, sizes the heat exchangers, and 

determines the temperature and pressure settings of the cycle. Larsen et al. [68] present a variation of 

the work to simultaneously explore alternatives for ORC configurations in terms of internal heat 

recovery and superheating options. A data set of 109 working fluids is screened before the optimization 

based on thermodynamic and hazard criteria. Few working fluids are optimized simultaneously with the 

ORC structural and operating options. Both works study waste heat recovery on an offshore platform to 

illustrate the approach. 
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Most recently, Clarke and McLeskey [69] have proposed a multi-objective optimization approach for 

ORC system design. Their approach allows to simultaneously consider two objective functions, the 

specific work output of the ORC and the specific heat exchanger area, and six decision variables: The 

choice of alternative working fluids out of a predefined set of 17 candidates, the evaporation temperature, 

the minimum approach temperature, the effectiveness of the superheater, the effectiveness of the 

recuperator and the temperature difference in the condenser. The Pareto front is developed using a 

Particle Swarm optimization algorithm which has been implemented for geothermal power generation. 

The benefit from the optimization tool in exploring the design options is highlighted. 

Table 5. Optimum cycle structure, operating/sizing parameters and working fluids are 

selected simultaneously from a pre-determined set of options. 

Authors Optimization Approach Decision Parameters Objective Functions 

Gerber and 

Marechal [65] 

Multi-period, multi-objective, 

evolutionary algorithm across 

multiple periods, MILP in 

single periods (cycle structure 

and operation) 

Two cycle structures (single-loop, 

intermediate draw-off), evaporation and 

saturation temperature (both structures), draw-

off split fraction and condensation temperature 

(2nd structure) 

Investment and 

operating cost, 

exergetic and 

energetic efficiency 

Pierobon  

et al. [67] 

Genetic algorithm (cycle 

operation and working fluid) 

Five pure working fluids, size of heat 

exchangers, turbine inlet pressure and 

temperature, the condensing temperature, 

pinch points, superheating temperature 

difference, target velocities in heat exchangers 

Thermal efficiency, 

total system volume, 

net present value 

Larsen  

et al. [68] 

Genetic algorithm (cycle 

structure, operation and 

working fluid) 

Set of working fluids, structures with 

recuperation and/or superheating 
Thermal efficiency 

Clarke and 

McLeskey 

[69] 

Multi-objective particle 

swarm (cycle operation and 

working fluid) 

Seventeen working fluids, evaporation 

temperature, minimum approach temperature, 

effectiveness of superheater and recuperator, 

temperature difference in condenser 

Specific work output, 

specific heat 

exchanger area 

The methods presented thus far aim at the optimization of fixed ORC configurations with a pure 

working fluid. In a recent attempt to broaden the search towards including a broader set of structural 

design candidates, Stijepovic et al. [70] propose a method for the optimal design of multi-pressure ORCs 

to generate power form a single heat source stream. The approach draws on the Exergy Composite 

Approach by Linnhoff and Dhole [71] to formulate an optimization problem that is repeatedly solved to 

determine the ORC configuration and its optimal operating conditions with minimum exergy loss and 

maximum work output. The work considers both induction and expansion turbines. The presented results 

highlight significant performance improvements of the developed multi-pressure ORC configurations 

over the standard single-pressure ORC configuration. Toffolo [72] proposes an optimization approach 

to determine optimal configurations and design parameters for ORCs that absorb and release heat at 

different temperatures. The approach combines a Genetic Algorithm (GA) to screen configurations with 

a sequential quadratic programming (SQP) approach to determine design parameters. It is based on a 

generic flowsheet representation which may be used to determine different topologies including different 

numbers of pressure and expansion levels as well as heat exchange operations. 
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Table 6. Optimum cycle structure and operating/sizing parameters evolve during the 

optimization search; the optimum cycle structure is not pre-determined but results  

from optimization. 

Authors Optimization Approach Decision Parameters Objective Functions 

Stijepovic  

et al. [70] 

Iterative addition of pressure loops to 

optimize an evolving structure, 

deterministic NLP inside each loop to 

optimize the operating parameters 

Number of pressure loops, working 

fluid flowrates, saturation 

temperatures, evaporator outlet 

temperatures per loop, two expandable 

multi-pressure ORC configurations, 

type of turbine (induction, expansion) 

Exergy loss,  

work output 

Toffolo [72] 

Genetic algorithm to synthesize 

structure, sequential quadratic 

programming to optimize  

objective function 

Number and configuration of pressure 

loops, expansion and heat exchange 

stages 

Net generated 

electrical power 

4.3. ORC Process Structure Classes and Types 

In summary, the past five years have seen the emergence of optimal design approaches for ORCs. 

Based on the performed review these approaches may be broken down into three general classes: 

 Fixed flowsheet approaches: Those that focus on parameter optimization as well as on addressing 

equipment design decisions for a pre-specified ORC flowsheet. 

 Flowsheet selection approaches: Those that consider cycle operating and equipment design for 

different pre-specified flowsheets. In such cases the pre-specified flowsheet structures may be 

decision parameters in the optimization or each structure may be optimized separately, one-by-one 

in terms of operating and equipment characteristics. 

 Flowsheet design approaches: Those that have broadened the scope towards the inclusion of 

structural design decisions within the cycle. In such cases the flowsheet structure is not entirely  

pre-specified but a flexible structure gradually evolves into different configurations and the optimum 

flowsheet results from the optimization, together with operating and equipment characteristics. 

This trend is expected to continue to yield systematic design approaches that can simultaneously 

consider the design parameters together with structural design alternatives associated with multiple 

working fluids, multiple integrated cycles and multiple pressure levels. The availability of such methods 

will be instrumental to the quick determination of optimal ORC-based power generation schemes for 

any given heat source and sink. A recent review by Lecompte et al. [73] provides an elaboration of 

several ORC structures studied in literature, based on the goals that they intend to address: 

 Structures that intend to decrease irreversibility and match the temperature profiles between heat 

source and the working fluid involve transcritical cycles, trilateral cycles, cycles with zeotropic 

mixtures as working fluids, cycles with multiple evaporation pressures, organic flash cycles and 

cascade cycles. 

