
 

Energies 2015, 8, 13894–13910; doi:10.3390/en81212402 www.mdpi.com/journal/energies 

Article 

A Two-stage Optimal Network Reconfiguration 
Approach for Minimizing Energy Loss of 
Distribution Networks Using Particle Swarm 
Optimization Algorithm 
Wei-Tzer Huang 1,*, Tsai-Hsiang Chen 2, Hong-Ting Chen 1, Jhih-Siang Yang 2, Kuo-Lung Lian 2, 
Yung-Ruei Chang 3, Yih-Der Lee 3 and Yuan-Hsiang Ho 3 

Received: 7 October 2015; Accepted: 1 December 2015; Published: 5 December 2015 
Academic Editor: Neville Watson 

1 Department of Industrial Education and Technology, National Changhua University of Education, No. 2, 
Shida Road, Changhua 500, Taiwan; edchen1991@gmail.com 

2 Department of Electrical Engineering, National Taiwan University of Science and Technology, No.43, 
Section 4, Keelung Road, Da’an District, Taipei City 106, Taiwan; thchen@mail.ntust.edu.tw (T.-H.C.); 
m10307106@mail.ntust.edu.tw (J.-S.Y.); ryanlian@mail.ntust.edu.tw (K.-L.L.) 

3 The Institute of Nuclear Energy Research, 1000 Wenhua Road, Jiaan Village, Longtan District,  
Taoyuan City 325, Taiwan; raymond@iner.gov.tw (Y.-R.C.); ydlee@iner.gov.tw (Y.-D.L.); 
twingo_ho@iner.gov.tw (Y.-H.H.) 

* Correspondence: vichuang@cc.ncue.edu.tw; Tel.: +886-4-723-2105 (ext. 7264); Fax: +886-4-721-1287 

Abstract: This study aimed to minimize energy losses in traditional distribution networks and 
microgrids through a network reconfiguration and phase balancing approach. To address this 
problem, an algorithm composed of a multi-objective function and operation constraints is 
proposed. Network connection matrices based on graph theory and the backward/forward sweep 
method are used to analyze power flow. A minimizing energy loss approach is developed for 
network reconfiguration and phase balancing, and the particle swarm optimization (PSO) algorithm 
is adopted to solve this optimal combination problem. The proposed approach is tested on the IEEE 
37-bus test system and the first outdoor microgrid test bed established by the Institute of Nuclear 
Energy Research (INER) in Taiwan. Simulation results demonstrate that the proposed two-stage 
approach can be applied in network reconfiguration to minimize energy loss. 
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1. Introduction 

The major function of traditional passive distribution networks is to distribute electrical power 
to customers. Because voltage levels in such networks are relatively lower and their total length is 
longer compared with transmission networks, reducing power losses in distribution networks is vital; 
furthermore, the annual energy loss of the power system will be diminished. At present, many 
distribution energy resources (DERs) are connected to distribution networks. Distribution networks 
have become active networks called microgrids. Microgrids consist of DERs and loads. DERs include 
renewable and nonrenewable generation units, as well as storage devices, such as photovoltaic 
systems, wind turbines, fuel cells, microturbines, diesel engines, battery banks, and supercapacitors, 
among other [1–3]. Microgrids can be operated under grid-tied and islanding modes through a static 
switch at the common coupling point between the main power grid and the microgrid [4]. In the  
grid-tied operation mode, the microgrid may act as a load or source at any time in terms of the main 
power grid. The islanding operation mode must be operated autonomously based on the power 
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balance principle to maintain constant voltage and frequency. Numerous renewable energy units are 
used in microgrids. Thus, CO2 emissions are reduced and global warming is prevented. Constructing 
microgrids in industrial parks, campuses, shopping malls, off-shore islands, and remote districts is 
worthwhile because of the all the aforementioned advantages. 

