
Energies 2015, 8, 3882-3902; doi:10.3390/en8053882 
 

energies 
ISSN 1996-1073 

www.mdpi.com/journal/energies 

Article 

Using a Cellular Automata-Markov Model to Reconstruct 
Spatial Land-Use Patterns in Zhenlai County, Northeast China 

Yuanyuan Yang 1,2,3, Shuwen Zhang 2,*, Jiuchun Yang 2, Xiaoshi Xing 3 and Dongyan Wang 1 

1 College of Earth Science, Jilin University, 2199 Jianshe Street, Changchun 130061, China;  

E-Mails: sophiayangyuanyuan@hotmail.com (Y.Y.); wang_dy@jlu.edu.cn (D.W.) 
2 Northeast Institute of Geography and Agroecology, Chinese Academy Sciences,  

4888 Shengbei Street, Changchun 130102, China; E-Mail: yangjiuchun0830@163.com 
3 Center for International Earth Science Information Network (CIESIN), Earth Institute,  

Columbia University, P.O. Box 1000 (61 Route 9W), Palisades, NY 10964, USA;  

E-Mail: xxiaoshi@ciesin.columbia.edu 

* Author to whom correspondence should be addressed; E-Mail: zhangshuwen@neigae.ac.cn;  

Tel.: +86-431-8554-2246. 

Academic Editor: Xiangzheng Deng 

Received: 16 January 2015 / Accepted: 24 April 2015 / Published: 5 May 2015 

 

Abstract: Decadal to centennial land use and land cover change has been consistently 

singled out as a key element and an important driver of global environmental change, playing 

an essential role in balancing energy use. Understanding long-term human-environment 

interactions requires historical reconstruction of past land use and land cover changes.  

Most of the existing historical reconstructions have insufficient spatial and thematic detail 

and do not consider various land change types. In this context, this paper explored the 

possibility of using a cellular automata-Markov model in 90 m × 90 m spatial resolution to 

reconstruct historical land use in the 1930s in Zhenlai County, China. Then the three-map 

comparison methodology was employed to assess the predictive accuracy of the transition 

modeling. The model could produce backward projections by analyzing land use changes in 

recent decades, assuming that the present land use pattern is dynamically dependent on the 

historical one. The reconstruction results indicated that in the 1930s most of the study area 

was occupied by grasslands, followed by wetlands and arable land, while other land 

categories occupied relatively small areas. Analysis of the three-map comparison illustrated 

that the major differences among the three maps have less to do with the simulation model 

and more to do with the inconsistencies among the land categories during the study period. 
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Different information provided by topographic maps and remote sensing images must  

be recognized. 

Keywords: cellular automata-Markov model; three-map comparison; historical reconstruction; 

spatial pattern; land use and land cover change; Northeast China 

 

1. Introduction 

Decadal to centennial land use and land cover change (LUCC) has been consistently singled out as a 

key element and an important driver of global environmental change [1–4]. LUCC could significantly 

affect key aspects of Earth system functioning [5], playing an essential role in balancing energy use. 

Land use activities, e.g., afforestation, deforestation, excessive reclamation, grazing, excavation and 

abandonment as well as urbanization, all influence runoff, evapotranspiration, the distribution of the 

precipitation among the soil waters and the land surface energy budget [6,7]. Ecologists increasingly 

recognize that a full understanding of ecosystems should be based on the analysis of ecosystem 

functioning over long time scales [8] as historical land use legacies have a strong and sometimes  

over-riding influence on the dynamics of present-day ecosystems, exhibiting a time-lagged response. 

Thus, understanding long-term human-environment interactions is essential to understanding changes in 

terrestrial ecosystems and this requires historical reconstruction of past land cover changes [9,10]. 

Historical reconstruction of land use/land cover (LULC) aims to reproduce information concerning 

past land use, not only the quantity of land use/cover in a historical period, but also its spatial distribution. 

Recently, improved remote sensing technology has made feasible the continuous observation of land 

cover. However, remotely-sensed data have only existed for the last four decades at most, following the 

advent of the first land satellite, LandSat-1, launched in 1972. Prior to that, other data sources must be 

relied on, which may cover the global scale but often inconsistently. In this context, increasing numbers 

of researchers have made efforts to reconstruct historical LULC based on prime data sources and 

research approaches, and substantial progress in gathering historical land change data has been made 

both at the global and regional scales [9,11–25]. This has been discussed in detail in a review of historical 

LULC reconstruction methods [26]. However, most existing historical LULC reconstructions do not 

sufficiently meet the requirements of climate assessments due to insufficient spatial and thematic detail 

and the lack of consideration of various land change types [27]. Current research mainly focuses on 

revising the historical land-cover quantity. There are few historical land-cover datasets with high spatial 

accuracy resulting in ineffective applications of the study results in simulations. The building of 

historical spatial land use and land cover datasets with high resolution is a timely research direction [26]. 

