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Abstract: Estimating the residual capacity or state-of-charge (SoC) of commercial batteries on-line 

without destroying them or interrupting the power supply, is quite a challenging task for electric 

vehicle (EV) designers. Many Coulomb counting-based methods have been used to calculate the 

remaining capacity in EV batteries or other portable devices. The main disadvantages of these 

methods are the cumulative error and the time-varying Coulombic efficiency, which are greatly 

influenced by the operating state (SoC, temperature and current). To deal with this problem, we 

propose a lossy counting-based Coulomb counting method for estimating the available capacity or 

SoC. The initial capacity of the tested battery is obtained from the open circuit voltage (OCV). The 

charging/discharging efficiencies, used for compensating the Coulombic losses, are calculated by 

the lossy counting-based method. The measurement drift, resulting from the current sensor, is 

amended with the distorted Coulombic efficiency matrix. Simulations and experimental results 

show that the proposed method is both effective and convenient.  

Keywords: battery management systems (BMS); state of charge (SoC); Coulombic efficiency;  

lossy counting method (LC) 

 

1. Introduction 

State-of-charge (SoC) estimation is an important issue in the lithium-ion battery area. Without 

such an estimation system, it is very difficult to avoid the unpredicted-system-interruptions for EVs, 

and the cells in a pack are easily over-charged and over-discharged [1–3]. This will result in 

permanent damage to the internal structure of the cells. Several methods have been used to estimate 

the SoC in electrical chemistry laboratories and their accuracy has been verified [4–6]. However, 

estimating the SoC of commercial batteries on-line without destroying them or interrupting the 

battery power supply is still quite a challenging task for electric vehicle (EV) designers. 

The discharge test method is a reliable method to determine the SoC of batteries and the 

remaining charge can be precisely calculated with it [7–9]. However, the time consumed for the 

testing is very long and after the test, no power is left in the battery, so, it is not appropriate for  

on-line estimation. The open circuit voltage (OCV) method is another frequently-used method for 

SoC calibration. Its fundamental principle is that SoC has a special relationship with the embedded 

quantity of lithium-ion in the active material and there is a one-to-one correspondence between SoC 

and OCV [10,11]. Thus, after adequate resting, the SoC of a battery can be estimated by the open 
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circuit voltage. However, the state-switching (from an operating state to a balanced state) will take 

up a very long time and its duration is tied to the state of SoC, temperature, and so on, so the OCV 

method cannot be used for EVs in driving status. To deal with this problem, researchers have 

developed several model-based SoC estimation methods, in which precise and complex battery 

models (the combing model, the Rint model, the ESC mode, etc.) were used for estimating the battery 

capacity [12–14]. With the proposed models, the SoC of batteries can be dynamic estimated on-line. 

The estimation precisions are largely decided by the models and the collected signals. Many research 

results demonstrate that the first-order RC model with one-state hysteresis is suitable for LiFePO4 

batteries [15], but the expensive computational cost makes them unsuitable for EVs with limited 

calculation resources. In addition, the neural network model method is a nonlinear estimation 

method, which does not take into account the details of the batteries [16,17]. Thus, it is suitable to be 

used for estimating different kinds of batteries. The drawback of this method is that it needs a great 

number of training samples and lengthy training procedures. 

In practice, many SoC estimation methods have been proposed and most of them estimate the 

battery state with indirect parameters [18]. For example, terminal voltage and internal resistance are 

frequently-used parameters for SoC estimation. However, these parameters always change 

irregularly when an EV is running in real-life conditiona. Furthermore, the state-of-health (SoH) of a 

battery has a huge impact on these parameters [19,20]. Thus, the SoC estimation methods, relying on 

these indirect parameters, can hardly obtain precise estimation results. 

On the contrary, the Coulomb counting method calculates the remaining capacity by 

accumulating the amount of the direct parameter—current [21,22]. This is a simple and general 

method, and its precision is defined mainly by the sampling precision and the frequency of the 

current sensor. Nowadays, many portable devices and electric vehicles, equipped with computable 

hardware and large memory size, can estimate the remaining battery capacities using this  

method [23]. As an open loop SoC estimation method, the errors of the Coulomb counting method 

are accumulated in the current integral process. As the detection time increases, the cumulative error 

increases accordingly [24,25]. The estimation result is greatly influenced by the precision of the 

current sensor and the measurement drift, which will result in cumulative effects [26,27]. 

Additionally, the Coulomb counter does not take into account the age and capacity-changes of the 

battery. Thus, the disadvantages of this method hinder its further application [28]. For example, the 

Coulombic efficiency is greatly influenced by the operating status of the battery (SoC, temperature 

and current) and this is difficult to measure [29–32]. 

To deal with this problem, we propose a lossy counting-based relative Coulomb counting 

method for estimating the available capacity or SoC of lithium-ion batteries. The initial capacity of 

the tested battery is obtained with the OCV-SoC curve. The charging/discharging efficiencies, used 

for compensating the Coulombic losses, are dynamically corrected by a lossy counting method.  

The measurement drift, coming from the current sensor, is amended with a relative accumulating 

manner of charge. 