 Structures that intend to increase thermal efficiency by maximizing the mean temperature difference 

between heat addition and heat rejection involve cycles with the addition of a recuperator, 

Regenerative cycles with turbine bleeding, cycles with reheaters and cycles with vapor injector. 
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4.4. Stochastic vs. Deterministic Optimization Methods 

The key practical issues to be considered in the selection of an appropriate optimization method are 

the existence of integer and/or continuous design variables, of non-linearities (e.g., convexities or  

non-convexities) in the employed working fluid or ORC models and the quality of the obtained solutions 

(globally vs. locally optimum solutions). The two main existing categories are deterministic and 

stochastic optimization methods [53] (Table 7). 

 Deterministic optimization methods exploit analytical properties (e.g., convexity and 

monotonicity) of the problem to generate a deterministic sequence of points converging to an (local 

or global) optimal solution [74]. They are often represented through variations of NLP (continuous 

variables) and MINLP (integer and continuous variables) problem formulations, although there 

are also several other problem classes [75]. They provide insights regarding the local [74] or global 

optimality of a solution through analytical mathematical conditions [75]. From a practical 

perspective they require a lower number of objective function evaluations to reach an optimum 

solution than stochastic methods and enable the identification of locally [53] or globally [75] 

optimum solutions in non-convex problems. Limitations of these methods involve the 

computationally intensive use of derivative transformations and difficulties in the initialization of 

simulations when complex models are considered. A fundamental issue of deterministic methods 

is to transcend local optimality [74] hence the development of mechanisms to prevent the 

convergence in local optima in highly non-convex problems is also a very active research field [76]. 

 Stochastic optimization methods, i.e., methods for which the outcome is random, are particularly 

suited for problems that possess no known structure that can be exploited. These methods generally 

require little or no additional assumptions on the optimization problem [74]. The three main classes 

of stochastic methods are: Two-phase methods, random search methods, and random function 

methods [74]. The most well-known representatives of stochastic methods are Genetic Algorithms 

and Simulated Annealing [52,53] which are also called metaheuristics. Simulated Annealing is a 

typical representative of random search methods which is easily implementable, robust and 

applicable to a very general class of global optimization problems [74]. Metaheuristics usually 

emulate physical systems in order to explore the solution space of a given problem and identify 

the optimum solution through a series of probabilistic transformations. These methods do not 

suffer from the same limitations as the deterministic methods because their inherent mathematical 

operations are simple, their algorithmic mechanisms provide venues to target the globally optimal 

domain and discrete design parameters are handled easier. They can even be applied to  

ill-structured problems for which no efficient local search procedures exist [74]. However, the lack 

of these limitations is traded-off for convergence to a distribution of nearly optimal solutions and 

sometimes for long computational times required for the implementation of the stochastic runs. 

These characteristics are not necessarily shortcomings as the distribution of nearly optimal 

scenarios provides statistical guarantees for the quality of the solutions. These methods are very 

useful at early design stages when there is a vast number of discrete or continuous decision options 

to be investigated. The existence of multiple close-to-target optimum solutions provides valuable 

design insights into the problem which can be reviewed and analyzed by users prior to transferring 
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meaningful conclusions onto a subsequent stage where the design problem can be defined with 

considerably less uncertainty. 

Table 7. Merits and shortcomings of considered methods and objective functions in process optimization. 

 Merits Shortcomings 

Deterministic 

methods 

Fewer function evaluations than stochastic 

methods to reach an optimum, analytical 

mathematical determination of local or  

global optimum 

Intensive computations, difficult simulation 

initialization in non-convex models, mechanisms to 

avoid local optima is an active research field, 

require knowledge of analytical problem properties 

(e.g., convexity, monotonicity) 

Stochastic 

methods 

Suitable for early stage design with extensive and 

discretized design spaces, easier to implement 

than deterministic methods, no knowledge of 

optimization problem structure is required, rich 

design insights from close but different  

optimum solutions 

Larger number of function evaluations to identify 

optimum solution, statistical assessment of  

solution optimality 

Single-objective 

formulations 

Easy to implement, result in a single  

optimum solution 

Need for well-defined problems, use of different 

objective functions results in different designs, an 

appropriate objective function needs to be selected 

Multi-objective 

formulations 

Handle multiple and often conflicting objectives 

simultaneously, results in a rich set of finite 

designs representing important trade-offs 

More difficult to implement than  

single-objective formulation 

Thermodynamic 

objectives 

Useful for early design stages using less rigorous 

process models 

Appropriate objectives need to be selected and 

combined, indirect and approximate association 

with costs 

Economic 

objectives 

Support detailed and realistic designs when used 

with sufficiently detailed process models 

More complex objectives than cost or profit may be 

needed, appropriate objectives should be selected 

based on optimization formulations and goals 

In the reviewed works the preference for global search algorithms based on meta-heurists such as 

Genetic Algorithms, Simulated Annealing or Particle Swarm Optimization over deterministic optimization 

algorithms is noticeable. Approaches based on deterministic global optimization techniques [75] remain 

yet to be implemented for ORC design problems. Among different software packages, the GAMS 

software (www.gams.com) includes several deterministic optimization solvers, while MATLAB 

(www.mathworks.com) includes both deterministic and stochastic solvers. 

4.5. Single- vs. Multi-Objective Optimization and Types of Objective Functions 

Another observation is the use of multi-objective optimization approaches which allows the 

simultaneous consideration of several different performance measures. Multi-objective optimization is 

important when the use of objective functions associated with economics involves high uncertainty 

(e.g., in cases of thermodynamic analysis or prior to sizing) and is often replaced by the simultaneous 

consideration of objectives such as exergetic and energetic efficiency. This method is also important 

when sustainability objectives need to be considered simultaneously with economics. Sustainability 

considerations are often in conflict with economics because they increase the associated costs. Such 
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trade-offs are unveiled using multi-objective optimization. Merits and shortcomings of such 

formulations as well as objective function types are summarized in Table 7. 