In addition, most current studies do not thematically represent 100% of the land area, and ignore the 

consideration of competing land categories and land conversion types. For example, current research 

mainly focuses on cultivated land, wetlands and forestland and it does not provide information on other 

land categories like settlements, water and other land.  

In reconstructing historical LULC, it is highly worthwhile to use a reconstruction model. Land-use 

and land-cover change (LUCC) modeling as a scientific field is rapidly advancing, as land use change is 

among the most important human influences on the environment. The cellular automata (CA)-Markov 
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model is applicable to spatial land use simulations and land cover reconstructions [28], which could be 

capable of converting the quantitative results of the Markov chain into spatially explicit outcomes by 

means of a CA function [29]. This approach is also capable of simulating several land categories 

simultaneously. However, transition matrixes describing various land-covers from t − 1 to t might not 

be totally consistent with those in the period between t and t + 1, due to different changes among various 

land categories over time. Thus, the transition matrixes were modified by analyzing land use and its 

change in recent decades which was also used to define the rules for the cells of CA, assuming that 

current spatial pattern of land use is dynamically dependent on a historical pattern.  

Evaluation of model performance often requires comparison of model simulations with observed 

outcomes. The proportion of observations classified correctly is perhaps the most commonly used 

measurement to compare two different expressions of a set of categories, for example, to compare  

land-cover categories expressed in a map and to reference data collected for the map’s accuracy 

assessment [30]. It has become customary in the remote-sensing literature to report the kappa index of 

agreement along with the correct proportion, especially for purposes of accuracy assessment, since kappa 

compares two maps that show a set of categories. However, kappa indices are useless, misleading and 

flawed for the practical applications in the land use modeling because the kappa indices attempt to 

compare accuracy to a baseline of randomness which is not a reasonable alternative for map  

construction [30]. Based on the above analysis, Pontius, Jr. et al. [30–34] proposed the three-map 

comparison methodology to reveal the accuracy of the land change model versus a null model that 

predicts complete persistence. The two measures of quantity disagreement and allocation disagreement 

illuminate a much more enlightened path.  

In the past century, western Jilin Province, having experienced a large-scale population migration and 

land reclamation process, has been one of the regions in China that reveals dramatic LUCC. This change 

will have a profound impact on the regional ecological environment and the balance of energy,  

with important regional research value. Here, considering the richness of regional LUCC data, we take 

Zhenlai County, located in northwestern Jilin Province, as an example. In this paper, our main objectives 

are: (1) to reconstruct historical land use in Zhenlai County in the early period of reclamation (the 1930s) 

using a 90 m × 90 m CA-Markov model to produce a backward projection according to the land 

use/cover change rule from 1954 to 2005; (2) to validate reconstruction results using three-map 

comparison by classifying pixels as one of four types: null successes, hits, misses and false alarms. 

2. Materials and Methods 

2.1. Study Area 

Zhenlai County (N45°28′-N46°18′, E122°47′-E124°04′, Figure 1), as a typical farming-pastoral 

ecotone, is located in northwestern Jilin Province, Northeast China, where it occupies the northernmost 

part of the province, bordering Heilongjiang to the east and Inner Mongolia to the west. It is under the 

administration of Baicheng City. Historically the region was the nomadic land of the Mongol princes, 

and inhabitants were not allowed to reclaim it until the enactment of the “lifting a ban on reclaiming” 

policy during the late Qing Dynasty (1902). The county was established in 1910 as Zhendong County, 



Energies 2015, 8 3885 

 

 

and in 1947 Laibei County was merged into this region, which was renamed Zhenlai County. It has 

experienced a relatively complete and dramatic LUCC during the past century.  

The county has a variety of geomorphologic types and features a terrain that is high in the northwest 

and low in the southeast. Its northwest is adjacent to the Greater Hinggan Mountain, its central area is 

mostly rolling hilly land, and its east and south surround the Nenjiang River and the Tao’er River, 

respectively, forming a fertile flood plain on the banks of both rivers. The major soil types are 

chernozem, alluvium soil, alkali soil and meadow soil [35]. 

Climatically, the region is subject to a temperate continental monsoon climate with distinct seasons, 

as it is located in a mid-latitude inland area. The mean annual rainfall is 402.4 mm, unevenly distributed 

over time, while the mean annual evaporation is 1755.9 mm, about four times as much as the mean 

annual rainfall. Thus, the low amount of precipitation and the high amount of evaporation mainly result 

in a drought-prone climate in the study area, especially in spring. The mean annual temperature is around 

4.9 °C. 