The rest of this paper is organized as follows: we first reviewed the related work on the lossy 

counting method (LC). Secondly, we present the LC-based SoC or available capacity estimation 

method for lithium-ion batteries. Then we describe several experiments, in which different 

parameters of the algorithm are examined. With these experiments, we demonstrated how to 

accumulate the summary information and to calculate the SoC or available capacity for the proposed 

algorithm. Finally, we concluded this paper by highlighting the key contributions of this work. 

2. Related Work 

2.1. Lossy Counting Method 

A data stream is an ordered sequence of instances. Data stream mining is the process of 

extracting knowledge from rapid or continuous data records [33,34]. In many applications, such as 

computer network traffic, phone conversations, ATM transactions, web searches and sensor data, the 



Energies 2015, 8, 13811–13828 

13813 

given data stream can be read only once or the time used for computation or storage is very short. 

Many concepts used in data stream mining come from incremental learning (IL). Many incremental 

heuristic search algorithms are used to cope with the structural changes and online learning demands. 

Lossy counting is a deterministic algorithm, which calculates frequency counts over a stream of 

single item transactions [35]. It can satisfy some special guarantees (for example, some static 

thresholds) using at most (log(ϵ × N))/ϵ space, where N denotes the current length of the data stream. 

Two special parameters, support s and error ϵ, should be specified by the user. 

Definitions: The received data stream is divided into buckets and each bucket has w = 1/ϵ 

transactions. The buckets are labeled with bucket ids, starting from 1. The current bucket id is bcurrent,  

the value of which is N/w. For an element e, the true frequency of it in the data stream (from the 

starting point to the current recorder) is fe. In these parameters, N, bcurrent and fe are variables, the values 

of which change with the stream progresses. ϵ and w are unchanged parameters, the value of which 

is fixed. To calculate the frequency, a data structure D(e, f, Δ) is given, where e is an element in the 

stream, f is the estimated frequency of the element e, and Δ is the maximum possible error in f. 

Algorithm 

1: Initialization. Empty D 

2: Read in a newly arrived element e and lookup D to see whether or not an entry for e has 

existed. If it exists, update the entry by incrementing its frequency f by one. Otherwise, create 

a new entry of the form (e, 1, bcurrent–1). 

3: Boundary judging. When a bucket boundary arrived, prune D by deleting the entries in it 

and go (2). The rule for deletion is “for an entry (e, f, Δ), if f + Δ ≤ bcurrent, then delete it”. 

Whenever a user asks for the list of items with threshold s, the entries (f ≥ (s − ϵ)·N) will be output. 

This can be seen in Figure 1. 

Initialize data structure D(e, f, Δ);

D=Ф;w=1/ϵ; bcurrent=1

 ei ∈ {e} ?

 for all entries (e, fe, Δe), 

if (fe+Δe≤bcurrent ), delete it

D=D∪
{(ei,1,bcurrent-1)}

Start

Yes No

(ei, fei, Δei)→

(ei, fei+1,Δei)

Input ei

 i mod w=0 ?
No

Yes

bcurrent=bcurrent+1 Condition?

Stop

Yes

No

 

Figure 1. The flow chart of the lossy counting method. 
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2.2. Coulomb Counting Method 

The Coulomb counting method (Ampere-hour integral method) is the most common and 

straightforward method for estimating battery SoC. Many battery management systems calculate 

SoC with the basic Coulomb counting method or its variations [22,26]. In these approaches, the 

current leaving and entering the battery is calculated periodically and the SoC of the battery is 

estimated by subtracting or adding the cumulative net charge. 

Definition 1. (State of charge, SoC). Let CN be the rated capacity of a battery, SoC(t0) be the SoC 

at the initial time t0, η be the coulombic efficiency, I(t) be the current which is positive at discharge 

and negative at charge, with the measured current, the SoC obtained with Ampere-hour integral 

method could be represented by: 

 

t

tN

dttI
C

tSOCtSOC
0

0 )(
1

)()(   (1) 

Usually, the initial SoC, SoC(t0), can be estimated by the open-circuit voltage based approach or 

by the relationship between SoC and parameters in a standard charging stage. The rated capacity, CN, 

can be obtained from the battery manufacturer or be measured in the laboratory. The precise current, 

I(t), can be achieved by investing more money in the equipment measurement. However, the accurate 

Coulombic efficiency, η, cannot be simply estimated with common methods. In fact, the value of η 

keeps on changing during the whole discharging or charging process. Replacing the real values of η 

with an average value or an estimated one, is not a feasible way for estimating SoC. The charge or 

discharge current, temperature, SoC range, SoH and many other factors impose their influence on the 

Coulombic efficiency during the calculation processes. 

2.3. Coulombic Efficiency (η) 

Definition 2. (Average Coulombic efficiency, η). Let Id be the discharge current, Ic be the charge 

current, td be the discharge time, tc be the charge time, the coulombic efficiency of the test battery, η, 

could be represented by: 

0 0

d ct t

d cI dt I dt     (2) 

Definition 3. (Charge coulombic efficiency, ηc,In). Discharge a battery at C/3 rate until the cut off 

voltage is reached, and then, charge it at a specified current In until SoC = 1. The charged capacity is 

Qc,In = In·tc,In, where tc,In is the charge time. After 10 min rest, the battery was discharged at C/3 rate 

until its cut off voltage. The discharged capacity is Qd,C/3 = (C/3)td,C/3, where td,C/3 is the discharge time. 

