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Abstract: The complex unsteady aerodynamics of vertical axis wind turbines (VAWT)
poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena
associated with the unsteady conditions for VAWTs, and it is in the focus of the
study. Two dynamic stall models are compared: the widely-used Gormont model and a
Leishman–Beddoes-type model. The models are included in a double multiple streamtube
model. The effects of flow curvature and flow expansion are also considered. The model
results are assessed against the measured data on a Darrieus turbine with curved blades.
To study the dynamic stall effects, the comparison of force coefficients between the
simulations and experiments is done at low tip speed ratios. Simulations show that the
Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

Keywords: vertical axis turbine; dynamic stall; streamtube model

1. Introduction

The need for sustainable energy sources with no carbon dioxide emissions has caused an increase
of interest in wind power. Today, the vast majority of wind power plants are horizontal axis wind
turbines (HAWT). However, during the last few years, interest in vertical axis wind turbines (VAWT)
has increased, due to their potential to reduce the energy cost [1,2]. For large turbines, the concept
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of VAWT can be beneficial compared to HAWT [1,3]. The VAWT size can be adjusted to optimize the
absorbed power, i.e., both the diameter and height of rotor can be changed. Moreover, the lower center of
gravity (compared to HAWT) makes the VAWT design favorable for floating platforms [4]. In addition,
VAWTs are omni-directional and therefore do not require a yawing system. The generator for a VAWT
does not need to be optimized for weight and size, since it can be located at the ground level, which
simplifies installation and maintenance. Several projects on multi-megawatt VAWTs for offshore use are
being carried out [5–7].

A design with less moving parts is the principal advantage of VAWTs. However, cyclic loads on the
blades, tower and drive train together with complex unsteady aerodynamics are of a major concern for
VAWTs [1]. This study focuses on modeling the unsteady aerodynamics. The simulation models have
to account for the continuous changes of the angles of attack, which are natural during VAWT operation.
The amplitude of the angles of attack increases with decreased tip speed ratio (TSR), and it is at the low
TSRs where the dynamic stall is present [8].

VAWTs are usually stall regulated due to the complexities with pitch regulation [9,10]. Therefore, the
effect of dynamic stall is very important for the operation of VAWTs. For high wind speeds, where the
rotational velocity is limited, the TSR decreases, which causes an increase in the amplitude of the angles
of attack (for VAWTs with fixed blades). Consequently, the blades fall into a stall, causing a drop in lift
force. Thus, VAWT blades are passively controlled by the dynamic stall, and therefore, it is important to
account for it when modeling the turbine. Moreover, the amplitude of the oscillations of the blade forces
changes with dynamic stall, which is related to fatigue problems.

Several approaches exist to model the effects of dynamic stall. An overview of the dynamic stall
models adapted for the VAWTs applications can be found in [11,12]. The Gormont model [13],
modified by Massé and Berg [14,15], is widely used for VAWTs simulations due to its simplicity of
implementation [16–20]. A more complex method was developed by Beddoes [21], which models both
attached and separated flows. The model was further modified by Leishman [22,23], and therefore, it is
commonly called the Leishman–Beddoes model. This model has shown better agreement (compared
to the Gormont model) for the experiments on pitched airfoils [24]. Both the Leishman–Beddoes
and Gormont models were originally developed for helicopter rotors and were later adopted for the
simulations of VAWTs.

Studies on the VAWT blade loads during the dynamic stall are rare, due to the lack of existing
experimental data. Scheurich et al. [25] have conducted a study in which the previously-measured
data on a VAWT at the Reynolds number Re = 40, 000 (the data were taken from [26]) was compared
against the vortex model coupled with the the Leishman–Beddoes dynamic stall model. Ashuri et al. [27]
have used a double multiple streamtube model (DMS) with the Gormont dynamic stall model to assess
their own experimental data on a vertical axis marine current turbine with three straight blades.