In ORC design the choice of the objective function is very important. In some reviewed cases 

exergetic and thermal efficiency are used as design criteria but almost always together with some other 

index that is related with cost. From a thermodynamic perspective, two major and general objectives 

were mentioned in Section 4.3 as part of the work presented by Lecompte et al. [73] in terms of different 

ORC structures. In terms of economics, Novak Pintarič and Kravanja [77] mention that minimization of 

costs and maximization of profit are the most frequently used economic criteria in the design of industrial 

process systems. However, there are many other financial measures which can lead to different optimal 

solutions if applied in the objective function. Such measures involve the total annual cost (TAC), profit 

before taxes (PBT), payback time (PT), return on investment (ROI), net present value (NPV), internal 

rate of return (IRR) and equivalent annual cost (EAC). Novak Pintarič and Kravanja [78] extend their 

work to investigate the impact of using such criteria in single- and multi-objective optimization 

approaches. They break down the economic criteria into three classes: (a) Qualitative or non-monetary 

criteria (e.g., IRR or PT), (b) Quantitative or monetary criteria (e.g., Profit and TAC) and (c) 

Compromise criteria (e.g., NPV and TAC or Profit using depreciation with the annualization factor). 

The authors generally conclude that the NPV is the most appropriate objective function to use. Even so, 

sufficiently accurate process models are necessary so that the obtained results are both optimum and realistic. 

 In single-objective optimization, they find that the Compromise criteria (NPV) are the most 

suitable because the obtained designs enable a fair compromise between profitability, operational 

efficiency, and environmental performance. The other criteria either favor solutions with small 

capital investment and cash flow but fast payback time and high profitability (Qualitative criteria) 

or vice versa (Quantitative criteria). 

 In multi-objective optimization the NPV results in Pareto optimum designs that are close to the 

environmentally friendliest designs obtained by Quantitative criteria (e.g., Profit or TAC). On the 

other hand, the Qualitative criteria unveil environmental trade-offs in a much wider range. 

5. Operation and Control of ORC Systems 

5.1. Main Concepts and Computational Challenges 

ORC systems operate in perpetually changing environments and therefore their operation should be 

constantly monitored and controlled. The main source of variation affecting the operation of ORC is the 

quality of the heat source. The heat source may experience changes in the flow rate and the temperature 

influencing the enthalpy content of the stream. Such changes would impact the degree of superheating in the 

outlet stream of the evaporator and the efficiency of the overall cycle. Other sources of variation in ORC are 

the efficiencies of the pump and the expander, and the heat transfer coefficients in the heat exchangers. 

Feedback control is the main concept behind the maintenance of the controlled variables at predefined 

levels despite the influence of multiple and continuous disturbances. The key idea in feedback control is 

the utilization of the most recent information about the state of the plant through sensible and reliable 

measurements of the controlled variables. The controller actions are determined using the calculated 

deviation of the controlled variables from predefined set points (i.e., reference points). The main 
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objective of process control remains the transfer of process variability from the most important in terms 

of profitability and product quality process streams and variables to process streams and variables of 

reduced importance. Such streams that are the recipients of the variability on valuable and therefore 

important variables are usually utility and auxiliary streams (e.g., air or water cooling streams, bypass 

streams, working fluid flowrate). For instance, in an ORC system variability in the heat source is 

transferred to the electric power generator which is attached to the expander. Electric power is usually 

intended to satisfy a critical specification on the power load. Therefore, variability in the power 

generation may be attenuated by the control system by manipulating the flow rate of the working fluid 

and/or the expander bypass stream. Obviously, either action would also affect the working fluid 

condensation and the cooling requirements in the condenser usually imposed by an air cooling system. 

Feedback control operates in order to correct any deviations of the controlled variables from 

predefined set point levels after the effects of exogenous disturbances on the controlled variables has 

been sensed by the measurement sensors. The controller action is computed based on the calculated 

deviation from a pre-defined set point (i.e., error in the controlled variables). Linear analysis of the 

outlined dynamic system with either Laplace transform or state space formulation are the most 

commonly used practices to analyze and investigate the process dynamics and interactions [79]. Overall 

plant dynamics include the dynamics of the associated process units such as heat exchangers, pumps, 

expanders and so forth, the implemented controllers, the incorporated actuators, and the installed sensors. 

The process representation by transfer functions through a Laplace transform of the governing 

differential equations enables the evaluation of the system dynamic characteristics. Alternatively, a state 

space representation enables the representation of multiple input, multiple output systems. Several controller 

design methods are available that aim to achieve the desired dynamic performance for the system [80]. 

Real time control applications are usually based on a control law that has been offline calculated. In 

this aspect, online calculations are limited to the evaluation of the control actions in a multi-loop fashion, 

where one manipulated variables is used to regulate one controlled variable, with minimal computational 

effort. This feature enables the implementation of a relatively small control interval; the time interval 

that a new control action is calculated and implemented in the system. However, such control systems 

must be designed with provisions to perform adequately even though the process has shifted away from 

the nominal operating point (e.g., due to a change in the power level) or process parameters have varied 

significantly during operation (e.g., due to fouling in the heat exchanger or other process equipment 

malfunctions). On the contrary, model-based control systems utilize at real time process model predictions 

that enable the controller to allocate the control effort in multi-variable systems optimally [81]. The 

achieved controller dynamic performance can be significantly improved over multi-loop approaches 

because input-output interactions are explicitly taken into consideration but at the expense of increased 

computational effort. Basically, dedicated control system can easily manage the involved computational 

effort, especially when the employed models are linear [82]. Nonlinear model predictive control  

systems [83] offer definitely improved accuracy of model predictions and therefore better control 

performance but require specialized solution algorithms for optimization and state estimation [84]. A 

schematic of the relationship between process detail involved in online control applications with the 

associated control effort is provided in Figure 6. 
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Figure 6. Control approaches with respect to process detail and real time computational effort. 