 

Figure 1. The study area, Zhenlai County. 

2.2. Data 

One Landsat Multispectral Scanner (MSS) and two Landsat Thematic Mapper (TM) images were 

selected pertaining to the years 1976, 2000, and 2005. Then the land use data were interpreted from the 

above remote sensing images which were downloaded from the United States Geological Survey (USGS) 

website (http://glovis.usgs.gov/). Meanwhile, our research team reconstructed the spatiotemporal 

distribution of land use and land cover in 1954 by making use of topographic maps and physical 
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environmental background maps, including those of terrain, climate, geology, soil, vegetation, hydrology, 

and socioeconomic statistical data [36,37]. Soil data was digitized from the “Local Record of  

Zhenlai County” [35]. Slope raster was generated from 90 m raster DEM data which is from the  

Shuttle Radar Topography Mission (SRTM) data. The data for model validation was digitized from 

topographic maps dating back to the 1930s, drawn to scale at 1:100,000.  

2.3. Classification System 

There are 14 land categories in the topographic maps in the 1930s according to the land use and land 

cover legends (Figure 2). The features of various land-covers in the topographic maps are described as 

below: (1) blank areas without any symbols represents rainfed land and it is always stocked with 

scattered grassland and rural settlements, etc.; (2) forestland in the topographic maps contains deciduous 

forests, orchards, coniferous forests, low pinewood and forests of unknown species, and there is no 

distribution of the last four land-cover types in the study area; most of the deciduous forests are located 

around settlements; (3) grassland is often mixed with other land covers and its boundaries are not easy 

to determine; besides, most of grassland in these maps is often judged as wildland, resulting in limited 

grassland symbols in the maps; (4) river have certain clear boundaries and it is easy to digitize them 

from other land use types; (5) lakes and ponds are described in the maps with the same symbols, and 

with certain boundaries; (6) settlements contain urban and rural construction, which are often surrounded 

by arable land; (7) wetlands have a clear distribution and location with certain boundaries and are 

sometimes mixed with wildland; (8) wildland mentioned here contains not only unused land  

(sand, saline-alkali land, bare land), but also meadow and prairie areas.  

   

Paddy field Rainfed land Deciduous forest Grassland Wildland 

   

Lake and pond River Urban Rural settlement Wetland 

   

 

Orchard Coniferous forest Low pinewood Forest of unknown species 

Figure 2. Legends of topographic maps at scale 1:100,000 in the 1930s. 

As for the remote sensing images, in this study we took the land use classification system used by the 

Chinese Academy of Sciences that includes 20 subcategories (Table 1) [38]. Due to the relative maturity 

of the remote sensing image interpretation technique, it will not be explained in detail here.  

The land-cover types on topographic maps and remote sensing images are often different, thus we 

must first produce a map series with unified contents. To be able to make comparisons over time the 
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maps therefore had to be thematically generalized. Taking into account both the local characteristics and 

the predominant land use classification system used in China [38], the available land classes were 

aggregated into seven suitable land categories for this study: arable land, forest land, grassland, water, 

settlement, wetland and other unused land (Table 1).  

Table 1. Detailed classification system for land-use types. 

Code Name of the land categories Types in remote sensing images Types in topographic maps 

1 arable land 
paddy field paddy field 
rainfed land rainfed land 

2 forest land 

closed forest land 
deciduous forest,  
coniferous forest,  

low pinewood 
shrubbery – 

sparse wood land – 

other forest land 
orchards, forest of  
unknown species 

3 grassland 

high coverage grassland grassland 
moderate coverage grassland 

wildland 
low coverage grassland 

4 water 

river river 
lake lake, swag 
swag – 

beachland – 

5 settlement 
urban urban 

rural settlement rural settlement 
other construction – 

6 wetland wetland wetland 

7 other unused land 
sand 

– saline-alkali land 
bare land 

2.4. Methods 

2.4.1. CA-Markov Model 

The CA-Markov model integrates both the CA and Markov models. Spatiotemporal Markov Chain 

models can be used to model changes over time among land use categories through the use of transition 

probabilities while spatial dynamics are controlled by local rules through a cellular automata (CA) 

mechanism considering either neighborhood configuration or transition probabilities, thus coupling of 

transition matrices and CA models on change in land-covers or landscape over space and time can 

provide a better understanding of the historical landscape’s imprint on today’s plant diversity.  