The present study focuses on VAWTs operating at low TSRs, where the dynamic stall is present.
The simulation results are performed with the DMS model and assessed against the experimental data
on the Sandia 17-m turbine with two curved blades [28]. The experimental data on this turbine were
chosen, because of its large scale size, which gives the Reynolds number Re > 1 × 106. Two dynamic
stall models are compared: the Gormont model, with the modifications of Massé and Berg, and the
Leishman–Beddoes model, modified by Sheng et al. [29].
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The aim of the work is to compare two dynamic stalls combined with the DMS model against
measured data on a VAWT. Normal and tangential force coefficients at the mid-span of the rotor are
studied, and the accuracy of the models is assessed.

2. Method

The DMS model, which is built on blade element momentum theory, is chosen for the turbine
modeling. The turbine is divided into a number of streamtubes, and the principle of momentum
conservation is used for each streamtube. The DMS model is a fast method to calculate the aerodynamic
performance of a VAWT, and it has shown reasonable agreement with experiments on Darrieus turbines
with curved blades [12]. Two versions of the DMS model were developed around the same time, one
by Paraschivoiu [30] and one by Read and Sharpe [31]. The difference is that the Paraschivoiu model
assumes that the streamlines are parallel to each other, and the Read and Sharpe model includes the
streamtubes expansion in the horizontal plane. In the present study, the DMS model is formulated as
in [32], and the flow expansion model is included, as by [31]. A database on the static lift and drag
coefficients is required for the DMS model. The widely-used database for symmetrical airfoils, formed
by Sandia National Laboratories [33], is adapted for the present model.

2.1. Dynamic Stall Effects

2.1.1. Leishman–Beddoes Model

The Leishman–Beddoes model (LB) [22,23], which was further developed by Sheng et al. [29],
is used in this work. It is described in detail in [24], and the main principles of the model are
reviewed here.

The LB model consists of three parts: unsteady attached flow, stall onset and separated flow. The
unsteady attached flow solution is comprised of circulatory and impulsive loadings, which are caused by
the time varying bound vortex. The circulatory normal force coefficient is expressed as:

CC
Nn = CNααEn (1)

where CNα is the slope of the static normal force coefficient at certain a Reynolds number, and αEn is an
equivalent angle of attack:

αEn = αn −Xn − Yn − Zn (2)

where α is the geometrical angle of attack and Xn, Yn and Zn are the deficiency functions, which are
empirically derived based on the flow velocity and the pitch rate, and they can be found in [24]. As
seen from Equations (1) and (2), the LB is the iterative model with indexes n and n − 1 representing
the current and previous time steps. A delayed angle of attack due to the lag in pressure response is
calculated in the unsteady attached flow part, as well:

α′n = αn −Dαn (3)

where Dα is the deficiency function:

Dαn = Dαn−1 exp

(
−∆s

Tα

)
+ (αn − αn−1) exp

(
−∆s

2Tα

)
(4)
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where Tα is an empirically-derived time constant, which is Tα = 5.78 for the NACA (National Advisory
Committee for Aeronautics) 0015 airfoil, and ∆s is the non-dimensional time-step:

∆s =
2V∆t

c
(5)

where V is the incoming flow velocity and c is the chord length.
Due to the flow reversal within the boundary layer, a leading edge vortex forms at the airfoil surface.

The critical angle of attack αcr is used to define the condition at which the dynamic stall may begin:

αcrn =

αds0 |rn| ≥ r0

αss + (αds0 − αss) |rn|r0 |rn| < r0
(6)

where the reduced pitch rate rn is:

rn =
α̇nc

2V
(7)

where α̇ is the pitch rate and r0 is the reduced pitch rate, which delimits the quasi-steady stall and the
dynamic stall, which is r0 = 0.01. αss and αds0 are the static stall-onset angle and critical stall onset
angle correspondingly, which are αss = 14.67◦ and αds0 = 17.81◦ for NACA0015. The following
dynamic stall condition is used:

|α′| > αcr → stall (8)