Thus, the charge Coulombic efficiency can be calculated like this: 

)/()
3

( ,3/,,3/,, nnn IcnCdIcCdIc tIt
C

QQ    

Definition 4. (Discharge coulombic efficiency, ηd,In). Discharge a battery with current In until the 

cut off voltage is reached, and then, charge it at C/3 rate until SoC = 1. The charged capacity is  

Qc,C/3 = (C/3)·tc, C/3, where tc, C/3 is the charge time. After 10 min rest, discharge the battery at a current 

In until its cut off voltage. The discharged capacity is Qd,In = (In)td,In, where td,In is the discharge time. 

Thus, the discharge Coulombic efficiency can be calculated like this: 

)
3

/()( 3/,,3/,,, CcIdnCcIdId t
C

tIQQ
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In the charge/discharge process, battery energy losses are inevitable. Under laboratory 

conditions, the average Coulombic efficiency, η, can be calculated by Equation (2). However, in actual 

conditions, the charge and discharge process in EV keeps alternating and all of the factors (current, 
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temperature, and capacity) change continuously and sharply. It is hard to find an effective method 

or equipment to calculate the average Coulombic efficiency accurately. For example, the charge and 

discharge Coulombic efficiency of a given cell are shown in Figure 2a,b. The discharge Coulombic 

efficiencies of different temperatures and available capacities are shown in Figure 2c,d. The 

calculation method can be observed in [25]. From Figure 2a–d, we can see that the changing range of 

the Coulombic efficiency is very large. Without recording all of the detailed charge/discharge 

information, it is not possible to obtain an accurate SoC estimation. 
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Figure 2. The influences of discharge/charge current, temperature and available capacity on 

Coulombic efficiency. (a) η (temperature = 15 °C, SoC > 20%, SoH = 0.94) for discharging;  

(b) η (temperature = 15 °C, SoC > 20%, SoH = 0.94) for charging; (c) η (In = C/3, SoC > 20%, SoH = 0.94);  

(d) η (temperature = 15 °C, SoH = 0.94).  

3. LC-Based SoC Estimating Method 

In fact, under actual driving conditions, it is very hard to accurately calculate the SoC or available 

capacity with the estimated Coulombic efficiency needed by Equation (1) during the whole charge or 

discharge process. Many factors have effects on the Coulombic efficiency and the calculation result. 

Thus, accumulating the measured current and correcting it with an accurate Coulombic efficiency at 

each measurement point perhaps is the only feasible way. Under such a condition, Equation (1) can 

be substituted by Equation (3), where I(t), T(t), SoC(t), SoH(t) are the current, temperature, SoC and 

SoH of the battery at time t: 

 

t

t

tSOHtSOCtTtI
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dttI
C

tSOCtSOC
0

)](),(),(),([0 )(
1

)()(   (3) 

In practice, the sensors can only send data at every discrete time point, tk (tk = Δt × k). Δt is the 

sampling interval and k is the number of sampling. Thus, we can get: 

ttI
C
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Generally speaking, the definition domain of Coulombic efficiency, η, is continuous. It is 

impossible to obtain an accurate η for each point in the definition domain. Thus, we have to discretize 

javascript:void(0);
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the definition domain into lattices with the same size. In the same lattice, the Coulombic efficiencies 

of these points are set to the same values. Thus: 

ttI
C

tSOCtSOC ktSOHtSOCtTtI

kt

ttN
kkkk

k

 
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Having discretized the whole definition domain into lattices and calculated the whole capacity 

for points in the same lattice, we can number these lattices with “L1, L2, …, Ln” and calculate the SoC 

of battery with Equation (3), 

]......[
1

)()(
21 210 Ln

QQQ
C

tSOCtSOC LnLLLL

N

   (6) 

In fact, accurately determining these Coulombic efficiencies, η𝐿𝑖, is a hard thing. The relationship 

between the discharge capacity and the operating current/battery temperature/SoH is complicated 

and nonlinear. In the kth cycle, the released capacity 𝑄𝑘
∗  can be expressed like this: 

kLnLnkLLkLLNk QQQtSOCtSOCCQ ,,2,10 ......))()((*
21

   (7) 

where 𝑄𝑘
∗  = η × Qk + ϵ𝑘 where η = {η𝐿1, η𝐿2, …, η𝐿𝑛} be the vector of Coulombic efficiency, Qk = {𝑄𝐿1,𝑘, 

𝑄𝐿2,𝑘, …, 𝑄𝐿𝑛,𝑘} be the accumulated capacities for lattices, ϵ𝑘 be the error. 

Having implemented K cycles, we can obtain the matrix: 
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(8) 

There are many methods that can be used to estimate the unknown parameter η as long as  

Ln ≤ K. In this paper, we estimate η with the least square method. The minimized sum of squares is: 
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To solve the extreme-value problem, we can get: 
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In this way, the Coulombic efficiency, η, can be calculated after K(Ln = K) time running and it can 

be refreshed every time a charge/discharge process has been completed. In fact, the accumulated 

capacities of lattices are quite different. This can be observed in Figure 3, in which Figure 3a is the 

statistical capacity distribution of an EV-taxi in two-dimensional space, and Figure 3b is the statistical 

capacity distribution in the Urban Dynamometer Driving Schedule (UDDS) in one-dimensional space. 