5.2. Dynamic Models 

Identifying the dynamics of ORC systems is important in the design and achieved performance of the 

control system. Process models that are based on first principles arising from the physical phenomena 

(e.g., heat transfer, compression, expansion) taking place in the ORC provide the most reliable and 

accurate description of the system behavior. The models are basically consisted of material, energy and 

momentum balances in dynamic mode accompanied with constitutive equations. However, the models 

involve a number of parameters associated with the physical and chemical phenomena (e.g., heat and 

mass transfer coefficients, expander and pump efficiencies, physical properties and so forth). The 

estimation of the model parameters requires the collection of experimental data from well-designed 

experiments with sufficiently rich information in calculating accurately the model parameters. The most 

reliable way for the parameter estimation is the fitting of the model response to the dynamic data using 

maximum likelihood principles and dynamic programming techniques. However, the development of a 

detailed mechanistic model can be replaced by empirical modeling performed using input-output data. 

This simplified technique requires the execution of experimental step changes in the input process 

variables while maintaining all other variables in manual operation [85]. The magnitude of the step 

change depends on the process nonlinearity and the measurement noise level in the measured variables. 

Depending on the shape of the output response of the process to an input step change, the order of the 

dynamic system can be identified. Most dynamic systems can be approximated as first-order models 

with dead-time [79]. Dead-time is the time it takes to observe the effect of an input signal change in the 

output variables. High order over-damped systems resemble the behavior of a first-order plus dead-time 

model and therefore it becomes an attractive modeling option. The estimation of the model parameters for 

such a model; namely the process gain, the time constant, and the dead-time, can be easily performed [86]. 

An alternative empirical model building is based on time series analysis [87]. Auto- and cross-correlation 

of time series can be utilized for the identification of the process model order whereas ordinary least 

squares and recursive least squares can be used for the estimation of the model parameters.  

Zhang et al. [88–90] have employed auto-regressive integrated moving average models in the control of 

ORC systems. 

In a typical ORC system the main source of dynamic characteristics are the evaporator and the 

condenser. The evaporator is a heat exchanger with single phase (preheating and superheating) and 

double phase (evaporation) regions. Twomey et al. [91] developed a dynamic model for a solar ORC 

using a scroll expander. The dynamic model based on first principles showed good agreement with 
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experimental data regarding power output, rotational speed, and exhaust temperature. The effect of the 

tank volume which is being heated by the circulation of the solar collector fluid and is acting as the heat 

source for the system is investigated. The validated model is utilized in the design of solar thermal 

cogeneration systems that satisfies the peak power demand. 

Wei et al. [92] attempted to capture the dynamics of the system heat exchangers using models based on 

moving boundary and discretization techniques. The moving horizon technique aims to identify the 

boundaries between a single (liquid or gas) and a two phase (gas and liquid) region within the evaporator 

by imposing explicit energy balances. In the discretization technique a number of computational cells is 

introduced within each region with the appropriate boundary conditions. The two methods are compared 

in terms of accuracy, complexity and simulation speed with the moving boundary technique exhibiting 

better characteristics for online control applications. However, the discretization methods appeared to be 

more suitable for the simulation of start-up and shut-down conditions. 

Similarly, Bamgbopa and Uzgoren [93] developed a dynamic model for the heat exchangers and static 

models for the pump and the expander and studied the power output for varying flow rate and 

temperature for the hot and cold sources in a system that employed R245fa as the working fluid. In a 

subsequent article by Bamgbopa and Uzgoren [94] the models were utilized to evaluate the steady state 

efficiency of a solar ORC system. The values for the decision variables (hot source flow rate and 

temperature, and working fluid flow rate) that maximize the overall efficiency of the system were 

determined. Regression models were developed to characterize the effectiveness of the system in terms 

of the ratio of the working fluid flowrate to the heat source flow rate and the heat source temperature at 

the inlet of the evaporator. Table 8 summarizes the employed modeling approaches and the purpose of 

the developed model. 

Table 8. Dynamic modeling approaches. 

Authors Modeling Method Equipment Purpose 

Quoilin et al. [85] Empirical (regression) Entire ORC system Control system design 

Zhang et al. [88–90] Empirical (regression) Entire ORC system Control system design 

Wei et al. [92] First principles Entire ORC system 
Start-up and shut-down 

simulations 

Bamgbopa and Uzgoren [93] First principles 
Heat exchangers (dynamic), 

pump expander (static) 

Power output 

computation 

Bamgbopa and Uzgoren [94] First principles Solar ORC Steady state efficiency 

5.3. Control Approaches 

Control systems for ORC can be generally categorized in multi-loop and multi-variable schemes. 

Quoilin et al. [95] proposed a series of control strategies for an ORC. Initially, a static model was used 

to determine the optimal evaporating temperature and superheating for a wide range of heat source and 

heat sink conditions. The manipulated variables in the system included the expander speed and the pump 

capacity. The optimal evaporator temperature was derived from a regression model and was followed 

by the control system consisted of two proportional-integral controllers. In another version of the control 

scheme a correlation was utilized for the pump capacity based on expander speed of rotation and the 
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heat and cool source temperature. This acts as a feedforward control system as the measurement of the 

expander speed was used to provide the set point for the working fluid flow rate. In this way the response 

of the control system was significantly faster. However, proper tuning of the controllers should be 

maintained in order to achieve stability. Simulated results verified that the control scheme that follows 

the optimal evaporation temperature trajectory exhibited superior performance. Peralez et al. [96] used 

a model based control scheme considering system inversion for the control of the superheating temperature 

which affects both cycle performance and system safety. The model inversion introduces a feedforward 

action in addition to the feedback controller to effectively compensate for disturbances in the evaporator. 

Kosmadakis et al. [97] discussed potential control strategies for double stage expanders in ORC systems. 

Multivariable control schemes have attracted the attention of researchers in the control of ORC systems 

because of the superior performance they exhibit in ORC applications [98]. Zhang et al. [88] developed a 

dynamic model with moving boundaries for the evaporator and the condenser. Subsequently, a linear state 

space model was derived for control system design purposes. The control objectives were the minimization 

of system interaction in order to achieve good disturbance rejection and the maximization of the overall 

system efficiency. For the latter, the degree of superheating in the evaporator and the condenser outlet 

temperatures were regulated. A linear quadratic regulator coupled with a PI (proportional-integral) 

controller have been designed and simulated for set point changes in the power output and the throttle 

valve pressure (i.e., pressure at the entrance of the expander) as well as the superheating and condenser 

temperatures. The PI controller maintained the condenser outlet temperature at the desired level. Similarly, 

disturbance rejection scenarios were investigated associated with hot gas stream velocity variation and 

throttle valve dynamics. Zhang et al. [99] extended the previous work by developing an extended observer 

that aims to provide accurate state estimates for the system. 