The system planning, designing, operating, and controlling of microgrids is more complex 
compared with traditional passive distribution systems. Consequently, an energy management 
system (EMS) is essential in the system operation stage in microgrids [5–7]. To increase operating 
efficiency, the network reconfiguration and phase balancing approach, which is one of the functions 
in EMS, has been adopted to minimize power loss and improve voltage quality. Merlin and Back [8] 
used a spanning tree structure to model a distribution system. The obtained solution results  
were independent from the initial status of the switches; however, their algorithm was very  
time-consuming. Civanlar et al. [9] proposed a branch-exchange method to minimize the number of 
switching operations; however, this approach is not systematic and can only reduce power loss.  
Jeon et al. [10] presented a simulated annealing algorithm for network reconfiguration; this algorithm 
was easy to code but required considerable computation time in large-scale systems. Venkatesh and 
Ranjan [11] proposed an approach that used an evolutionary programming with fuzzy adaptation as 
a solution technique; however, as a system grew larger, this method became increasingly complex. 
Hamdoui et al. [12] used the ant colony approach algorithm to identify the optimal combination of 
feeders with different natures to find a new network topology. This method is highly efficient and 
convergence definitely occurs; however, the length of time required to achieve convergence  
remains uncertain. 

In this work, a population-based stochastic optimization technique that adopts the particle 
swarm optimization (PSO) algorithm is used to search for the solutions of the proposed two-stage 
approach, which is to solve the optimal network reconfiguration at the first stage and phase balancing 
at second stage. This paper is divided into four sections: Section 1 presents the introduction; Section 
2 reviews network reconfiguration and phase balancing algorithms, and then describes the proposed 
two-stage optimal network reconfiguration problem and its formulation; Section 3 demonstrates and 
discusses the simulation results; and Section 4 concludes the paper. 

2. Problem Formulation 

In this section, the network reconfiguration and phase balancing problems will be explained in 
details, and then the PSO algorithm and power flow solution technique for solving this problem will 
also be described; finally, a multi-objective function will be derived for the proposed two-stage approach. 

2.1. Describes Network Reconfiguration Problem 

Most distribution networks exhibit a radial configuration from the distribution substation to the 
customers. Sectionalizing switches and tie switches are installed in these systems to consider normal 
and abnormal operations. Under normal conditions, the sectionalizing switches are typically closed 
and the tie switches are generally open. Nevertheless, the network can be changed by performing 
switching actions for the best network topology to increase system performance. This process is called 
reconfiguration. Through network reconfiguration, power losses are reduced, load distribution 
becomes uniform, and overloading is avoided. System reliability is enhanced after a fault occurs. 

A combinatorial problem arises because of switching actions. Therefore, when the number of 
switches is high, the possibility of reconfiguration increases. The most common approaches to solve 
this problem in network reconfiguration can be classified as follows: 

• Mathematical optimization methods, 
• Heuristic methods, 
• Artificial intelligence methods. 

These methods each have advantages and disadvantages. Based on literature reviews, these 
techniques can effectively address network reconfiguration problems. Solving a network 
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reconfiguration problem involves two components: (1) the objective function and the system 
operating constraints; (2) the power flow algorithm. The common objective function is power loss 
minimization, and the constraints are the upper and lower limits of bus voltages, the ampere capacity 
of the conductor, and feasible network topology. The power flow algorithms must suit the 
characteristics of distribution networks with high R/X ratio, short distance between two connected 
buses, and unbalanced load distributions and system structure. 

2.2. Describes Phase Balancing Problem 

Distribution networks are inherently unbalanced, due the single-phase three-wire, three-phase 
three-wire, and three-phase four-wire connections of distribution transformers widely used in 
distribution networks to serve various loads; besides, feeder arrangements that are not completely 
three-phase four-wire (three-wire), two-phase or single-phase arrangements are usually adopted in 
laterals or sub-laterals. Moreover, the electricity consumption of customers is random. Consequently, 
these factors cause the three-phase currents in a distribution feeder to be unbalanced, and then result 
in three-phase voltage unbalance. The voltage and current unbalances are the dominators resulting 
in extra power losses, increasing the current in the neutral line of three-phase four-wire distribution 
networks, and so on. Figure 1 shows the six connection schemes of individual phase loads for three-
phase buses, the individual phase loads can be derived by the integrated models of distribution 
transformers with theirs loads [13]; therefore, there are six possible connection schemes at the three-
phase bus, and similarly, two connection schemes at a two-phase bus, and one connection scheme at 
a single-phase bus. To improve the phase voltage and current unbalance conditions, the common 
approach is to derive the combinations of suitable phase connections between the individual phase 
load and a primary feeder; this is called phase balancing. However, electrical distribution engineers 
usually use the conventional trial and error approach, and it is time consuming to achieve an 
acceptable result; ultimately it fails to solve for the phase balancing problem. Fortunately, some 
effective optimal algorithms for phase balancing were proposed to improve the unbalance and to 
increase system operation efficiency, such as the mixed-integer programming method [14], genetic 
algorithm [15], phase balancing algorithm considering time-varying load patterns [16], expert 
systems [17], etc. According to the literature reviews, these approaches are able to effectively address 
phase balancing problems. The objective function, system operating constraints, and the power flow 
algorithm are essential to solve this problem. 