The effects of separated flow are divided into two groups: trailing edge separation and leading edge
vortex convection. The trailing edge separation is associated with the time delay in the movement of the
boundary separation point, and it is obtained via Kirchhoff’s flow approximation:

f ′n =

1− 0.4 exp
(
|α′n|−α1

S1

)
|α′n| < α1

0.02 + 0.58 exp
(
α1−|α′n|
S2

)
|α′n| ≥ α1

(9)

where f ′ is the delayed separation point and α1, S1 and S2 are the constants based on the airfoil profile
and the local Reynolds number, found in [24]. The boundary layer around the blade itself is time
dependent, and this effect is superimposed on the pressure response delay, which is represented by α′;
Equation (3). This additional delay is represented by a dynamic separation point, f ′′:

f ′′n = f ′n −Dfn (10)

where the deficiency function Dfn is:

Dfn = Dfn−1 exp

(
−∆s

Tf

)
+
(
f ′n − f ′n−1

)
exp

(
−∆s

2Tf

)
(11)

where Tf is an empirically-derived time constant, which is Tf = 3. The normal force coefficient for the
unsteady conditions before the dynamic stall onset is obtained as follows:

Cf
Nn

= CNααEn

(
1 +

√
f ′′n

2

)2

(12)
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After the stall condition is met, the leading edge vortex convects over the surface of the airfoil towards
the trailing edge. During this process, a significant increase in normal force is present:

Cv
N = B1 (f ′′ − f)Vx (13)

where Cv
N is the normal force coefficient during the vortex convection (so-called “vortex lift”), which

depends on the pitch rate, and Vx and B1 are the parameters based on the local Reynolds number and
airfoil profile, found in [24]. The normal force decreases rapidly when the vortex passes the trailing
edge. The total normal coefficient is estimated as:

CN = Cf
Nn

+ Cv
N (14)

The tangential force coefficient is obtained via Kirchhoff’s flow relation using the dynamic
separation point:

CT = ηCNαα
2
E

(√
f ′′ − E0

)
(15)

where η and E0 are the empirical constants, and they are η = 1 and E0 = 0.25 for the
NACA0015 airfoil.

Figure 1 shows an example of the force response of a pitching blade, simulated by the the LB model,
and the features described above are present.
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Figure 1. Illustration of dynamic stall; NACA0015, α = 6 + 16 sin (ωt), k = 0.1, M =

0.1, c = 0.5 m, where k, M and c are the reduced frequency, Mach number and the chord
length respectively.

Previous studies has shown that two iterations are sufficient to approach convergence for the LB
model [11,24]. Therefore, the LB model runs two loops during each iteration of the DMS model.
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2.1.2. Gormont Model

The Gormont model [13] was developed earlier than the LB model, and several modifications were
applied to adapt the model for VAWTs. The version of Massé and Berg [14,15] is used in this study, and
only the fundamental principles of the model are presented. For the detailed description of the Gormont
model, the reader is referred to [30].

The Gormont model empirically mimics a pitching airfoil by modifying the geometrical angle of
attack into the reference angle of attack, αref :

αref = α−K1∆α (16)

where α is the geometrical angle of attack and K1 and ∆α are the empirically derived parameters, which
are found in [30].

The reference angle of attack is used to calculate the dynamic lift and drag coefficients:

Cdyn
L = CL (α0) +m (α− α0)

Cdyn
D = CD (αref )

(17)

where α0 is the zero-lift angle of attack, and parameter m is:

m = min

[
CL (αref )− CL (α0)

αref − α0

,
CL (αss)− CL (α0)

αss − α0

]
(18)

where αss is the static stall angle and CL and CD are the static lift and drag coefficients (at a certain angle
of attack).