Zhang et al. [89] introduced a dynamic model for a waste heat recovery system based on ORC with 

R245fa as the working fluid. The first principles dynamic model was then converted to a CARIMA 

(controlled auto-regressive integrated moving average) model for use in a model predictive control 

scheme. The controlled variables in the multi variable control scheme were the system power output, the 

evaporator pressure, the superheating temperature, and the condenser temperature. These variables were 

controlled using the pump and expander rotating speeds and the air flow in the condenser. A constrained 

generalized predictive controller [100] was implemented which rejected disturbances and followed set 

point effectively. In a subsequent paper, Zhang et al. [90] introduced a constrained generalized predictive 

controller that considered bounds on both the manipulated and controlled variables as well as the rate of 

change for the manipulated variables. The performance of the controller has been evaluated for 

disturbances in the temperature and the flow rate of the heat source stream. Power output was maintained 

at the desired level despite the disturbances. Additionally, set point changes for the evaporator pressure, 

the superheating temperature and the condenser temperature were successfully tracked by the controller. 

In a recent work Hou et al. [101] introduced a minimum variance controller with real-time parameter 

estimation for a CARMA (controlled auto-regressive moving average) model. A recursive least squares 

technique was implemented for the parameter estimation. However, the proposed control scheme does 

not consider a model for the stochastic disturbances in the system. Uncertainties may play a significant 

role in the performance of the ORC system. Therefore, changes in the dynamic features should be 

monitored on-line using the measurements from the process. Additionally, the inherent nonlinearities in 

the system may make the predictions from linearized process models highly inaccurate. To this end, 
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Zhang et al. [88] proposed a state extended observer for the on-line update of states and model parameters. 

The updated model is then utilized in a linear quadratic regulator with a PI controller for the plant control. 

Table 9 summarizes the literature in control strategies of ORC systems. In conclusion, multi-loop 

control systems works efficiently when good conceptual and process knowledge is utilized based on 

prior system analysis. Multi-loop control systems are easily implemented and maintained but may 

require frequent tune-up to account for process changes and operating condition variations.  

Multi-variable control systems require the development of a dynamic process model that can provide 

accurate process behavior predictions over a wide range of operation conditions. The implementation is 

definitely more challenging but guarantees good control performance through the explicit consideration 

of process interactions. 

Table 9. Control approaches. 

Authors System Type Control Approach Manipulated/Controlled Parameters 

Quoilin  

et al. [95] 

Low grade ORC waste 

heat recovery 
PID (multi-loop) 

Pump speed, expander speed/evaporating 

temperature, superheating 

Peralez  

et al. [96] 

ORC waste heat 

recovery 
Nonlinear model inversion 

Exhaust gas by-pass valve, expander  

by-pass valve, pump speed, expander 

speed/Superheating temperature 

Hou  

et al. [101] 

ORC waste heat 

recovery  

Minimum variance 

controller (multi-variable) 

Throttle valve position, mass flow rate of 

working fluid, mass flow rate of exhaust gas, 

air flow rate/power, throttle pressure, 

evaporator outlet temperature, condenser 

outlet temperature 

Zhang  

et al. [88,99] 

ORC waste heat 

recovery 

Linear Quadratic Regulator 

with extended observer 

(multi-variable) 

Throttle valve position, working fluid pump 

speed, exhaust gas velocity, air 

velocity/power, throttle pressure, evaporator 

outlet temperature, condenser outlet 

temperature 

Zhang  

et al. [89] 

ORC waste heat 

recovery 

Model predictive control 

(multi-variable) 

Throttle valve position, working fluid pump 

speed, exhaust gas velocity, air velocity/power, 

throttle pressure, evaporator outlet 

temperature, condenser outlet temperature 

Zhang  

et al. [90] 

ORC waste heat 

recovery 

Constrained generalized 

predictive controller  

(multi-variable) 

Throttle valve position, working fluid pump 

speed, exhaust gas velocity, air 

velocity/power, throttle pressure, evaporator 

outlet temperature, condenser outlet 

temperature, Constraints on system 

variables. 

Part load operation away of the nominal design ORC settings is an important issue that requires the 

utilization of efficient control methods. The operation of the ORC system at part load conditions also 

requires the modeling of the thermal efficiency with respect to the off-design operating conditions. We 

review some part load system analyses here however all works do not consider feedback control system 

performance but rather focus on steady state operation. 
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Ibarra et al. [102] focused on the characterization of the expander and the heat recuperator to obtain 

an accurate representation of the optimal part load conditions. The study involved a number of different 

working fluids. Manente et al. [103] provided correction factors for the turbine isentropic efficiency due 

to variations of the isentropic enthalpy drop and the working fluid mass flow rate from the design point. 

In this way the calculation of the sensitivity of performance indicators with respect to the off-design 

point was possible. The control system utilized subsequently the optimal operation point at part load.  

A cascade type of control has been implemented in the combined gas turbine—ORC system by de 

Escalona et al. [104]. The study focused on the benefits from the addition of the ORC for waste heat 

recovery and considered part load conditions in the ORC performance. Additional latest works and 

applications are reviewed in a recent work addressing the part load performance of a wet indirectly fired 

gas turbine integrated with an ORC turbogenerator [105]. 

5.4. Remarks on Employed Methods 

Control of ORC systems enables the efficient compensation of the effect disturbances have on the 

power output and guarantee the equipment operation within safety limits. 

 Multi-loop control systems are relatively simple to implement but require careful tuning to enable 

stable and acceptable dynamic performance. Highly interactive systems hinder the achievable 

control performance and therefore the introduction of model based control techniques becomes a 

viable option. System interaction is further increased whith more complex ORC configurations 

(e.g., multi-pressure or multi-temperature systems, multiple expansion units and so forth). 