From both of them, we can see that most of these capacities converged in several special lattices, 

so discretizing the definition domain into lattices and calculating the SoC with the revised η for each 

accumulated capacity 𝑄𝐿𝑖
 is a suitable way to estimate the SoC or available capacities for batteries. 
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Figure 3. The capacity distributions in different driving cycles. (a) Jing BIY048 (TAXI); (b) UDDS.  

3.1. The LC-Based Relative Coulomb Counting Method 

Definition 5. (Bucket, bj). Let the measured values of current, temperature, SoC and SoH, I(tk), 

T(tk), SoC(tk), and SoH(tk), be a data stream, the incoming stream is conceptually divided into buckets. 

Each bucket has ΔQ × (1/ϵ) Ah capacity and is labeled by bj = Qk/(ΔQ × (1/ϵ)). (Qk is the total 

accumulated capacity from time t0 to tk and ΔQ is unit capacity) 

Definition 6. (Data structure, DS). DS is a set of entries, in the form (I*(tk), T* (tk), SoC* (tk), SoH* 

(tk), Q, Δ), where I* (tk), T* (tk), SoC* (tk), SoH* (tk) are the discretized values for I(tk), T(tk), SoC(tk), 

SoH(tk). Q is the accumulated capacity for entry (I*(tk), T* (tk), SoC* (tk), SoH* (tk)). Parameter tk is the 

measurement time at the kth time-step. Δ is the maximum possible error in Q. 

Algorithm 

(1): Initializing DS. Clear the records in it. Initialize the error ϵ, support s and unit capacity ΔQ. 

(2): Recording data. For every time interval tk, read in the measured values for I(tk), T(tk), 

SoC(tk), SoH(tk) and discretize these measured values, I*(tk) = INT(I(tk)), T* (tk) = INT(T(tk)), 

SoC* (tk), = INT(10 × SoC(tk))/10, SoH* (tk), = INT(10 × SoH(tk))/10. Having done this, calculate 

the discharge/charge capacity for the discretized lattice, Q (tk) = I(tk) × (tk − tk–1). 

(3): Look up DS to see whether or not an entry, (I*(tk), T*(tk), SoC* (tk), SoH* (tk), Q, Δ), has 

existed. If there is any, update the entry by increasing the capacity for it (Q = Q + Q(tk)). Otherwise, 

establish a new entry (I*(tk), T* (tk), SoC* (tk), SoH* (tk), Q = Q(tk), Δ = ΔQ × (bj –1)) for it. 

(4): Does a bucket boundary arrive? Yes, go (5); No, go (2). 

(5): Prune DS by deleting the entries in it and go (2). The rule for deletion is “for an entry 

(I*(tk), T* (tk), SoC* (tk), SoH* (tk), Q,Δ), if Q + Δ ≤ ΔQ × bj, then delete it”.  

Whenever a user asks for the capacity list of items with threshold s, the entries (Q ≥ (s − ϵ) × ΔQ × k) 

will be outputted. Thus, with the obtained list (the entries (Q < (s − ϵ) × ΔQ × k) were seen as zero),  

the SoC can be calculated by: 

]......[
1

)( 22110 LnLnLLLL
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QQQ
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tSoCSoC    (11) 

3.2. Algorithm Analysis 

Theorem 1: Let ((I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Q,Δ) be an entry in the data structure DS,  

I* (tk), T* (tk), SoC* (tk), SoH* (tk) are the discretized values for I(tk), T(tk), SoC(tk), SoH(tk) at time tk, Q be the 

accumulated capacities of (I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Δ be the maximum possible capacity error in Q, 

bj be the label of a bucket, k be the discrete time-step, ϵ be the given error, s be the given support degree, ΔQ be 

the given unit capacity. Let QI*(tk), T* (tk), SoC* (tk), SoH* (tk) be the true capacity for (I*(tk), T* (tk), SoC* (tk), SoH* (tk)). 

Then,  
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(A) If ((I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Q, Δ) does not appear in DS, then QI*(tk), T* (tk), SoC* (tk), SoH* (tk) ≤ Qk × ϵ ; 

(B) If ((I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Q, Δ) appears in DS, then Q ≤ QI*(tk), T* (tk), SoC* (tk), SoH* (tk) ≤  

Q + Qk × ϵ ; 

(C) If (for every time interval tk, Q(tk) > ΔQ) is true, then, with the given error ϵ , the algorithm computes 

the distribution synopsis using at most 
1

log( / )kQ Q 


 entries.  

Proof: According to definition 5, we can get bj = Qk/(ΔQ × (1/ϵ)). 

For the first bucket (bj = 1), an entry ((I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Q, Δ) is deleted only when 

the capacity of it, Q ≤ ΔQ × bj. Q is also the true capacity of (I*(tk), T* (tk), SoC* (tk), SoH* (tk)). Thus,  

QI*(tk), T* (tk), SoC* (tk), SoH* (tk) ≤ ΔQ × bj = Qk × ϵ. 