In the version by Massé and Berg, the lift and drag coefficients are further modified as follows:

Cmod
L,D =

CL,D +
[
AMαss−α
AMαss−αss

] (
Cdyn
L,D − CL,D

)
α ≤ AMαss

CL,D α > AMαss
(19)

where AM = 6 is the empirical constant.
Equations (16)–(19) show that the Gormont model is the empirical model, and the main features of

the dynamic stall are not implemented. Namely, the trailing edge separation point, the dynamic stall
condition and the leading edge vortex convection are not defined in the Gormont model. However, its
simplicity makes the Gormont dynamic stall model common for simulations on vertical axis turbines.

2.1.3. Vortex Shedding

The effects of dynamic stall are more complex during the turbine operation than during the pitching
of a single blade. Figure 2 shows the vortex shedding structure of a Darrieus turbine at low TSR. This
figure is based on velocity measurements of a straight-bladed Darrieus turbine operating at a TSR of
2.14 in a water channel, obtained by Brochier et al. [34]. It is shown that both leading and trailing
edge vortices are released and swept away when the blade passes Quadrant III; thus, the flow is fully
separated. This can be both due to the circulatory motion of the blade and due to the highly turbulent
flow, as noted in [34].
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Figure 2. Flow visualization in the dynamic stall condition at λ = 2.14, taken from [34].

An additional modification to the LB model is applied to account for the vortex shedding. This is
done by modeling the fast release of trailing and leading edge vortices: the delay in the angle of attack,
leading edge separation point and vortex lift are set to zero when the blade passes Quadrant III:

Quadrant III→ α′ = αE, C
v
N = 0 (20)

The effect of vortex shedding is not implemented in the simpler Gormont model, as it does not track
the leading edge vortex.

2.2. Additional Modifications

2.2.1. Flow Expansion

Since the flow slows down at the downwind part of the turbine, there will be an expansion of
streamtubes due to the continuity principle, and the streamlines will no longer be parallel to each other.
This is illustrated in Figure 3. The flow expansion model by Read and Sharpe [31] is used in the present
work, and the change in streamlines direction is taken into account. The model assumes that the flow
expands in the horizontal plane.
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Figure 3. Streamlines through a turbine.

In Figure 4, the cross-section of a streamtube is shown. θ is the azimuth angle of the center of
streamtube, w is the width of a streamtube, γ is the angle between the vector of free-stream velocity,
V∞, and the streamline V is the flow velocity at the turbine. Subscripts up and dw stand for the up- and
down-stream parts of the rotor. Vup and Vdw are calculated within the DMS model. The main principle
behind the flow expansion model is the use of the continuity equation:

wdw =
Vupwup
Vdw

(21)

An iterative process is required to find the size of each streamtube for known Vup and Vdw. θ − γ

instead of θ was used in the DMS model in the expressions for relative wind velocity, angle of attack and
the velocity slowdown to account for the change in the streamlines direction.
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Figure 4. Cross-section of a streamtube.
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2.2.2. Flow Curvature

The original DMS model assumes a blade cross-section as a point, and all of the equations are
derived using this assumption. However, there is a variation of the instantaneous flow velocity along
the chord, indicating that the flow is of a curvilinear nature [35]. Consequently, the angle of attack is
not constant along the chord length. To account for the curvature effects, the angle of attack is modified
further. The assumption of the two-dimensional potential flow around the flat plate and the Joukowski
transformation together with the Kutta condition were used. The full derivation is documented in [32],
and the expression for the modified angle of attack is:

α = δ + arctan

(
−Vi sin (θi − γi)

Vi cos (θi − γi) + Ωr

)
− Ωx0c

Vreli
− Ωc

4Vreli
(22)

where δ is the blade pitch angle, Ω is the turbine rotational speed, r is the turbine local radius, x0 is the
normalized blade attachment point, c is the blade chord, Vrel is the relative flow velocity at the blade and
i denotes the streamtube index. The last two terms in Equation (22) account for the chord-to-radius ratio
and for the blade mounting position.

