Supplementary Materials

Figure S1. DSC data for selected samples of xNaBH₄–(1 - x)Mg(BH₄)₂ showing the thermal events at 178 and 205 °C.

Figure S2. Integrated DSC signal in the temperature range of 175 to 186 °C of the endothermic event per sample mass for xNaBH₄–(1 - x)Mg(BH₄)₂, x = 0 to 1.

Figure S3. Normalized DSC curves of Ca(BH₄)₂ (x = 0) and xNaBH₄–(1 - x)Ca(BH₄)₂, x = 0.335 to 0.665, in the temperature range of 50 to 400 °C.

Figure S4. TPPA sequence for 0.5NaBH₄–0.5Mg(BH₄)₂ at six selected temperatures between RT and 400 °C, $\Delta T/\Delta t = 5$ °C/min, Ar atmosphere.

Figure S5. TGA data for selected samples of xNaBH₄–(1 - x)Ca(BH₄)₂.

Figure S6. *In situ* SR-PXD data for 0.665NaBH₄–0.335Mg(BH₄)₂ in the temperature range of RT to 600 °C ($\Delta T/\Delta t = 10$ °C/min, *p*(Ar) = 1 bar, $\lambda = 0.999991$ Å). Symbols: 1, NaBH₄; 2, amorphous Mg(BH₄)₂; 3, α-Mg(BH₄)₂; 4, β-Mg(BH₄)₂; 5, Compound 1; 6, MgH₂; 7, Mg; 8, MgO; 9, MgB₂.

Figure S5. *In situ* SR-PXD data for 0.5NaBH₄–0.5Ca(BH₄)₂ measured from RT to 500 °C ($\Delta T/\Delta t = 5$ °C/min, p(Ar) = 1 bar, $\lambda = 1.00355$ Å). Symbols: 1, α-Ca(BH₄)₂; 2, NaBH₄; 3, WC; 4, γ-Ca(BH₄)₂; 5, β-Ca(BH₄)₂; 6, Ca₃(BH₄)(BO₃); 7, **2**; 8, CaH₂; 9, CaB₆; 10, CaO; 11, Ca₃(BO₃)₂.

In situ SR-PXD data obtained for sample $0.5NaBH_4-0.5Ca(BH_4)_2$ are shown in Figure S7. Normalized diffracted intensities of selected Bragg peaks of the compounds are extracted as a function of temperature and displayed in Figure S8. The first SR-PXD pattern measured at RT for $0.5NaBH_4-0.5Ca(BH_4)_2$ reveals Bragg diffraction peaks from α -Ca(BH_4)₂ and NaBH₄ indicating that the compound does not react during ball milling. The polymorphic phase change from α - to β -Ca(BH₄)₂ appears to occur via an intermediate, γ -Ca(BH₄)₂, which is observed in the temperature range ~125 to 180 °C [1]. The formation of γ -Ca(BH₄)₂ is associated with a minor decrease in the peak intensity for NaBH₄. At T = 290 °C, diffraction peaks from crystalline β -Ca(BH₄)₂ disappear, and Ca₃(BH₄)₃(BO₃) forms instead [2]. Bragg peaks from NaBH₄ experience a significant decrease in intensity from 290 to 330 °C. Calcium borohydride borate, Ca₃(BH₄)₃(BO₃), disappears at $T \sim 350$ °C, followed by the formation of another new compound, denoted **2**. Observation of **2** is characterized by 10 major Bragg reflections with *d*-spacing's 8.99, 5.21, 3.71, 3.39, 3.28, 3.01, 2.64, 2.59, 2.40 and 1.97 Å. It was not possible to obtain a satisfying indexing of the Bragg peaks belonging to unknown **2**. At $T \sim 410$ °C, diffraction from Compound **2** disappears in 0.5NaBH₄–0.5Ca(BH₄)₂, and peaks from the decomposition products CaH₂, CaB₆, Ca₃(BO₃)₂ and CaO are observed. Interestingly, an increase in diffracted intensity from NaBH₄ may be correlated with the decomposition of **2**. Crystalline NaBH₄ disappears at T = 480 °C, where also Ca₃(BO₃)₂ partly transforms to CaO.

Figure S6. Normalized diffracted intensities of selected Bragg peaks from the compounds observed in the *in situ* SR-PXD study (Figure S7) of NaBH₄– α -Ca(BH₄)₂ 1:1. Legend: NaBH₄ (black square), α -Ca(BH₄)₂ (white square), γ -Ca(BH₄)₂ (black circle), β -Ca(BH₄)₂ (white circle), Ca₃(BH₄)₃(BO₃) (black triangle), Compound **2** (white triangle), Ca₃(BO₃)₂ (black pentagon), CaB₆ (white pentagon), CaH₂ (black star), CaO (white star).

References

- 1. Filinchuk, Y.; Ronnebro, E.; Chandra, D. Crystal structures and phase transformations in Ca(BH₄)₂. *Acta Mater.* **2009**, *57*, 732–738.
- Riktor, M.D.; Filinchuk, Y.; Vajeeston, P.; Bardají, E.G.; Fichtner, M.; Fjellvåg, H.; Sørby, M.H.; Hauback, B.C. The crystal structure of the first borohydride borate, Ca₃(BD₄)₃(BO₃). *J. Mater. Chem.* 2011, *21*, 7188–7193.