 
Figure 1. Six connection schemes for three-phase buses. 

2.3. Particle Swarm Optimization Algorithm 

In this paper, the PSO algorithm is used to solve the two-stage optimal network reconfiguration 
problem, it was introduced by Kennedy and Eberhart [18,19] in 1995. This algorithm is a population-
based optimal search technique describing certain social behaviors of animals, such as fish schooling 
or bird flocking. PSO simulates the population behavior that combines the cognition-only model and 
the social-only model, as shown in Equations (1) and (2), respectively. The cognition-only model 
searches for the individual best solutions as the local best (pbest) and changes particle position and 
velocity to move in a multi-dimensional space until the convergence constraints are reached. In the 
social-only model, the pbest and global best (gbest) are compared to update the gbest and change 
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particle position and velocity. The combination of pbest and gbest in PSO allows the particle to adjust 
rapidly and correctly, which results in fast convergence using Equations (3)–(5): 

1
1 1rand ( )k k k k

n n n nV V c pbest s+ = + × × − (1)
1

2 2 ( )k k k k
n n nV V c rand gbest s+ = + × × − (2)

1
1 1 2 2( ) ( )k k k k k k

n n n n nV w V c rand pbest s c rand gbest s+ = × + × × − + × × −  (3)
1 1k k k

n n ns s v+ += + (4)

max max min
max

( ) k
w w w w

k
= − − ×  (5)

where kmax is the maximum iteration, n is the particle number, k
nV  is the velocity of particle n at the 

kth iteration, k
ns  is the kth position of particle n, c1 and c2 are learning factors, rand1 and rand2 are 

random numbers between 0 and 1, k
npbest  is the best value of particle n at the kth iteration, and kgbest  

is the global best value at the kth iteration. w, wmax, and wmin are acceleration coefficients, maximum 
weighting values, and minimum weighting values, respectively. 

2.4. Power Flow Algorithm 

The network reconfiguration and phase balancing problems must be solved by the power flow 
algorithm. Two common frame of reference-based power flow algorithms are used in distribution 
networks: the Gauss and Newton–Raphson algorithms based on bus frame of reference are common 
techniques used for power flow solutions [20–24]; besides, other algorithms based on branch frame 
of reference were adopted for solving unbalanced power flows [25–28]. Graph theory and the 
backward/forward sweep method [25,26] were applied in the proposed power flow algorithm. Graph 
theory is a systematic approach to build incidence matrices that correspond to network topologies. 
The incidence matrices used in the proposed algorithm is the A matrix, which is the element-bus 
incidence matrix, and the K matrix, which is branch–path incidence matrix. Based on these matrices, 
the bus-injection to branch-current (BIBC) matrix and the branch-current to bus-voltage (BCBV) 
matrix can be established according to various system structures. Furthermore, BIBC and BCBV 
matrices are adopted in the power flow algorithm. The power flow solution procedure is described 
as follows: 

Step 1: Build the A matrix. The K matrix can be derived using Equation (6). Establish the BIBC 
matrix using Equation (7), as follows: 

K = [A−1]t (6)

[BIBC] = −K (7)

Step 2: Transpose the BIBC matrix and add the primitive line impedance into the corresponding 
non-zero element position to derive the BCBV matrix. 