This approach is able to convert the quantity results of the Markov Chain by means of a CA function to 

spatially explicit outcomes [39]. The CA-Markov land use change model can be used for spatial land 

use simulations and land-cover reconstructions and this approach is capable of simulating several land 

categories simultaneously. 
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2.4.2. Three-Map Comparison 

The validation of LUCC model requires a three-map comparison where the maps are reference  

time 1, reference time 2, and simulation time 2. Comparison between the reference map of time 1 and 

the reference map of time 2 characterizes the observed changes in the maps, which reflect the land use 

dynamics. Comparison between the reference map of time 1 and the simulated map of time 2 

characterizes the model’s predicted change, which reflects the behavior of the model. Validation 

comprehends the agreement (or error) resulting from the comparison between the simulation time 2 map 

and the reference (or real) time 2 map. In this case, the accuracy of model is assessed by determining the 

four components of correctness and error, namely null successes (correct due to observed persistence 

predicted as persistence), hits (correct due to observed change predicted as a change), misses (errors due 

to observed changes predicted as persistence) and false alarms (errors due to observed persistence 

predicted as a change), and the summary statistics for error due to quantity (EQ, Equation (4)) and error 

due to allocation (EA, Equation (5)) [31,34]. The type of error due to quantity reflects the error due to 

the model’s less than perfect prediction of the quantity of net change. This error is not influenced by 

spatial allocation. The type of error due to allocation is associated with the imperfect ability of the model 

to allocate change pixels across the landscape. This error derives from the model’s spatial allocation and 

is associated with the independent variables that the model uses. The error might be sensitive to 

modification of the spatial allocation algorithm. In addition, figure of merit (FOM, Equation (6)) and 

three ratio indices (Equations (7)–(9)) that quantify the amount of hits, misses and false alarms relative 

to the observed change were also determined. The figure of merit (FOM) is calculated dividing the hits 

between the addition of hits, misses and false alarms and, in the case of the models that simulate several 

categories, removing the partial hits from numerator. This measure allows to assess the cell-to-cell 

coincidence between simulated and real maps in a more realistic way than more common metrics such 

as kappa indexes or overall accuracy which are usually calculated using the entire surface area [40]. 

FOM ranges from 0%, meaning no overlap between observed and predicted change, to 100%, meaning 

perfect overlap between observed and predicted change [32,41]:  

Observed ChangeOC M H    (1)

 Predicted ChangePC H F    (2)

 Total ErrorT M F    (3)

PC OC ( ) ( )EQ H F M H F M         (4)

( ) 2 ( , )EA T Q M F F M Minimum F M         (5)

100
H

FOM
H M F

 
 

 (6)

H
HOC

H M



 (7)

M
MOC

H M
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
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where H, M and F are the hits, misses and false alarms; HOC, MOC and FOC are, respectively, the ratio 

of hits, misses and false alarms to the observed change, which is the summation of the hits and misses.  

Based on the above methods, the flowchart of the technical route of this land use reconstruction is 

shown in Figure 3. 

 

Figure 3. Flowchart of the technical route of land use reconstruction. 

3. Results  

GIS modeling was undertaken using the program module CA-MARKOV of the software IDRISI 

Selva (17.02). According to the analysis of land use change over the past 60 years using published land 

cover data based on topographic and environmental background maps and also remotely sensed images 

including Landsat MSS and TM pertaining to the years 1954, 1976, 2000, and 2005 [42], we get the 

following basic assumptions of the model: (1) current spatial pattern of land use is dynamically 

dependent on a historical pattern, and unchanged land cover during 1954–2005 had actually also existed 

in the 1930s; (2) reclamation of arable land from 1932 to 1954 was derived from grassland; (3) factors 

for land suitability do not change over time due to data availability. In all the digital raster maps,  

each grid cell represents an area 90 m × 90 m which is considered to best represent the land-cover in the 

study area. This precision could avoid losing the data with high resolution in this study although it could 

result in data redundancy. The parameters of CA-Markov land use change model were as follows: 

(1) The input and initial map was set to represent the seven land use types from 1954. Here, some 

researchers [43] assumed that the hydrological network remained static through the modeled period.  

In this study, the water body, with clear certain boundaries in the topographic maps in the 1930s, had 

higher spatial resolution than that from the abovementioned assumption if we consider the water 

dynamics resulted from climate change, so the input map in this research was masked by the water layer 

derived from the topographic maps at the scale of 100,000.  

(2) Transition matrixes were revised between 1954 and 1976 according to the rules governing LUCC 

in the study area over the past decades (from 1954 to 2005), to meet the demand between 1932 and 1954. 