3. Simulation Parameters

The Sandia 17-m turbine is studied in this work. It is a two-bladed Darrieus turbine with curved
blades attached at both ends. The blade profile is NACA0015 with a chord length of c = 0.61 m.
An illustration of the turbine is shown in Figure 5, and the reader is referred to [36] for a detailed
description of the rotor design. The surface pressure measurements for this turbine were performed
by Sandia National Laboratories and are documented in [28]. The pressure transducers were installed
at the mid-span of the blade. Tangential and normal force coefficients, CT and CN , were obtained by
using the pressure distributions and the measured incident wind speed at the blade, Vrel. CT and CN are
defined as:

CT,N =
FT,N

0.5ρV 2
relc

(23)

where FT and FN are tangential and normal forces per unit span and ρ is the air density. The sign
convention of the forces and the definition of the rotor azimuth angle are shown in Figure 6. The turbine
rotational speed was kept constant at Ω = 38.7 rpm during the experiments.

The current study is in 2D, as the measurements were done at the mid-disk of the turbine, and the
average Reynolds number is 1.4 × 106. The mid-disk is divided into 120 streamtubes, 60 on both the
upwind and downwind sides of the disk. The simulations are performed for the range of TSRs from 2.20
to 3.09 to cover the dynamic stall region. The flow expansion and the flow curvature effects are taken
into account as described above.
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Figure 5. Basic illustration of the Sandia 17-m turbine.
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Figure 6. Sign convention of the forces and the definition of the rotor azimuth angle.

4. Results and Discussion

This section presents the assessment of the simulated results compared to the measured data, both
without dynamic stall modeling and with the LB and Gormont models. The simulation results without
dynamic stall modeling are denoted as “no DS”. The normal and tangential force coefficients at the
blades’ mid-span are studied. General comments on the simulation model are given at the end of
this section.

4.1. Assessment of the Model

In Figure 7, the models are tested for the deep stall conditions at a TSR of 2.20. From theCN values in
Figure 7a, it is noted that the blade is stalling at the azimuthal position of θ = 70◦. However, the results
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of both the LB and Gormont models predict stall earlier, at θ = 60◦, and the slope of the simulated
CN -curve at θ < 45◦ is higher than in the experimental data. The higher CN -slope is also present at
TSRs of 2.33 and 2.49 for the simulations with the LB and Gormont models and without dynamic stall
modeling. Therefore, the deviation in the CN -curve at θ < 45◦ may come from the static lift and drag
data, which are used by both the dynamic stall models and by the DMS model. However, the further
overshoot of the CN response at 45◦ < θ < 70◦ cannot be the issue of the dynamic stall models, as it
also takes place at the higher TSR. Thus, the authors presume that this overshoot originates from the
DMS model.

There is a peak in the experimental data of CN at 213◦ < θ < 250◦, centered at θ = 225◦, and
both dynamic stall models do not reproduce it. This peak is likely to be the collision of the blade at the
downwind side with its released vortex from the upwind side. This wake interaction has been noted by
Akins [28], when the experiment was conducted, and it can also be seen in Figure 2. To hit the blade
at θ = 225◦, the impacting vortex would originate at θ = 135◦; Figure 2. Indeed, there is a drop in CN
response at θ = 135◦, which should correspond to the vortex release. However, since the vortices are not
modeled by the DMS, the wake interaction cannot be reproduced.

The Gormont and LB models show a similar response inCN in the second and fourth quadrants, while
the CN response without dynamic stall modeling has peaks at 150◦ < θ < 165◦ and 290◦ < θ < 310◦.
Those peaks are present, because the static lift force coefficient increases instantaneously when the blade
returns from the stall, and since the dynamic stall model is not applied, the delay in the lift force is not
modeled. The difference between the LB and Gormont models’ response in the third quadrant is due
to their ability to represent the circulatory motion of the blade. It was noted in Section 2.1.3 that at the
third quadrant, both leading and trailing edge vortices are swept away, and the flow around the blade is
fully separated. This is taken into account by the LB model, but it cannot be taken into account by the
Gormont model, where the the vortex separation point is not modeled.