Step 3: Compute the equivalent bus injection current at each bus connected to the source or load 
using Equation (8) as follows: 

*( )k i i
i k

i

P Q
I

V

+
=  (8)

Step 4: Calculate the voltage derivation of each bus using Equation (9): 

[ ] [ ][ ][ ]k kV BIBC BCBV IΔ =  (9)

Step 5: Update the bus voltage using Equation (10), where 
no_loadV  is the no-load voltage at each 

bus, that is: 
1

no_load[ ] [ ][ ]k kV V V+ = Δ  (10)
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Step 6: Check whether convergence is achieved using Equation (11). If convergence is not 
achieved, then proceed to step 3; otherwise, end the solution procedure. ε  is the maximum toleration, 
that is: 

1max ( ) εk k
i i iI I+ − >  (11)

2.5. Description of the Objective Function 

Up to now, few literatures on this subject have simultaneously solved for both network 
reconfiguration and phase balancing problems, although some works have solved these two 
problems individually. It is time consuming and even more divergent to deal with them at the same 
time, especially for large scale systems. Consequently, in this paper, the problem is divided into two 
sub-problems, which are network reconfiguration and phase balancing; Figure 2 depicts the 
proposed two-stage optimal network reconfiguration approach. In general, due to the fact that power 
loss reduction by network reconfiguration is much better than phase balancing, and besides, because 
of the combinations of switch status are relatively less than those of phase arrangements of the loads 
at each bus, the network reconfiguration optimization is therefore chosen as a first stage for 
considerable power loss reduction, and then the power loss and voltage unbalance will be improved 
by phase balancing in the second stage. In order to rigidly consider the unbalanced characteristic of 
distribution networks, the negative and zero voltage factors and daily energy loss are included in the 
proposed multi-objective function, which is explained as follows. 

 
Figure 2. The schematic diagram of the proposed approach. 

2.5.1. Three-Phase Voltage Unbalance 

The zero- and negative sequence voltage factors, are defined as the zero- and negative sequence 
voltage component divided by the positive-sequence voltage component, respectively. Only positive-
sequence component exists in a three-phase balanced voltage, but otherwise the zero- and negative 
components exist in a three-phase unbalanced voltage. These two factors can clearly explain the extra 
power loss and derated operation of motors, instead of the other definitions which only consider the 
voltage magnitude differences between each phase. In this paper, the total zero- and negative 
sequence voltage factors are expressed as Equations (12) and (13), respectively: 
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
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where the zero- positive- and negative sequence voltage components at bus i are V0,i, V1,i and V2,i and n 
denotes the bus number. 

2.5.2. Energy Loss 

To reduce power loss is vital for increasing system operating efficiency. The ratio between the 
average load demand (Pavg) and maximum load demand (Ppeak) in a period of time (T) is the definition 
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of load factor (LF) as shown in Equation (14), where p(t) is the instantaneous power. The typical value 
of LF in a distribution system is between 30% and 70% [29], so the LF is set as 62.68% in this paper. 
The maximum load demands can be derived from the measured daily load curve. Furthermore, the 
loss factor (LSF) is defined as the ratio between the average power loss (Pavg,loss) and maximum power 
loss (Ppeak.loss) in a period of time (T) as shown in Equation (15), where ploss(t) is the instantaneous 
power loss, and the LSF is set as 49.11% in this paper. 

In this paper, the maximum load of each bus is used for power flow simulation, and the peak 
power loss can be computed by Equation (16); moreover, the average power loss is calculated by the 
peak power loss product the LSF, and thus the daily energy loss (kWh) can be calculated by  
Equation (17). Once the daily energy loss is obtained, the seasonal and annual energy losses can be 
calculated by Equations (18) and (19), respectively. 
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= × = ×

  (14)
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2.5.3. Multi-Objective Function 

The goal in this paper is to minimize energy losses and improve the voltage profile in 
distribution networks. Consequently, the multi-objective function can be formulated as Equation (20) 
by combining daily energy loss and voltage unbalance factors: 

min min min
daily,loss daily,loss o 2

1 2 3max min max min max min
daily,loss daily,loss o o 2 2

o 2
E E TD TD TD TD

f w w w
E E TD TD TD TD

− − −
= ⋅ + ⋅ + ⋅

− − −
 (20)

which is subject to: 
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V
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i

i

V
D D

V
= ≤  (26)

g G∈  (27)