 Model based control systems require the development of accurate dynamic models for the 

individual subsystems. Usually, linear models with suitable disturbance models and integral action 

can meet the control objectives. The model development effort is accompanied by the execution 

of well-designed experiments in order to estimate model parameters and validate the model 

structure and predictions. In addition, an online parameter estimation procedure is attached to the 

feedback loop so that the control models can adapt to plant drifts. Model based control usually 

results in improved dynamic performance as process interaction is taken into consideration 

explicitly but model accuracy is an essential factor for acceptable set-point tracking and 

disturbance rejection. 

6. ORC Integration with Multiple Heat Source Streams 

6.1. Main Concepts 

The work reviewed so far has focused on working fluid selection, ORC design optimization and 

control with respect to a single heat source and sink. Energy intensive industrial processes often require 

significant amounts of low to medium grade heat to be removed into cooling water or another cooling 

medium, which could be utilized through synergies with surrounding processes and sectors [106]. ORCs 

offer a potentially promising route to monetize this waste heat through conversion to power. Besides the 

widespread industrial processes, other applications with multiple heat sources have been identified. 

Romeo et al. [107] integrate the multiple intercoolers in compression trains with ORC configurations. 

The work designs the cycles (high and low pressure) together with the compression train to match 
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intercooling waste heats and the ORCs. The work demonstrates significant energy savings of over 10% 

from the integration on the ORCs with the compression train. In another application, Soffiato et al. [108] 

integrate ORCs with the available waste heat streams onboard a LNG carrier. The work shows that power 

output can be increased by 3.5% through ORC integration. DiGenova et al. [2] study the integration of 

ORCs with an energy intensive Fischer-Tropsch plant to convert coal to liquid fuels. They apply the 

Pinch Analysis techniques to explore the performance of single and multi-pressure cycles to convert heat 

from process streams to power and observe that the carefully integrated ORCs significantly outperform 

steam cycles in terms of conversion efficiency. 

Although systematic approaches for the integration of ORC systems with multiple heat source streams 

are only emerging, the general field of process energy integration, in which most proposed approaches 

have their roots, is well established. In the 1970s, energy integration approaches emerged with the advent 

of Pinch Analysis for targeting minimum process heat requirements and heat recovery network design [109]. 

The methods are well established and routinely applied in the design of chemical processes [110], which 

has led to significant energy savings in the process industries. These approaches have their origin in 

thermodynamic analysis and provide graphical representations of the design problem to guide the 

analysis of energy flows and gain insights into promising heat recovery and power generation options [111]. 

To enable the better screening of design options and to incorporate economic criteria in decision making, 

numerous complementary approaches based on mathematical optimization have emerged over time to 

explore both operational design decisions as well as structural design alternatives for process heat and 

power systems. Smith [110] provides an overview of established energy integration approaches. The 

graphical approaches do not present computational challenges, whereas the optimization-based process 

integration approaches incorporate similar challenges to those reported in Section 4. 

6.2. Reviewed Approaches 

The integration of ORCs with multiple heat source streams and in the context of process heat and 

power generation systems has had no reference in the literature until very recently. Over the past five 

years, systematic approaches to guide the efficient integration of ORC systems have started to emerge 

(Tables 10 and 11). Hackl and Harvey [112] employ Total Site Analysis for power production from low 

temperature excess process heat from a chemical cluster using a simple ORC. Desai and  

Bandyopadhyay [113] were the first to study the integration of ORCs with a background process of 

multiple potential heat source streams. They adopt graphical approaches and apply established Pinch 

analysis techniques in the form of Grand Composite Curves to explore ORC integration targets and 

develop heat exchanger network designs to achieve them. The work highlights the strong dependence of 

high performance ORC integration strategies on the specific characteristics of the background process. 

With a focus on site utility systems with multiple steam levels and turbines, Kapil et al. [114] introduce 

a co-generation targeting method that considers the optimization of pressure levels together with 

integration options for ORCs and heat pumps as low grade heat utilization options. 

Hipolito-Valencia et al. [115] propose a superstructure approach to capture various possible heat 

transfer options between process streams and the ORC. Similar to the work by Desai and 

Bandyopadhyay [113], the approach focusses on the efficient integration of the ORC with the multiple 

source streams of the background process. In a subsequent contribution, Hipolito-Valencia [116] propose 
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an approach for interplant energy integration that considers ORCs for power generation.  

Lira-Barragán et al. [117] continue this approach to select the best possible conditions, heat exchanger 

network configuration and type of process in a trigeneration system. The process types involve a steam 

Rankine cycle, an ORC and an absorption refrigeration system. The authors consider economic, 

environmental and social indices as objective functions in optimization. All three works resulted in 

MINLP formulations that were searched using deterministic optimization solvers. Neither approach 

optimizes the expansion section of the ORC. 

Gutiérrez-Arriaga et al. [118] proposed an approach for energy integration involving waste heat 

recovery through an ORC which is based on a two-stage procedure. In the first stage, heating and cooling 

targets are determined through heat integration. This enables the identification of the excess process heat 

available for use in the ORC. The optimization of the operating conditions and design of the cogeneration 

system are carried out in the second stage using Genetic Algorithms. 

Table 10. Optimization-based heat source integration approaches. 

Authors Integration Approach Evaluated Options 
Integration/Design 

Criteria 

Kwak et al. [119] 
Total site analysis, optimization of 

ORC operation 

Sixteen working fluids, turbine inlet 

temperature condenser outlet temperature 
Total annualized cost 

Chen et al. [120] 

Superstructure-based optimization of 

HEN integrated with ORC,  

MINLP solver 

Number and connections of HEN, 

operating parameters of HEN and ORC 
Generated ORC work 

Marechal and 

Kalitventzeff 

[121] 

Mathematical model of exergy 

composite curves (MILP solver), 

ORC operation optimization and fluid 

selection (MILP solver) 

List of few pre-selected fluids, utility 

flowrates, several ORC operating 

characteristics 

Costs, exergy losses 

Soffiato  

et al. [108] 