Based on our former study about the LUCC rate and the available data in the study area, monitoring of 

land use and land cover changes has been done at four time nodes: 1954, 1976, 2000, and 2005 [42]. 

The spatiotemporal changes during 1954–2005 in Zhenlai County [42] showed that people would prefer 
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not to utilize the nearby forests and wetlands until all the grasslands that were suitable for farming were 

completely reclaimed. Hence, we add the grid numbers for wetland converted into arable land from 1954 

to 1976 to the grassland. 

(3) We used two types of criteria, factors and constraints, where a factor signifies a continuous degree 

of fuzzy membership (in the range of 0–255), and constraints to limit the alternatives altogether  

(i.e., fuzzy membership is either 0 or 1) [44]. The factors for suitability maps—soil class, slope, distances 

from settlements, rivers and roads—were selected for this research (Figure 4A1–A5). Slope raster was 

generated from 90 m raster DEM data. In addition, we digitized settlements, rivers and roads layers from 

the 1930s topographic maps, calculated their Euclidean distances and then dispersed the distance value 

to the range of 0-1, where 0 represents the nearest distance while 1 represents the farthest distance. 

Also, in accordance with the principle of spatial autocorrelation [45], it is more likely to develop the 

same land use type near a certain land cover, thus we also used the distance factor of each land cover 

based on the land use maps in 1954 (Figure 4B1–B6).  

Here, two constraints were considered, water and unchanged land-cover during 1954–2005. Since the 

other six land cover types cannot typically grow on water bodies, water layers digitized from topographic 

maps in the 1930s (Figure 4C1) was subject to the same constraints as all the other land use/land cover 

types, except itself. The unchanged land cover in the study period was relatively stable and certain in 

spatial distribution over long-term landscape development, and we assume the unchanged land cover 

over the past 60 years had actually also existed in the 1930s, whereas the present land use pattern was 

dynamically dependent on the historical one. Thus, one land use type could not grow where other land 

covers had existed at that time (Figure 4D1–D6). 

(4) The neighborhood filter type chooses the “Standard 5 × 5 contiguity filter”.  

(5) The number of iterations was 22, depending on the length of the modeled section and the degree 

of change described by the transition matrix. 

 
(A1) Soil types map (A2) Slope (A3) Distance from settlements

Figure 4. Cont. 
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(A4) Distance from rivers  (A5) Distance from roads (B1) Arable land

 
(B2) Forest land  (B3) Grassland (B4) Settlement

 
(B5) Wetland  (B6) Other unused land (C) Water constraint

 
(D1) Arable land  (D2) Forest land (D3) Grassland

Figure 4. Cont. 
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(D4) Settlement  (D5) Wetland (D6) Other unused land

Figure 4. Factors for suitability maps (A1)–(A5); spatial auto correlation distance factors 

(B1)–(B6); and constraint images for (C) water and (D1)–(D6) unchanged land-covers. 

We used the MCE process involving criteria of varying importance in accordance with decision 

makers, with information about the relative importance of the criteria. This is usually obtained by 

assigning a weight to each. Here, the weights assigned to different factors (Table 2) were obtained by 

Saaty’s Analytical Hierarchy Process (AHP). The larger the weight, the more important is the criterion 

in the overall utility. 

Table 2. Factors and their weights used for construction of suitability maps. 

Factors Arable land Forest Grassland Settlement Wetland 
Other unused 

land 

Driving  

factors 

Soil 0.249 0.139 0.051 0.042 0.268 0.103 

Slope 0.036 0.025 0.071 – 0.246 – 

Distance from river 0.096 – 0.099 – – – 

Distance from roads 0.092 0.072 – 0.124 – – 

Distance from settlement 0.226 0.427 – 0.514 – – 

Spatial 

autocorrelation 

factors 

Arable land 0.301 – – – – – 

Forest land – 0.337 – – – – 

Grassland – – 0.426 – 0.164 0.124 

Settlement – – – 0.320 – – 

Wetland – – 0.189 – 0.247 0.205 

Other unused land – – 0.164 – 0.075 0.568 

Figure 5 illustrates the suitability maps for various land categories and Figure 6 shows the result of 

simulated land-use in the study area in the 1930s. Grassland dominates the largest patches of land cover 

(210,543.23 ha, 39.61% cover) in the land-use map simulated by the spatial CA-Markov model.  