The tangential force coefficient CT is shown in Figure 7b. The experimental values of CT do not
cross or even approach zero values at the azimuthal angle of θ = 180◦, when the blade moves directly
downwind, and the angle of attack is zero. This is due to the error in the response of the pressure sensors,
which were used in the experiments, and it is reported by Akins [28] as the measurements error. Such a
behavior of the measured CT at θ = 180◦ is present at all tested TSRs; see Figures 7–10. Therefore, the
simulated results should not be considered erroneous in this region.
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Figure 7. Force response at a tip speed ratio (TSR) of 2.20. (a) Normal force;
(b) tangential force.
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Figure 8. Force response at a TSR of 2.33. (a) Normal force; (b) tangential force.



Energies 2015, 8 1366

0 45 90 135 180 225 270 315 360
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Azimuth angle, θ [deg]

N
or

m
al

 fo
rc

e 
co

ef
fic

ie
nt

, C
N

 

 
LB
Gormont
no DS
Experiment

(a)

0 45 90 135 180 225 270 315 360

−0.1

0

0.1

0.2

0.3

0.4

0.5

Azimuth angle, θ [deg]

T
an

ge
nt

ia
l f

or
ce

 c
oe

ffi
ci

en
t, 

C T

 

 
LB
Gormont
no DS
Experiment

(b)

Figure 9. Force response at a TSR of 2.49. (a) Normal force; (b) tangential force.
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Figure 10. Force response at a TSR of 3.09. (a) Normal force; (b) tangential force.

The slope of the simulated CT -curve is shifted relatively to the measured CT in the upwind region.
This displacement is present for all tested TSRs and is predicted by both dynamic stall models. Thus,
it is presumed that it is an issue of the DMS model. The effect of the wake interaction observed in the
CN data at 213◦ < θ < 250◦ is represented by the drop in the CT in the same region. As with the CN
response, the wake interaction cannot be represented for the CT with the present simulation model. The
ability of the LB model to trigger the release of trailing and leading vortices is beneficial when comparing
to the result of the Gormont model at 180◦ < θ < 270◦. An inconsistent behavior of the CT -curve by the
Gormont model is observed in the region of 150◦ < θ < 185◦, and it is present at the second quadrant
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for all TSRs. Such a response is due to the high dependence of the Gormont model on the static data;
see Section 2.1.2.

The predicted CT values without dynamic stall modeling have two peaks at the upwind (at 55◦ < θ < 60◦

and 155◦ < θ < 160◦) and two peaks at the downwind (at 200◦ < θ < 215◦ and 290◦ < θ < 310◦) at
TSRs of 2.20, 2.33 and 2.49; Figures 7–9. These peaks are present, because both the stall delay and
flow reattachment are excluded when predicting the results without dynamic stall modeling.

The results at TSRs of 2.33 and 2.49 are shown in Figures 8 and 9, respectively. The wake interaction
at TSRs of 2.33 and 2.49 is not as noticeable as at a TSR of 2.20, where it is observed on the measuredCN
data at the third quadrant. The agreement between theCN predictions and the measuredCN is better with
increasing TSR. The models error is largest at a TSR of 2.20; see Table 1, corresponding to the influence
of the wake interaction, which cannot be modeled. Similar to the CN results, the agreement between
the measured and predicted CT data is better with increasing TSR. The method of the comparison of the
models’ accuracy is discussed further in Section 4.2.

Table 1. The root mean square (RMS) of the difference between the predicted and measured
results. LB, Leishman–Beddoes; DS, dynamic stall.