In Equation (20), because the daily energy loss and voltage unbalance factors are with distinct 
units and the numerical values between them are quite different, normalization of the individual item 
between 0 and 1 is essential for multi-objective optimization. wi is an adjustable weighting factor 
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depend on the requirement; besides, max
daily,lossE  and min

daily,lossE  represent the maximum and minimum 
values of daily energy loss of the particles in a swarm; similarly, the same meanings of max

oTD , min
oTD , 

max
2TD , and min

2TD  in Equation (20). 
Equations (22) and (23) represent the power balance equations in radial networks, L represents 

the number of lines and Ij denotes the current of the jth line. Meanwhile, Pi and Qi denote the real and 
reactive power flow out of bus i, respectively; ri and xi are the resistance and reactance between bus i 
and i + 1; Li represents the line current between bus i and i + 1; in Equation (24), Vi, VUi, and VLi denote 
the voltage at bus i and its upper and lower limits, respectively. In Equations (25) and (26), 0, iD  and 

2, iD  represent the zero- and negative sequence voltage factors at bus i, and max.
0D  and max.

2D  are the 
specified maximum values of zero- and negative sequence voltage factors, respectively. In Equation 
(27), g is the network topology; and G represents the sets of radial topologies, which cannot be closed-
loop and islanding topologies, the A matrix that is the element-bus incidence matrix can be used to 
check the network topology, if the determinant of A equals 1 or − 1 and then it is the radial topology; 
otherwise, if the determinant of A equals 0 and then it is not a radial topology. 

The PSO algorithm is applied to solve the proposed two-stage optimal network reconfiguration 
and phase balancing approach, whereby the A matrix is built according to switch status and the phase 
connection arrangement of the load at each bus must be transferred to the PSO algorithm to have the 
corresponding network topology and individual complex power at each bus. The power flow 
algorithm is used to execute the specified network topology and then the value of the proposed 
function will obtained for each particle. The detailed solution procedure is illustrated in Figure 3. 

 
Figure 3. The flow chart of the solution procedure. 
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3. Numerical Results 

In this section, the IEEE 37-bus test system and the microgrid of the Institute of Nuclear Energy 
Research (INER) in Taiwan were used as sample systems to verify the effectiveness of the proposed 
approach. The IEEE 37-bus test system is a traditional distribution system whose line data and bus 
data are shown in [30]. It is a three-phase unbalance passive network that is only connected with 
loads. The INER microgrid is an active network with both DERs and loads. The simulation results 
are discussed in the following subsections. 

3.1. IEEE 37-Bus Test System 

In this case, the related parameters of PSO are shown in Table 1; besides, the individual phase 
loads at each bus are shown in Table 2. 

Table 1. Parameters of particle swarm optimization (PSO) of IEEE 37-bus test system. 

Stage 
Parameter 

Particle Max. iteration c1 c2 w1 w2 w3 
First stage 100 200 2 2 1 0 0 

Second stage 500 200 2 2 0.7 0.15 0.15 

Table 2. Individual phase loads before and after phase balancing arrangement at each bus of IEEE 37-
bus test system. 

Bus Loads 
Before phase balancing

Phase A Phase B Phase C 
Bus number Phase type P (kW) Q (kvar) P (kW) Q (kvar) P (kW) Q (kvar)

701 ABC 224.54 181.07 144.03 72.02 279.58 70.99 
712 AC 33.24 42.85 0 0 54.21 −1.7 
713 AC 33.24 42.85 0 0 54.21 −1.7 
714 ABC 10.84 −0.34 20.07 8.21 8.18 10.65 
718 AB 54.21 −1.7 33.24 42.85 0 0 
720 AC 33.24 42.85 0 0 54.21 −1.7 
722 ABC 8.18 10.65 90.36 −0.69 67.09 72.34 
724 BC 0 0 27.11 −0.21 16.1 21.81 
725 BC 0 0 27.11 −0.21 16.1 21.81 
727 AC 16.1 21.81 0 0 27.11 −0.21 
728 ABC 42 21 42 21 42 21 
729 AB 27.11 −0.21 16.1 21.81 0 0 
730 AC 33.24 42.85 0 0 54.21 −1.7 
731 BC 0 0 54.21 −1.7 33.24 42.85 
732 AC 16.1 21.81 0 0 27.11 −0.21 
733 AB 54.21 −1.7 33.24 42.85 0 0 
734 AC 16.1 21.81 0 0 27.11 −0.21 
735 AC 33.24 42.85 0 0 54.21 −1.7 
736 BC 0 0 27.11 −0.21 16.1 21.81 
737 AB 90.36 −0.68 53.37 72.7 0 0 
738 AB 81.06 −1.13 42.56 64.92 0 0 
740 AC 33.24 42.85 0 0 54.21 −1.7 
741 AC 16.1 21.81 0 0 27.11 −0.21 
742 ABC 5.16 −0.04 57.27 2.45 33.24 42.85 
744 AB 27.11 −0.21 16.1 21.81 0 0 