This makes sense, as a large number of immigrants came to this area to reclaim wildland or grassland, 

with anthropogenic activities intensifying after the enactment of “lifting a ban on reclaiming” policy in 

Northeast China in the late Qing Dynasty. The second largest area is wetland (154,914.97 ha, 29.14% 

cover). The proportion of arable land accounted as part of the total area is 27.69% (147,177.74 ha). Most 

of the arable land is located in flat areas—central and western areas and the north in Zhenlai County, 

while it is distributed in a scattered fashion through other areas. The area of water bodies is  
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15,798.28 ha, consisting of 2.97% of land cover in the study area. Due to the small areas, it is not  

so easy to identify settlements (1,672.47 ha, 0.31% cover), other unused land (873.35 ha, 0.16% cover), 

and forest (626.12 ha, 0.12% cover) in the simulated map. 

Arable land 
 

Forest land 
 

Grassland 

 
Settlement 

 
Wetland 

 
Other unused land 

 

 
Increasing suitability 

Figure 5. Suitability maps for various land categories. 

 

Figure 6. Land-use maps in the 1930s simulated by the spatial CA-Markov model. 
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4. Discussion 

The main purpose of applying CA-Markov model in this study is to produce backward projection and 

then to reconstruct historical land use and land cover in the 1930s in Zhenlai County. A common 

approach in testing the reliability of historical reconstructions is to compare them with information from 

independent sources [46]. Detailed historical maps are very valuable materials for land cover 

reconstruction because historical land cover can be digitized directly from them. In our study we 

compared our model results contemporary with the historical topographic map based on the fact that 

1:100,000 topographic maps of that time could meet the need of cartography and analyze land use on 

the regional scale [47]. To validate the model, we used the three-map comparison methodology to 

identify all possible types of prediction successes and errors based on three maps: the observed 1954 

land-use map, the observed 1932 land-use map digitized from topographic maps, and the predicted 1932 

land-use map. As there are six land categories in the digitized topographic maps, wetland and other 

unused land were aggregated into unused land both in the reference 1954 map and simulated 1932 map. 

Thus, to assess prediction accuracy, six land categories were available: arable land, forest land, 

grassland, water bodies, settlement, and unused land. 

Figure 7A shows the percentage of area covered by each land category at reference 1954, reference 

1932 and simulated 1932, respectively. The pie-charts demonstrate that the largest categories in each 

land use map are grassland, arable land and unused land. The areas of arable land, forest and settlement 

simulated in the CA-Markov model are similar to those in the digitized topographic maps, especially 

arable land. These pie-charts give useful information about the quantity of each land category, but they 

do not offer any details concerning individual transitions between categories. Therefore we overlay the 

reference 1954 map with the reference 1932 map and the reference 1954 map with the simulated 1932 

map to analyze the reference change and the simulated change between 1954 and 1932, respectively. 

Two matrices were produced presented in Table 3. Each matrix has a total column at the right that gives 

the stock of each category at the initial time (1954), and a total row at the bottom that gives the stock of 

each category at the final year (1932). 

Figure 7B,C and Table 3 illustrate the gross losses and gross gains, mainly distributed in the middle 

of the study area and the areas near rivers and lakes. The total change area for the reference change is 

306,161.00 ha while it is only 100,101.93 ha for the simulated change. It is especially important to note 

that arable land and settlements increased from 1932 to 1954 both in the reference change and the 

simulated change while grassland had a significant loss, indicating that arable land expanded at the 

expense of grassland due to the population growth. The proportion of water bodies changed slightly and 

fluctuated from 1.27% in reference 1932 and 2.97% in simulated 1932 to 4.89% in 1954, reflecting a 

slight increase. Water bodies were mainly influenced by natural factors, especially affected by climate 

change in the absence of irrigation facilities such as reservoirs. Some research showed that 1936–1959 

was a rainy period in the past century in Northeast China, resulting in the increase of water bodies.  

In addition, unused land surged from 1932 to 1954. A large amount of grassland was converted into 

other unused land from 1932 to 1954 in both change maps, especially in the reference change, indicating 

environmental degradation in Zhenlai County during the study period. The spatial reconstruction of the 

location of settlements over long periods is difficult due to the negligible size compared to other land 

cover classes and its variation in site selection preferences over time [43]. This research focused on 
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natural factors and excluded other drivers (e.g., cultural and socioeconomic forces), consequently, the 

results of reconstruction of settlement areas were unsatisfactory as there are many difference about its 

gross gains and gross losses between the reference change and the simulated change. 

(A) Percentage of land use (B) Losses (C) Gains 

 
Reference 1954  Reference change Reference change

 
Reference 1932  Simulated change Simulated change

 
Simulated 1932 

 

 

Figure 7. Percentage of land categories at three time points and changes during two time 

intervals in Zhenlai County. 
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Table 3. Area counts (ha) of persistence on the main diagonal (underlined) and change off 

the main diagonal from 1954 to 1932: reference change (in italics) and simulated change  

(in bold). 