For an entry ((I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Q, Δ) that gets deleted in the other buckets (bj > 

1), which was inserted into the DS when bucket bj = Δ/ΔQ + 1 was being processed, the capacity Q of 

it is the additional capacity after the insertion. Thus, the true capacity of (I*(tk), T* (tk), SoC* (tk), SoH* 

(tk) in bucket bj was no more than Q + Δ. According to the deletion rule appeared in step (5), we can 

get Q + Δ ≤ ΔQ × bcurrent = Qk × ϵ. Thus, conclusion (A) is true. 

In the first bucket (bj = 1), if the capacity of an entry Δ = 0, then Q = Q I*(tk), T* (tk), SoC* (tk), SoH* (tk). In other 

buckets, entry ((I*(tk), T* (tk), SoC* (tk), SoH* (tk)), Q, Δ) is deleted at most Δ/ΔQ times. If an entry 

appeared in the current bucket bcurrent, the true capacity of it QI*(tk), T* (tk), SoC* (tk), SoH* (tk) will no more than Q 

+ Δ. Since Δ ≤ ΔQ × (bcurrent − 1) ≤ Qk × ϵ, we can get Q ≤ QI*(tk), T* (tk), SoC* (tk), SoH* (tk) ≤ Q + Qk × ϵ. Thus, 

conclusion (B) is true. 

Let bcurrent be the current bucket id, j ϵ [1, bcurrent], ej be the number of entries in data structure DS, 

whose bucket id is (bcurrent – bj + 1). Then, the accumulated capacities of these entries appeared in such 

a bucket (bcurrent − bj + 1) must be greater than ΔQ × bj. Otherwise, it would have been removed. Let the 

size of the buckets is ΔQ × (1/ϵ), thus, we can get: 

1

(1/ )
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When h = 1, the inequality Equation (11) can be changed into 
1

1

(1/ )
h

j

j
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


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transformation, we can get: 
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When h = 2, we can get: 
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In this way, when h = 1, 2, …, bcurrent, we can get: 
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Since |bcurrent| = 


currentb

j

je
1

, we can get: 

1

1 1 1
| | log log( )

currentb

k
current current

j

Q
b b

j Q

   
   

  

Thus, conclusion (C) is true. 

From conclusions (A)–(C), we can find that when the entries tend to uniformly distribute at 

random, the proposed algorithm can obtain the summary information of the accumulated current 

with very low space. At the same time, the statistical accuracy is guaranteed. 

4. Experiments 

The test bench, which consists of a thermal chamber for environment control, a host computer, 

a BaTe battery test system NBT BTS5200C4 and BeltControl 2.0 interface for programming the NBT 

BTS5200C4 is shown in Figure 4. The maximum voltage, maximum charge/discharge current, current 

control accuracy and voltage control accuracy of the NBT BTS5200C4 were 5.0 V, 200A, ± (0.1%FD + 

0.1%RD) and ± (0.1%FD + 0.1%RD). In fact, the device can record the experimental data including 

temperature, current, voltage, accumulative amp-hours (Ah) and watt-hours (Wh). The host 

computer can collect the data through RS232/RS485 protocol. Four LFP cells (Battery-1, Battery-2, 

Battery-3 and Battery-4) were utilized to examine the accuracy of the proposed algorithm. 

 

Figure 4. The battery test bench.  

4.1. How to Reduce the Dimension of Coulombic Efficiency, η 

Generally speaking, the Coulombic efficiency η is a function of current, temperature, SoC and 

SoH. From Equations (3) and (4) we can see that, to obtain an accurate value of SoC or available 

capacity, we have to discretize the definition domain of η into more lattices. This will lead to more 

expense. In fact, for an EV or HEV, the Coulombic efficiencies of the batteries are greatly affected by 

the fluctuations of discharge current and environmental temperature, slightly or slowly affected by 

SoC and SoH. In a short-term running, the change of SoH is very little. In the SoC range of 20%–100%, 

the Coulombic efficiency at the same temperature, SoH and charge/discharge current remains almost 

unchanged. This can be observed in Figure 2d. Thus, we can discretize the definition domain of η 

only in two-dimension space and initialize only several key Coulombic efficiencies in this space.  

The Coulombic efficiencies of other points can be calculated by the four key points nearby.  

This can be seen from Figure 5, in which the Coulombic efficiency of point X is calculated by 

comparing with the Coulombic efficiencies of four other key nearby points. With the given function, 

zp = a0 + a1xp + a2yp + a3xpyp and four nearest key points, A, B, C and D, the Coulombic efficiency of point 

X, ηX, can be easily calculated by solving the equation. 
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Figure 5. The Coulombic efficiencies of critical and non-critical points.  

4.2. The Influences of Discharge Order and Frequency 

From Equation (7) we can see that the proposed LC-based available capacity estimation method 

can calculate the accumulated capacities for lattices. However, the discharging order and frequency 

of these lattices cannot be recorded in the accumulation process. The discharging order and frequency 

are some other parameters which possibly influence the calculated available capacity. To make this 

point clear, several experiments were conducted and the results are shown below. 