Total 888.62 551.05 683.88 367.6 945.33 315.07
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Table 2. Cont. 

Bus Loads 
After phase balancing

Phase A Phase B Phase C 
Bus number Phase type P (kW) Q (kvar) P (kW) Q (kvar) P (kW) Q (kvar)

701 ABC 144.03 72.02 279.58 70.99 224.54 181.07
712 AC 33.24 42.85 0 0 54.21 −1.7 
713 AC 33.24 42.85 0 0 54.21 −1.7 
714 ABC 20.07 8.21 10.84 −0.34 8.18 10.65 
718 AB 54.21 −1.7 33.24 42.85 0 0 
720 AC 33.24 42.85 0 0 54.21 −1.7 
722 ABC 8.18 10.65 67.09 72.34 90.36 −0.69 
724 BC 0 0 16.1 21.81 27.11 −0.21 
725 BC 0 0 27.11 −0.21 16.1 21.81 
727 AC 16.1 21.81 0 0 27.11 −0.21 
728 ABC 42 21 42 21 42 21 
729 AB 27.11 −0.21 16.1 21.81 0 0 
730 AC 33.24 42.85 0 0 54.21 −1.7 
731 BC 0 0 54.21 −1.7 33.24 42.85 
732 AC 27.11 −0.21 0 0 16.1 21.81 
733 AB 33.24 42.85 54.21 −1.7 0 0 
734 AC 16.1 21.81 0 0 27.11 −0.21 
735 AC 33.24 42.85 0 0 54.21 −1.7 
736 BC 0 0 27.11 −0.21 16.1 21.81 
737 AB 90.36 −0.68 53.37 72.7 0 0 
738 AB 81.06 −1.13 42.56 64.92 0 0 
740 AC 54.21 −1.7 0 0 33.24 42.85 
741 AC 16.1 21.81 0 0 27.11 −0.21 
742 ABC 57.27 2.45 33.24 42.85 5.16 −0.04 
744 AB 16.1 21.81 27.11 −0.21 0 0 

Total 869.45 453.04 783.87 426.9 864.51 353.78 

Figure 4a shows the IEEE 37-bus test system with three tie switches and 33 sectionalizing 
switches, which are modified by the authors for this study. The simulation result of the optimal 
network topology that uses the proposed approach for the first stage network reconfiguration is 
illustrated in Figure 4b. In the figure, three tie switches between buses 701 and 722, 727 and 732, and 
741 and 735 are closed and three sectionalizing switches between buses 704 and 720, 708 and 732, and 
711 and 741 are opened. 

(a) (b) 

Figure 4. IEEE 37-bus test system: (a) before reconfiguration; (b) after the first stage reconfiguration. 
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The trend of convergence of the proposed method of the first and second stage are shown in Figure 5a,b, 
respectively. The multi-objective function f from initial values to the global optimum values of the first and 
second stage are at the 3th and 29th iteration, respectively. The new phase connections of individual phase loads 
are listed in Table 2 after second stage phase balancing algorithm, the simulation result depicts that the  
three-phase complex powers are more balanced than before phase arrangement. 

(a) (b) 

Figure 5. Convergence characteristics of proposed method of the IEEE 37-bus test system: (a) the first 
stage; (b) the second stage. 

Figure 6 indicates the simulation result of the three-phase bus voltage profile. The voltage drop was 
decreased after the two-stage optimization approach; therefore, the voltage profile after optimization was better 
than that before optimization. 