 
Final year (1932) Initial 

total 
Gross loss 

Arable land Forest Grassland Water Settlement Unused land 

Initial 

year 

(1954) 

Arable land 
85202.00 122.19 76904.66 461.23 1026.98 3638.65 167355.71 82153.71 

129195.45 0.56 34966.03 522.39 509.08 1735.09 166928.60 37733.15 

Forest 
143.27 76.74 252.40 0.00 16.24 0.00 488.65 411.91 

50.24 369.53 35.54 0.00 2.51 27.82 485.63 116.11 

Grassland 
24937.32 534.41 123704.28 1234.24 334.95 11626.66 162371.86 38667.58 

2017.96 238.00 152382.29 1325.70 82.71 7307.26 163353.92 10971.63 

Water 
3788.96 0.00 16556.56 2797.54 64.72 2792.23 26000.01 23202.47 

2125.27 0.00 4155.68 11048.21 13.39 8459.47 25802.01 14753.80 

Settlement 
1422.64 0.00 1192.72 2.93 275.85 50.44 2944.58 2668.73 

1219.25 3.89 670.57 1.70 969.07 78.82 2943.29 1974.22 

Unused land 
28250.58 148.62 127728.90 2263.89 664.62 13388.77 172445.37 159056.60 

12478.79 3.04 19363.19 2612.29 95.72 137539.71 172092.73 34553.02 

Initial total 
143744.76 881.97 346339.52 6759.83 2383.36 31496.74 531606.17 306161.00 

147086.96 615.01 211573.28 15510.29 1672.48 155148.16 531606.17 100101.93 

Gross Gain 
58542.77 805.23 222635.24 3962.29 2107.51 18107.97 306161.00 – 

17891.51 245.48 59191.00 4462.08 703.41 17608.45 100101.93 – 

Figure 8 and Table 4 show the comparison of the observed change with the predicted change and 

distinguishes four types of correctness and error. This map was created using the predicted land cover 

map of 1932 which was overlaid with the reference 1954 to reflect persistence versus change.  

The simulated 1932 land use map had null successes, hits, misses, and false alarms relative to the whole 

study area of 38.05%, 14.52%, 43.07% and 4.36%, respectively. Observed change (OC) occurs on 

57.59% of the land use, whereas the predicted change (PC) on 18.88% of the land use. Relative to the 

whole land area, it had a total EQ (error due to quantity) of 38.71%, EA (error due to allocation) of 8.72% 

and a total error of 47.43%. This illustrates that there is a minor allocation disagreement and a major 

quantity disagreement. If a goal were to decrease error due to allocation, then it would be necessary to 

find additional spatially-explicit with the spatial distribution of the land change processes [31]. If a goal 

were to decrease error due to quantity, then it would be necessary to use multiple methods to improve 

the data accuracy in reconstructing quantity of land use and land cover. The total error is smaller than 

the observed change, so this model is more accurate than its null model, i.e., a model of no change.  

It had HOC, MOC and FOC ratios of 0.252, 0.748 and 0.076, respectively. Besides, the figure of merit 

(FOM) was 23.44%, higher than in some of the case studies [32,33].  

The analysis above illustrated that the major differences among the three maps have less to do with 

the simulation model and more to do with the inconsistencies among the land categories between 1954 

and 1932. The applications that have a large figure of merit are the applications that use the correct or 

nearly correct net quantities for the categories in the prediction map. The reason causing a large number 

of hits in this model is that there are different definitions between the reference map 1932 and the 

simulated map 1932. 
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Figure 8. Prediction correctness and error based on 1954 (reference), 1932 (reference) and 

1932 (simulated) land-use maps. 

Table 4. Validation results of the three-map comparison. 

Index Value (%) Index Value (%) Index Value (%) Index Value  

H 14.52 OC 57.59 EQ  38.71 HOC 0.252 
M 43.07 PC 18.88 EA  8.72 MOC 0.748 
F 4.36 T 47.43 – – FOC 0.076 
N 38.05 FOM 23.44 – – – – 

H–Hits; M–Misses; F–False alarms; N–Null success; OC–Observed change; PC–Predicted change;  

T–Total change; FOM–Figure of merit; HOC–Ratio of hits to the observed change; MOC–Ratio of misses to 

the observed change; FOC–Ratio of false alarms to the observed change; EQ–Error due to quantity;  

EA–Error due to allocation. 