4.2.1. The Influences of Discharge Order 

To examine the influence of discharge order on the obtained available capacity, three 

experiments were conducted on Battery-1. In Experiment-1, a total of two discharge procedures were 

carried out. The battery was firstly required to discharge at 8 A for 2 Ah and then discharged at 2 A 

until the voltage reaches the discharge threshold. This can be observed in Figure 6a, where the 

discharged capacity of battery-1 at 2 A is 4.001 Ah. In Experiment-2, the battery was firstly required 

to discharge at 2 A for 1 Ah, and then, discharge at 8 A for 2 Ah. Finally, it is discharged at 2 A until 

the voltage reaches the discharge threshold (2.5 V). This can be observed in Figure 6b. In Experiment-3, 

the battery was firstly required to discharge at 2 A for 4.001 Ah and then, discharged at 8 A for 0.222 Ah. 

After each of these experiments, the battery was required to rest for 1 h. 

By comparing the three discharge experiments, we can find that without calculating the Coulombic 

efficiency, the total discharge capacities of the three experiments are not equal. The capacity difference 

between Experiment-1 and Experiment-2 is very small (1.998 + 4.001 − 1.001 − 2.002 − 2.808 = 0.188 Ah). 

The capacity difference between Experiment-1 and Experiment-3 is “1.998 + 4.001 − 4.001 − 0.222 = 1.776 Ah”. 

This is very large for a low-capacity battery. 

In fact, discharge order has no noticeable influence on the discharge capacity. The reason (why 

the discharged capacities, in Experiment-1 and Experiment-3, were so different?) lies in the 

insufficient power of the battery in Experiment-3. In Figure 6c, having discharged most of its capacity 

(4.001 Ah + 0.222 Ah), Battery-1 does not have sufficient power to maintain the discharging process. 

Thus, with the large discharge impedance, the voltage quickly falls to the cut off voltage (2.5 V). It is 

a fake fully-discharged-state and the SoC in Experiment-3 didn’t reach zero. We can verify this by 

adding a resting stage (1 h) after each discharging experiment. Having done so, we found that the 

difference between the two open circuit voltages in Experiment-1 and Experiment-2, was very 

unimportant (3.10 − 3.06 = 0.04 V). In Experiment-1 and Experiment-3, the difference was very 

considerable (3.10 − 3.23 = −0.13 V). For a lithium-ion battery, the OCV-SoC charging or discharging 

curve is a flat one. A little difference in terminal voltage will lead to a huge gap in SoC. Thus, we can 

say that Battery-1 reaches similar states in Experiment-1 and Experiment-2. In Experiment-3, the its 

terminal status was distinct from the other cases, so it cannot be used to examine the influence of 

discharge order for the scheduled discharging procedure (8 A/2 Ah) was not completed. 

From the experiments above, we can get the conclusion that, as long as the discharging power and 

cut off voltage were rightly controlled, discharge order has no obvious influence on discharge capacity. 
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Figure 6. The influences of discharge order. (a) Experiment-1 (with Battery-1); (b) Experiment-2  

(with Battery-1); (c) Experiment-3 (with Battery-1).  

4.2.2. The Influences of Discharge Frequency 

From Equations (3)–(7) and Figure 3, we can see that the accumulated capacities of the lattices 

can be achieved by the proposed LC-based SoC estimation method, but the frequencies of different 

charge/discharge operations cannot be recorded by the proposed algorithm. 

To examine the low-frequency feature of the proposed algorithm, three discharge experiments 

were performed on Battery-2. All of these experiments include two kinds of discharge steps. In step-1, 

the discharge current is 8 A. In step-2, the discharge current is 2 A. In all of these experiments, both 

the discharge capacities in step-1/step-2 are 2 Ah. Having consumed the scheduled capacity for step-1 

(2 Ah) and step-2 (2 Ah), discharge procedures keep discharging at a 2 A rate until the voltage 

threshold is reached. From Figure 7a–c, we can see that the total discharge capacities of the three 

experiments are 5.712 Ah, 5.597 Ah and 5.770 Ah. The differences between them are very small. 
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(e) Experiment-8 (time interval=10s)
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Figure 7. The discharge procedures with different discharging frequencies. (a) Experiment-4 (8A-2A-8A-2A); 

(b) Experiment-5 (2A-8A-2A-8A-2A); (c) Experiment-6 (2A-8A-2A-8A-2A-8A-2A-8A-2A); (d) Experiment-7 

(time intervals = 1 s); (e) Experiment-8 (time intervals = 10 s). 
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To examine the high-frequency features of the proposed algorithm, we further implemented two 

high-frequency discharge experiments on Battery-3. Their discharge intervals are 1 s and 10 s. The 

scheduled capacities (C1 and C2) for discharge current-1 (10 A) and current-2 (2 A) in the two 

experiments are the same. Having consumed the accumulated capacities, C1 and C2, discharge 

procedures keep discharging at a 2 A rate until the discharge voltage threshold is reached. From 

Figure 7d–e, we can also find that the total discharge capacities of the two experiments are very 

similar. One is 13.664 Ah, the other is 13.937 Ah. Thus, we can say that the discharge capacity has no 

relation to discharge frequency. 