 
(a) 

 
(b) 

Figure 6. Cont. 
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(c) 

Figure 6. Simulation result of the bus voltage of the IEEE 37-bus test system: (a) before optimization; 
(b) after first stage; and (c) after second stage. 

Moreover, Figure 7a shows that the zero-sequence voltage unbalance factor after optimization was better 
than that before optimization; similarly, the negative-sequence voltage unbalance factor after optimization was 
better than that before optimization, as shown in Figure 7b. 

(a) (b) 

Figure 7. Simulation result of the voltage unbalance factors of the IEEE 37-bus test system: (a) zero-
sequence voltage unbalance factor; and (b) negative-sequence voltage unbalance factor. 

In addition, the simulation results of daily energy loss before and after optimization shown in Figure 8 
indicated that the daily energy loss in each line section varied because the line flow was changed and the daily 
energy losses were 1739 kWh, 1668 kWh and 1648 kWh, respectively. Evidently, daily energy loss was reduced 
after optimization. Based on these numerical results, the proposed two-stage optimal network reconfiguration 
approach effectively improved voltage profile, reduced energy losses, and increased operation efficiency under 
normal operating conditions. 

 
Figure 8. Simulation result of the daily energy loss of the IEEE 37-bus test system. 
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3.2. Institute of Nuclear Energy Research Microgrid 

The first outdoor microgrid test bed was developed by INER in Taiwan. This system consists of 
three zones with DERs and loads and includes a tie switcher and 11 sectionalizing switches, as shown 
in Figure 9. For example, zone 1 comprises 21 units of 1.5 kW high concentrator photovoltaic, one 65 kW 
microturbine unit, a 60 kWh battery bank, and a lumped load in an office building (Building 048). 
The line data of the INER microgrid for the simulation is provided in Table 3. Although this is a 
sample network topology, the solution can be derived via a brute force search. Our proposed 
algorithm is a systematic approach that can be applied in a complex network topology. Thus, the 
effectiveness of the proposed approach can be verified using this sample system by comparing the 
results of the proposed approach with that of the brute force search method. 

 
Figure 9. Single line diagram of the Institute of Nuclear Energy Research (INER) microgrid. 

Table 3. Line data of the INER microgrid. 

From bus To bus 
Line resistance 

(pu) 
Line reactance 

(pu) 
Z 

(%) 
Distance 

(m) 
Transformer 
rating (kV) 

Transformer 
capacity (kVA) X/R

1 2 - - 3.85 - 11.4/0.38 500 8.02
2 3 0.2918 0.354 - 50 - - - 
3 4 - - 2 - 0.38/0.48 100 8 
3 5 0.2918 0.354 - 50 - - - 
5 6 - - 4 - 0.38/0.38 150 8 
3 7 0.2918 0.354 - 25 - - - 
7 8 - - 8 - 0.38/0.38 400 8 
7 9 0.2918 0.354 - 25 - - - 
9 10 0.2918 0.354 - 25 - - - 
10 11 - - - - 0.38/0.38 150 8 
3 9 0.2918 0.354 - 25 0 - - 
6 12 - - 4 - 0.38/0.208 150 8 

Figure 10 illustrates the proposed approach applying in the optimal network reconfiguration 
function in EMS of the INER microgrid. In this case, the related parameters of PSO are similar to those 
of the IEEE 37-bus, and the differences are the particle number is 50, and the maximum iteration is 
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100; besides, the individual phase loads at each bus of a weekday in summer are shown in Table 4. 
The simulation result indicated that the tie switcher was closed and a sectionalizing switcher between 
buses 3 and 7 was opened. This outcome is the same as that in the brute force search method. The 
convergence speed is very fast due to the small number of combinations; the multi-objective function 
f of the two stages is convergent at the 20th and 21th iteration, respectively. The new phase connections 
of individual phase loads are shown in Table 4; the simulation result demonstrates that the three-
phase complex powers are more balanced than before phase arrangement. Figure 11 shows the 
simulation result of the three-phase bus voltage profile of a weekday in summer. After the two-stage 
optimization approach, the voltage profile was better than that before optimization. Figure 12 
indicates the simulation result of the voltage unbalance factors after optimization was better than that 
before optimization. 