SQP solver (deterministic) for ORC 

optimization in an iterative procedure, 

pinch composite curves for ORC-heat 

source matching, evaluation of each 

ORC structure and working  

fluid combination 

Six working fluids, three pre-selected 

structures (simple cycle, regenerative 

cycle, and two-stage cycle), the 

evaporation pressures and the degrees of 

superheating in one or two stages, the 

ratio between the mass flow rates in the 

two stages 

Net ORC power output 

Lira-Barragán  

et al. [117] 

Multi-objective MINLP, results 

reported for all working fluids 

Three working fluids, structure and 

operating characteristics of heat 

exchanger network, existence of ORC 

and/or absorption refrigeration system 

Economic (annual profit), 

environmental (greenhouse 

gas emissions), social 

(number of jobs generated) 

Gutiérrez-Arriaga  

et al. [118] 

Pinch grand composite curves, 

Genetic Algorithms to optimize 

operation of a basic ORC, results 

reported for 3 different working fluids 

Three working fluids,  

operating ORC parameters 
Gross annual profit 

Kapil et al. [114] 
Total site analysis (NLP optimization), 

ORC process simulation 
Pressure of different steam levels 

Enthalpy difference of 

shifted heat sink and 

source, thermal 

efficiency, purchase cost 

Hipólito-Valencia 

[115,116] 

Heat exchanger network 

superstructure, MINLP solver 

Total heat transfer area, network 

configuration, operating parameters,  

two working fluids 

Total annualized cost 
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Kwak et al. [119] investigate different technologies, including ORCs for energy recovery and 

exploitation in different industrial sites. The authors perform a Total Site Analysis to identify energy 

recovery targets and then identify the optimum ORC operating parameters together with the working 

fluid (from a list of 16 pre-defined fluids) in order to best recover the available energy. 

Chen et al. [120] present a mathematical model for the synthesis of a heat-exchanger network (HEN) 

which is integrated with an organic ORC for the recovery of low-grade industrial waste heat. An  

ORC-incorporated stage wise superstructure considering all possible heat-exchange matches between 

process hot/cold streams and the ORC is first presented. First, a stand-alone HEN is synthesized to 

minimize the external utility consumption. An ORC is then incorporated into the HEN with the objective 

of maximizing the work produced from waste heat (without increasing the use of a hot utility. The 

problem is formulated and solved as a two stage MINLP. 

Marechal and Kalitventzeff [121] proposed a method for the investigation of ORC process 

characteristics which is based on the analysis of the shape of the grand composite curve, combined with 

the use of the minimum exergy losses concept, heuristic rules and a cost optimisation technique. First, 

the recovery targets of the background (waste-heat) industrial process are determined through an  

MILP-based optimization to minimize exergy losses using the utility flowrates as decision variables. 

ORCs are then designed together with working fluids selected from a pre-specified list to optimally 

match the identified energy recovery opportunities. The identified ORCs are characterized in terms of 

the condenser and evaporator temperatures and pressure conditions, the opportunity for superheating, 

the expected flow-rate and efficiency of the cycle. The non-linear cost estimation of the condensers, 

boilers, turbines and pumps are linearized and the best matches of the designed ORCs with the 

background process are identified using MILP-based optimization to minimize costs. The focus of the 

proposed developments is on the integration of the ORC vaporization and condensation sections. 

Stijepovic et al. [70] adopt the exergy composite curves (ECCs) approach developed by Linnhoff and 

Dhole [71] to explore the potential for ORC process improvements through better utilization of the 

available heat. The ECC shape reflects on ORC operating conditions which may be interpreted by 

different process configurations (e.g., simultaneous consideration of different pressure levels may 

require multiple turbines interconnected at various heat exchanger topologies to match the necessary 

temperatures). Details of this approach have been reviewed in Table 6. 

Most recently, Song et al. [122] explores integration schemes for single and dual ORCs with multiple 

waste heat streams through simulation. The work identifies the dual cycle as the best performing 

configuration for a refinery case study. This highlights the need to develop optimal ORC integration 

methods in the future that can take into account multiple heat source streams and multiple integrated 

power cycles simultaneously. 

Tchanche et al. [123] developed an approach to evaluate the performance of different ORC 

configurations by using several criteria based on exergies for different parts of the equipment. Using 

graph theory they conceptualized the exergy flows and losses within different sections of an ORC 

system, investigating three different cycle topologies in the condensing and pumping sections (i.e., 

regenerative heat exchanger, open feed liquid heater and closed feed liquid heater). 

Yu et al. [124] propose a new method to simultaneously determine the working fluid and operating 

conditions in an ORC. The Preheating Pinch Point and the Vaporization Pinch Point are introduced. The 

method is based on a newly defined parameter named “predictor” that can predict the pinch position 
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between the waste heat carrier and the working fluid, calculate the mass flow rate of working fluid and 

the amount of heat recovered, and determine the optimum working fluid and corresponding operating 

conditions simultaneously. The authors consider 11 pre-selected working fluids which are considered as 

decision options simultaneously with the process features. The objective is to maximize the power output 

without considering the equipment cost and operating expenses. 

Safarian and Aramoun [125] employ a combined energy- and exergy-based analysis approach to 

evaluate four ORC configurations, namely a basic ORC, an ORC with turbine bleeding, with 

regeneration and with both turbine bleeding and regeneration. The authors employ several analysis 

criteria, calculate exergy losses and find that the evaporator has major contribution in the exergy 

destruction which is improved by increase in its pressure. Furthermore, the configuration with turbine 

bleeding and regeneration enables a maximization of thermal and exergetic efficiencies and minimization 

of exergy losses. 

Luo et al. [126] present s systematic hybrid methodology of graphical targeting and mathematical 

modeling to address the optimum integration of a regenerative ORC in a steam network. The objective 

function is to minimize the fuel consumption of the steam power plant. The terminal temperature and 

heat load of the process-heated boiler feed water are the two decision variables. The graphical targeting 

method is proposed to ascertain the bounds and constraints of the two decision variables. A mathematical 

model incorporating rigorous simulations of the turbine is formulated to achieve the optimal heat 

integration scheme. 

Table 11. Graphical or simulation-based heat source integration approaches. 