4.3. Verification of the Proposed Estimation Method 

Figure 8 illustrates the process of the verification experiment for the proposed LC-based 

estimation method. Two kinds of discharging cycles (UDDS and TAXI) were used for testing the 

proposed algorithm. Both experiments were performed at 10 °C. The current, voltage and operating 

time were examined every 0.1 s, 1 s, 2 s, 5 s, 10 s and 20 s. Before the examination point (E1/E2), the 

discharging process was conducted with the given driving cycles. After them, the battery was 

discharged with 2 A to the cut-off voltage. The discharge current is discretized into 10 lattices, and 10 

Coulombic efficiency coefficients were initialized to 1. In fact, the charge/discharge capacity, obtained 

at different currents, can be transformed into an equivalent capacity at a constant current. In this 

section, the constant current is set to 2 A and the discharge Coulombic efficiency of 2 A, η2A, is artificially 

set to 1. Thus, the equivalent discharged capacity (Q`j) for variable current j can be expressed by  

Q`j = ηj·Qj/η2A, where Qj is the accumulated capacity for current j, ηj is the Coulombic efficiency for 

current j. Thus, the estimated equivalent discharged capacity at the examined point E1, Qi,(0~E1), can 

be calculated by: 

,(0- 1) 0 2 0 2 , 2 4 2 4 , 18 20 18 20,......i E A A i A A i A iQ Q Q Q              

After 10 discharging cycles, we obtained the equation set below: 
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(14) 

In both experiments, the available capacity CN was defined as the discharged capacity of the 

battery at the discharging current 2 A. Thus, for each of the discharge cycle i, the true equivalent 

discharged capacity of it at the examination point E1, Qi,(0～E1)*, can be expressed by Qi,(0～E1)* = CN − 

Qi,(E1～END). Qi,(E1～END) is the discharge capacity of the battery at 2 A, from time E1 to the end. In this 

way, equation set Equation (14) can be modified into Equation (15): 
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(15) 

Thus, if we initialize the Coulombic efficiency, η = {η𝐿1 , η𝐿2 , …, η𝐿𝑛 }, with 1 in the first 10 

equations, and accumulate the capacities for lattices in each discharge cycle. After running ten times, 

the accurate Coulombic efficiencies will be obtained with Equations (9) and (10), gradually. 

In Figure 9, two kinds of Coulomb counting methods are shown. Charge/discharge cycles were 

carried out fifty times. We analyzed the performance of the two algorithms by comparing their 

relative mean errors. The red line indicates the relative mean errors between the real residual capacity 

and the estimated residual capacity. Real residual capacity is obtained by discharging the battery 
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with 2 A, from the examination point to the cut-off voltage. The estimated residual capacity is 

achieved with the proposed algorithm. The blue line is the relative mean error obtained with the 

traditional Coulomb counting method. It can be observed in Figure 10a,b that, on the one hand, with 

the increase of the time interval, the relative mean error gets larger and larger. On the other hand, the 

changing rates of the errors in the two algorithms are different. With the increasing time interval, the 

relative mean errors of the two algorithms get more and more similar. 
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Figure 8. Two different discharging procedures (a) UDDS; (b) TAXI. 
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Figure 9. Relative mean errors of two different Coulomb counting methods. (a) UDDS; (b) TAXI. 

4.4. The Influences of Measurement Interval 

To further illustrate the impact of measurement time interval, we compared the estimation errors 

when the interval was set to 0.1 s, 1 s and 10 s. An actual discharging cycle, TAXI, was used to measure 

the errors. The experiment was carried out at 10 °C and the discharge current was discretized into 10 

lattices. With the proposed method and the traditional method, we obtained the errors when the 

measurement interval was set to different values.  

It can be observed in Figure 10a,b that, in the former ten driving cycles, the errors obtained with 

the two algorithms remain similar. However, after 10 implementations, the obtained results with the 

two algorithms are quite different. For the traditional Coulomb counting method, since no correction 

is carried out on the Coulombic efficiency, its estimation errors remain almost unchanged. For the 

proposed algorithm, by introducing the self-adapting Coulombic efficiency coefficient, η, the 

estimation error is reduced to nearly 5% and 6%, step by step. In the two methods, both the average 

error and the variation range of errors were enlarged when the measurement time interval was 

changed from 1 s to 10 s. It is quite conceivable that a larger measurement interval leads to a larger 

accumulated error, but accurate measurement means high computational cost and expensive devices. 

In Figure 11, the accumulated capacities of ten current-intervals are shown. In Figure 11a, four 

different measuring procedures were performed. In both, the measurement intervals were set to 1s. 

In Figure 11b, four measurement intervals were set to 10 s. For both figures, the accumulated capacity, 

AC (measurement interval = 0.1 s), was seen as a basis of reference. Thus, with the comparison we 
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can find that the capacity difference between the measurement intervals of 0.1 s and 1 s is very little. 

This will lead to less error. On the contrary, the accumulated capacity difference between 0.1 s and 

10 s is very large. Thus, it cannot be used to estimate the Coulombic efficiency coefficient, η, for an 

EV. In fact, “measurement interval = 0.1 s” is enough for an EV. Below it, no further benefit will be 

achieved and the profit coming from improving the measurement interval will be eroded by noise. 
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Figure 10. Estimation errors of two different Coulomb counting methods. (a) Measuring interval = 1 s;  

(b) Measuring interval = 10 s. 
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Figure 11. Accumulated capacities for different discharging currents. (a) Measuring interval = 1 s;  

(b) Measuring interval = 10 s. 