 
Figure 10. Optimal network reconfiguration function in energy management system (EMS) of the 
INER microgrid. 

Table 4. Individual phase loads of a weekday in summer before and after phase balancing at each bus 
of the INER microgrid. 

Bus Loads 
Before phase balancing

Phase A Phase B Phase C 
Bus number Phase type P (kW) Q (kvar) P (kW) Q (kvar) P (kW) Q (kvar)

2 ABC 0.5342 0.3106 0.5342 0.3106 0.5342 0.3106 
3 ABC 0.0694 0.0404 0.0694 0.0404 0.0694 0.0404 
5 ABC 24 4 19.8 3.3 16.2 2.7 
6 ABC −18.5647 0.0932 −18.5647 0.0932 −18.5647 0.0932 
7 ABC 0.4274 0.2485 0.4274 0.2485 0.4274 0.2485 
8 ABC −6.5333 0 −6.5333 0 −6.5333 0 
9 ABC 24 0 19.8 0 16.2 0 

10 ABC 12.1603 2.0932 10.0603 1.7432 8.2603 1.4432
11 ABC −3.2667 0 −3.2667 0 −3.2667 0 
12 ABC 14.5001 0.1118 11.9626 0.0922 9.7876 0.0755 

Total 47.3267 6.8977 34.2892 5.8281 23.1142 4.9114

  



Energies 2015, 8, 13894–13910 

13907 

Table 4. Cont. 

Bus Loads 
After phase balancing

Phase A Phase B Phase C 
Bus number Phase type P (kW) Q (kvar) P (kW) Q (kvar) P (kW) Q (kvar)

2 ABC 0.5342 0.3106 0.5342 0.3106 0.5342 0.3106
3 ABC 0.0694 0.0404 0.0694 0.0404 0.0694 0.0404 
5 ABC 19.8 3.3 24 4 16.2 2.7 
6 ABC −18.5647 0.0932 −18.5647 0.0932 −18.5647 0.0932 
7 ABC 0.4274 0.2485 0.4274 0.2485 0.4274 0.2485
8 ABC −6.5333 0 −6.5333 0 −6.5333 0 
9 ABC 19.8 0 16.2 0 24 0 

10 ABC 10.0603 1.7432 12.1603 2.0932 8.2603 1.4432
11 ABC −3.2667 0 −3.2667 0 −3.2667 0 
12 ABC 14.5001 0.1118 9.7876 0.0755 11.9626 0.0922 

Total 36.8267 5.8477 34.8142 6.8614 33.0892 4.9281

 
(a) 

 
(b) 

 
(c) 

Figure 11. Simulation result of the bus voltage of a weekday in summer of the INER microgrid: (a) 
before optimization; (b) after first stage; and (c) after second stage. 
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(a) (b) 

Figure 12. Simulation result of the Voltage Unbalance Factors of a weekday in summer of the INER 
microgrid: (a) zero-sequence voltage unbalance factor; (b) negative-sequence voltage unbalance factor. 

Furthermore, the daily energy losses of the four seasons are all reduced after reconfiguration as 
shown in Figure 13. Based on the numerical results, the proposed algorithm was proven to be a 
feasible approach to improve voltage quality, reduce energy loss, and increase efficiency under 
normal operating conditions. 

 
Figure 13. Simulation result of the daily energy loss of a weekday in summer of the INER microgrid. 

4. Conclusions 

A two-stage optimal approach, which is composed of network reconfiguration and phase 
balancing algorithms that applies a graph theory-based power flow solution technique, has been 
developed in this study. PSO exhibits self-learning capability to obtain the most optimal solution, 
and the graph theory-based power flow algorithm can easily establish the network topology using 
incidence matrices according to different system structures. The IEEE 37-bus system and the INER 
microgrid have been used as sample systems to verify the effectiveness of the proposed approach. 
The numerical results demonstrate that this approach can improve voltage profiles, reduce energy 
losses, and increase efficiency under normal operating conditions. The developed algorithm can be 
applied in traditional distribution networks with or without DERs and microgrids to improve system 
operation performance. 
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