Authors Integration Approach Evaluated Options Integration/Design Criteria 

Yu et al. [124] 
Pinch-based energy recovery 

targeting, iterative enumeration 

Eleven working fluids, cycle 

operating parameters 
Power output 

Safarian and 

Aramoun [125] 

Exergy- and energy-based analysis 

to identify best ORC structure, 

evaluation of each structure separately 

Basic ORC, ORC incorporating 

turbine bleeding, regenerative 

ORC, ORC incorporating both 

turbine bleeding and regeneration 

Degree of thermodynamic 

perfection, exergetic efficiency, 

thermal efficiency, influence 

coefficient, exergy loss 

Luo et al. [126] 

Pinch-based energy targeting, 

simulation-based objective  

function evaluation 

Terminal temperature and heat 

load of the process-heated boiler 

feed water 

Fuel consumption of steam 

power plant 

Tchanche et al. [123] 

Energy and exergy flow analysis, 

evaluation of each working fluid and 

ORC structure combination 

separately through simulations 

Four working fluids, four 

structures (basic ORC, ORC with 

regenerative heat exchanger, with 

open or closed feed liquid heater) 

Exergy losses, degree of 

thermodynamic perfection, 

exergetic efficiency,  

energetic efficiency 

Romeo et al. [107] 

Pinch-based energy integration, 

different temperature levels, 

evaluation of ORC structure for each 

working fluid 

Pre-selected two-stage (dual 

pressure) ORC, temperature of 

waste heat source, six pre-

selected working fluids 

Energetic efficiency 

DiGenova et al. [2] 

Pinch composite curves for  

ORC-heat source matching options, 

evaluation of each structure separately 

Five ORC structures (basic 

ORC, with reheat stages, with 

multiple pressure levels, 

recuperator and balanced 

recuperator) 

Thermal efficiency 
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Table 11. Cont. 

Authors Integration Approach Evaluated Options Integration/Design Criteria 

Hackl and Harvey 

[112] 

Total site analysis, ORC simulations 

with different working fluids 

Five pure fluids, one mixture, 

ORC operating parameters 

Net excess heat, cost of electricity, 

payback period of investment, 

CO2 emissions reduction 

Desai and 

Bandyopadhyay 

[113] 

Pinch-based graphical  

integration, ORC simulations with 

different fluids 

Sixteen fluids, basic ORC, ORC 

with turbine bleeding and 

regeneration, heat exchanger 

network configuration and 

conditions 

Net work output,  

thermal efficiency 

Song et al. [122] 

Matching of heat sources at different 

temperatures with different ORC 

configurations and fluids, simulations 

Eight pure and six mixed working 

fluids, Dual integrated or 

independent ORC, single ORC 

Net power output, heat transfer 

area and their ratio 

6.3. Remarks on Integration 

Despite the recent progress, there remains significant scope to develop more widely applicable, 

systematic approaches to guide the optimal integration of ORCs with multiple heat streams in the context 

of background processes. Future developments are expected to focus on a number of unexplored aspects 

of the ORC integration problem: 

• Enriched representations of ORC configurations and multiple heat steams in the form of 

superstructures to provide a representation of all possible alternative configurations, including 

multi-pressure and multi-cycle systems. 

• Multi-scale approaches to bridge the gap between higher-level ORC integration and detailed 

design decisions impacting on performance such as heat exchanger design optimization. 

• Multi-scale approaches to support integrated decision making across the working fluid selection, 

ORC design and ORC integration problem levels, and 

• Global search schemes for ORC integration with multiple heat sources similar to the approaches 

that emerge for ORC design optimization. 

An important observation is that most existing works consider energy analysis, although the 

combination of energy and exergy analysis is also very useful for the investigation of different ORC 

configurations and integration options. Usually, energy analysis takes into account only wasted heat 

which is available at temperatures where it may be re-utilized as heat (e.g., steam). However, wasted 

heat of low enthalpy content may be transformed into power through ORC and re-utilized in the process. 

Exergy analysis is particularly relevant in these cases as it focuses on the maximum useful work that can 

be produced from a heat source. When heat is transferred part of the thermal energy is degraded due to 

process irreversibility. The key is to minimize the part of thermal energy lost due to degradation. Exergy 

is the maximum quantity of work that can be produced in a cyclic thermodynamic process. It captures 

only that part of the thermal energy which may be transformed into work. Energetic analysis targets the 

recovery of heat loads. Exergetic analysis targets the maximum work that may be recovered from an available 

heat source, hence it may target exergy loss or the ideal work equivalent lost in heat transfer. 
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7. Concluding Remarks 

The design of ORC systems is a challenging task. Many design alternatives exist at each level of 

design, from working fluid selection via cycle optimization and control through to the efficient 

integration of the cycle with background processes. A number of systematic approaches have emerged 

over the past few years that aim at supporting the designer in making optimal choices at each level of 

ORC development. This paper has aimed to provide a state-of-the-art overview of these emerging 

approaches with a particular emphasis on computer-aided design methods and aimed to highlight areas 

that may benefit from further research and development. 

Author Contributions 

The three authors jointly developed this review article. Individual focus areas have been  

computer-aided ORC working fluid design and selection (A.I. Papadopoulos), ORC design and 

integration (P.Linke) and ORC operation and control (P. Seferlis).  

Nomenclature 

CAMD Computer-Aided Molecular Design 
CARMA Controlled auto-regressive moving average 
CFD Computational fluid dynamic 
CoMT Continuous molecular targeting 
COSMO-RS Conductor-like screening model for real solvents 
DFT Density functional theory 
EAC Equivalent annual cost 
EoS Equation of state 
GC Group contribution 
GWP Global warming potential 
HEN Heat exchanger network  
IRR Internal rate of return 
MILP Mixed integer linear programming 
MNLP Mixed integer non-linear programming 
NLP Non-linear programming 
NPV Net present value 
ODP Ozone depletion potential 
ORC Organic Rankine cycle 
PBT Profit before taxes 
PC-SAFT Perturbed chain statistical associating fluid theory 
PI Proportional-integral 
PID Proportional-integral-derivative 
PT Payback time 
QSPR Quantitative structure-property relationships 
ROI Return on investment 
SQP Sequential quadratic programming 
TAC Total annual cost 
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