4.5. The Influences of Noise 

To further discuss the influence of the sensor noise, two kinds of noise were overlaid on the 

original current signals. The accumulated capacities for different lattices in the discharging cycle are 

shown in Figure 12, from which we can see that, when noise (−0.1 A–0.1 A) was overlaid on the 

original current signals, the distribution and total quantity of the accumulated charge obtained on 

the synthetic signals (red lines) were very similar to those in the original current signals (blue lines). 

When noise (0 A–0.2 A) was overlaid on the original signals, the distribution and the total 

accumulated charge on the synthetic signals (green lines) differed from those in the original signals 

(blue lines). 
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Figure 12. The accumulated capacities in different noisy environments. 

Though the obtained current information was overlaid with the same noise signal, the relative 

errors obtained by the traditional Coulomb counting method and the proposed Coulomb counting 

method were quite different. This can be observed in Figure 13a,b, where three variation trends of 

the relative errors in different noise conditions were shown, respectively. By comparing Figure 13a 

and Figure 13b we can find that when noise (−0.1 A–0.1 A) was overlaid on the original current 

signals, the ranges (or trends) of the relative errors obtained with the two Coulomb counting methods 

remained unchanged. However, when noise (0 A–0.2 A) was overlaid on the original current signals,  

the relative errors obtained with the traditional Coulomb counting method increased, but the trend 

(or range) of the relative error obtained with the proposed Coulomb counting methods remained 

unchanged (in the latter 40 discharging cycles). 

The answer resides in the equation set of Equation (15). When noise (0 A–0.2 A) was overlaid on 

the original current signals, all of the accumulated capacities for lattices Ln, QLn,i were increased.  

In the former 10 residual capacity calculation, the Coulombic efficiency, η𝐿𝑛,𝑖 for each lattice cannot 

be revised, so the obtained errors will increase. However, after running 10 times (10 equations),  

the Coulombic efficiency,η𝐿𝑛,𝑖, begins to be revised dynamically. Although the Coulombic efficiencies, 

η𝐿𝑛,𝑖, were changed into distorted values as the polluted capacities, QLn,i, were introduced, the ultimate 

estimation error is very small as the interaction effects exists. 
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Figure 13. The relative errors in different noisy environments. (a) With the traditional coulomb 

counting method; (b) With the proposed coulomb counting method. 

The changing specific process can be seen in Figure 14, where the values of two Coulombic 

efficiency, η[4A-6A] and η[8A-10A], were shown in Figure 14a,b. The corresponding accumulated capacities, 

Q[4A-6A] and Q [8A-10A] were presented in Figure 14c,d. With the intervention of the noise, the 

accumulated capacities, Q[4A-6A] and Q [8A-10A], increased in the total 50 driving cycles. However, the 

corresponding Coulombic efficiencies, η[4A-6A] and η[8A-10A], remain unchanged in the former 10 runs 

and decreased in the latter 40. Since no revision was carried out in the former 10 driving cycles (the 
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values of η[4A-6A] and η[8A-10A] kept unchanged), the relative errors obtained in the former 10 driving 

cycles were larger than that in the latter 40 driving cycles. Additionally, with the increasing noise 

(from [0A~0.1A] to [0.1A~0.2A]), the accumulated capacity was enlarged. The reverse movement of 

the Coulombic efficiency makes the final error decrease. 
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Figure 14. The relative errors in different noisy environments. (a) η[8A-10A]; (b) η[4A-6A]; (c) Q[8A-10A];  

(d) Q[4A-6A].  

5. Conclusions 

Estimating the residual capacity or state-of-charge for commercial batteries on-line without 

destroying them or interrupting the power supply, is a challenging task for battery management 

systems. In many traditional Ampere-hour integral methods, the SoC or residual capacity were 

calculated with an estimated Coulombic efficiency, η, the value of which remains unchanged in the 

whole charge/discharge cycle. However, its real value changes violently during the whole 

charge/discharge cycle and is determined by many factors, such as the charging/discharging current, 

temperature, SoC range and SoH. 

In this manuscript, a novel lossy counting-based Coulomb counting method was proposed to 

deal with this problem. The comparative study and experimental results showed that the proposed 

algorithm has the capabilities of correcting the cumulative error (coming from measurement drift) 

and calculating the accumulated charges with more accurate Coulombic efficiencies. The advantages 

of the proposed method are: 

(1) The Coulombic losses can be corrected by the proposed lossy counting-based relative Coulomb 

counting method, and the Coulombic efficiency matrix can be revised with the statistical information 

and the least squares method, every time a charge/discharge cycle has been completed. 

(2) The cumulative error, coming from the current sensor, can be compensated by the distorted 

Coulombic efficiency matrix. It largely reduces the cost and complexity of the circuit and  

current sensor. 

(3) As a data stream mining technique is integrated into the estimation process, the requirements of 

large size of memory and computable hardware resource are reduced. 

(4) The proposed method for calibrating Coulombic efficiency coefficients is a universal algorithm. 

For different kinds of batteries, the control parameters should be adjusted appropriately. 
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