TSR
CN CT

LB Gormont no DS LB Gormont no DS

2.20 0.4228 0.5006 0.4281 0.0740 0.1211 0.0893
2.33 0.2283 0.3143 0.2294 0.0649 0.1166 0.0973
2.49 0.1876 0.2574 0.1948 0.0628 0.1080 0.0976
3.09 0.1857 0.2243 0.1394 0.0570 0.0914 0.0740

In Figure 10, the results for a TSR of 3.09 are shown. In this condition, the stall at the upwind is less
pronounced, and the wake interaction at the downwind is no longer evident; Figure 10a. However, the
overshoot in the predicted CN is still present, similar to the one at the lower TSRs, and it is discussed
earlier in this section. At the third quadrant, theCN values by the LB model are closer to the experimental
data than the Gormont model due to the separated flow in this region, though it is not as pronounced as for
the lower TSRs. In Figure 10b, the shift in the CT curve at the first quadrant is more evident than at the
lower TSRs, and this is due to the streamtube expansion model, as mentioned earlier. The inconsistent
behavior of the CT response at the second quadrant, noted at the lower TSRs, is still distinct. At a TSR
of 3.09, the predictions without dynamic stall modeling show peaks that are observed neither on the
measured data nor on the simulations with the LB and Gormont dynamic stall models. These are the
peaks on the CN and CT data in the second quadrant, and they are due to the excluded delay in the stall
onset and flow reattachment, which is also noted at the lower TSRs. A similar behavior of the predicted
force response without dynamic stall modeling is noted at the lower TSRs, and it is discussed earlier in
the section.
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4.2. Final Discussions

The LB model shows better agreement with the measured data compared to the results by both the
Gormont model and the modeling without dynamic stall. While the CN results by all three models are
similar (except the peak at the second quadrant without dynamic stall modeling), the CT results show
the significant benefit of the LB model. Moreover, the Gormont model does not show the improvement
of the CT response compared to the modeling without dynamic stall.

The quantitative comparison of the results for all of the TSRs is shown in Table 1. The RMS of
the difference between the simulated results and the experimental data is presented, which is a simple
method to evaluate the models’ accuracy. The disadvantage of using the RMS is that only the deviation
in the force response values is taken into account, i.e., only the difference along the y-axis is considered.
If the curve of predicted values is shifted along the x-axis, but has the same shape as the curve of the
measured data, the RMS can still be as high as for an oscillating curve of a different shape. When
comparing the CN results by the LB model and without dynamic stall modeling, it is observed that the
RMS error of the CN without the dynamic stall model is lower than with the LB model, in the case of
TSR = 3.09. The peak of CN at θ = 150◦ without dynamic stall modeling has no physical meaning
(as there is a delay in the flow reattachment); however, since this peak is closer to the measured data, it
happens that the error is smaller. Thus, the inconsistent behavior cannot be quantified with the RMS, and
more advanced methods for the global comparison of the models should be used, which is not studied in
this work.

When designing the turbine, the maximum value of the normal force over the revolution is used to
represent the loads and to dimension the rotor and tower. The mean of the tangential force corresponds
to the power output. However, the maximum values of the CN and the mean of the CT do not reflect the
oscillations during revolution, and the unsteady effects (including dynamic stall and vortex shedding)
can be omitted, while the maximum CN and the average CT can be close to those at steady conditions.
Considering the problems associated with fatigue, it is utterly important that the model is stable and does
not create inconsistent oscillations. In this light, the LB model is beneficial over the Gormont model and
over the case without dynamic stall modeling, though all of the models produce deviations between the
predicted and measured data.

5. Conclusions

The double multiple streamtube model was used to simulate a vertical axis wind turbine at low TSRs,
and the results are assessed against the experimental data in two-dimensional space. Two dynamic
stall models were used: the Leishman–Beddoes-based model with improvements for the conditions
of VAWTs and a Gormont model. Additionally, simulations without dynamic stall modeling were
presented. For all test conditions, the Leishman–Beddoes-type model shows better agreement with the
experimental data. Although the model does not reproduce all of the unsteady effects observed in the
experimental data, it shows higher accuracy and is more stable compared to the Gormont model, which
is widely used for simulations of vertical axis turbines.
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