It could be that any precise measurement of simulation accuracy is nearly impossible due to the 

inconsistencies among time points concerning the definitions of land categories in the maps. Most of the 

topographic maps used in this study were produced from 1932 to 1935 by Japan as a response to military 

requests while some of the work was performed by the Chinese military during the Manchukuo era. 

Thus, topographic maps in this study are limited primarily by the fact that they were created for a specific 

military purpose and by the methods used in elaborating them at the time when they were made, and 

they focus on certain land cover, such as settlements, water, etc., while some land-use types are not 

described at all, such as other unused land. Each map shows its own land cover classes mainly based on 

its purpose and criteria. The features of grassland and unused land drawn in the 1930s’ topographic maps 

are distinctly different from those derived from remote sensing images, because of their different 
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intended uses. Grassland in the topographic maps is often mixed with other land covers and its boundary 

is not easy to be determined. Besides, most of grassland in these maps is often judged as wildland, 

resulting in limited grassland’s symbol in maps. In addition, rainfed lands, the blank areas without any 

symbol described in maps, are often difficult to digitize from grassland and wildland, so it is very 

difficult to extract and digitize the spatially explicit grassland data. When applying modern mapping 

standards, unused land is generally underrepresented on historic maps. Thus, historical maps have a 

variety of limitations that must be considered to accurately interpret apparent land cover change. We 

must recognize that the topographic maps and remote sensing images can provide different information. 

In addition, with the small topographic relief in the study area, climate change, especially change in 

precipitation, has large impacts on unused land, especially on wetland area. Figure 6, Figure 7A and 

Figure 8 show that wetland area from the simulated 1932 map is larger than that in the reference 1932 

map digitized from the topographic maps, thus a corresponding lesser area of grassland appears in the 

simulated map. If we consider the large impacts of precipitation on unused land, it will be consistent 

with the fact that 1900–1935 was a drier period in the past century in Northeast China [48,49]. Thus, the 

simulated model might be more accurate if we input climate data into the model. Furthermore, it is better 

for us to combine multi-source data due to the heterogeneous data sources. Blending different data can 

extend information about environmental change across a broad range of temporal and spatial scales.  

By combining different data sources, a more complete picture of land use and land cover change can 

often be gained. 

5. Conclusions  

The main objective of this work was to reconstruct land use/cover in the 1930s in Northeast China 

using a CA-Markov model in 90 m × 90 m spatial resolution based on the assumption that current spatial 

patterns of land use are dynamically dependent on a historical pattern and factors for land suitability do 

not change over time. Then the three-map comparison methodology was used to validate the 

reconstruction map. We have chosen Zhenlai County in Northeast China as the target for study.  

The main conclusions are summarized as follows:  

(1) The CA-Markov land cover change model can be simultaneously applicable to spatial 

reconstructions of various land cover types. The results of historical reconstruction showed that 

grassland occupied the largest percentage of the study area, followed by wetland and arable land. 

Other land categories, however, occupied relatively small areas.  

(2) The total change area for the reference change between 1954 and 1932 is 306,161.00 ha while it 

is only 100,101.93 ha for the simulated change. Gross losses and gross gains were mainly 

distributed in the middle of the study area and the areas near rivers and lakes. Arable land 

expanded at the expense of grassland due to the fast population growth during this period. The 

proportional area of water bodies increased slightly due to the increase of the precipitation.  

A large amount of grassland was converted into other unused land from 1932 to 1954 in both 

change maps, especially in the reference change, showing environmental degradation in the  

study area. 

(3) The figure of merit of the model was 23.44%. The relative error due to allocation was 8.72% 

while the error due to quantity was 38.71% because of the inconsistencies among time points 
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concerning the definitions of categories in the maps. The major differences among the three maps 

have less to do with the simulation model and more to do with the inconsistencies among the 

land categories during the study period, especially for the grassland and unused land.  

The grassland in the topographic maps is often mixed with other land covers and its boundaries 

are not easy to determine. Besides, most of grassland in these maps is often judged as wildland, 

resulting in difficulty to extract and digitize the spatial explicit grassland data. It is important to 

choose a reference map with high accuracy in model validation using the three-map comparison 

methodology, however, it is very difficult for researchers to collect and obtain a suitable reference 

map in validation of reconstruction model due to the limitation of available historical data.  

(4) Historical topographic maps have a variety of limitations that must be considered to accurately 

interpret apparent land cover change. Each map shows its own land cover classes mainly based 

on its purpose and criteria. Different information provided by topographic maps and remote 

sensing images must be recognized, because of their intended uses. Blending different data can 

extend information about environmental change across a broad range of temporal and spatial 

scales. And then by combining multi-source data and information, a more complete picture of 

land use and land cover change can be obtained.  
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