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Abstract: Data mining has become an essential tool during the last decade to analyze large sets of
data. The variety of techniques it includes and the successful results obtained in many application
fields, make this family of approaches powerful and widely used. In particular, this work explores
the application of these techniques to time series forecasting. Although classical statistical-based
methods provides reasonably good results, the result of the application of data mining outperforms
those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact
mathematical formulation of the mainly used techniques; (ii) to review the latest works of time
series forecasting and, as case study, those related to electricity price and demand markets.
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1. Introduction

The prediction of the future has fascinated the human being since its early existence.
Actually, many of these efforts can be noticed in everyday events such as energy management [1],
telecommunications [2], pollution [3], bioinformatics [4], earthquakes [5], and so forth. Accurate
predictions are essential in economical activities as remarkable forecasting errors in certain areas may
involve large loss of money.

Given this situation, the successful analysis of temporal data has been a challenging task for
many researchers during the last decades and, indeed, it is difficult to figure out any scientific branch
with no time-dependant variables.

A thorough review of the existing techniques devoted to forecast time series is provided in this
survey. Although a description of classical Box-Jenkins methodology is also discussed, this text is
particularly focused on those methodologies that make use of data mining techniques. Moreover, a
family of energy-related time series are examined due to the scientific relevance exhibited during the
last decade: electricity price and demand time series. These series have been chosen since they present
some peculiarities such as nonconstant mean and variance, high volatility or presence of outliers, that
turns the forecasting process into a particularly difficult task to fulfil.

Actually, the electric power markets have become competitive markets due to the deregulation
carried out in the last years, allowing the participation of all buyers, producers, investors or
traders. Thus, the price of the electricity is determined on the basis of this buying/selling system.
Consequently, electricity-producer companies need to develop methods for optimal bidding [6].

On the other hand, load forecasting or demand forecasting consists in forecasting the amount of
required electricity for a particular period of time. The demand forecasting plays an important role
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for electricity power suppliers because both excess and insufficient energy production may lead to
large costs and significative reduction of benefits.

Some works have already reviewed electricity price time series forecasting techniques. For
instance, [7] collates a massive review of artificial neural networks, but it barely reviews other
data mining techniques. Also, Weron [8] presented an excellent review, describing many different
approaches for several markets. However, none of them are focused on the whole data mining
paradigm. Moreover, they do not provide mathematical foundations for all the methods they
evaluated. Indeed, this is maybe the most significative strength of the paper, since information
relating to underlying mathematics is provided, as well as an exhaustive description of the measures
typically used to evaluate the performance. In short, this survey is to provide the reader with a
general overview of current data mining techniques used in time series analysis and to highlight all
the skills these techniques are exhibiting nowadays. As case study, their application to a real-world
energy-related set of series is reported.

As it will be shown in subsequent sections, the majority of the techniques have been applied
to Pennsylvania-New Jersey-Maryland (PJM) [9], New York (NYSIO) [10] and Spain (OMEL) [11]
electricity markets. By contrast, both Australian National Electricity Market (ANEM) [12] and
Ontario [13] follow a single settlement real-time structure and few researchers have dealt with such
markets. ANEM is also well-known for its volatility and its frequent appearance of outliers, turning
this market into a perfect target for robust forecasting. Additionally, the Californian electricity market
(CAISO) [14] has also been widely analyzed because of the well-known problems that it experienced
in the second half of 2000’s. Some other markets appear in this work, given the relevance of the model
applied. Such are the cases for the UK, India, Malaysia, Finland, Turkey, Egypt, Nord Pool, Brazil,
Jordan, China, Taiwan or Greece. Note that most of them provide public access to data.

The remainder of this work is structured as follows. Section 2 provides a formal description of a
time series and describes its main features.

Section 3 describes statistical indicators and errors typically used in this field. Also, the concept
of persistence model and forecasting skill is here described.

In particular, Section 4 describes the approaches based on linear methods. Classical Box and
Jenkins-based methods such as AR, MA, ARMA, ARIMA, ARCH, GARCH or VAR are thus reviewed.
Note that from this section on, all sections consist of a brief mathematical description of the technique
analyzed and a review of the most representative works.

As for Section 5, it is a compendium of the non-linear forecasting techniques currently in use
in the data mining domain. In particular, these methods are divided into global (neural networks,
support vector machines, genetic programming) and local (nearest neighbors).

In Section 6, rule-based forecasting methods are analyzed, providing a brief explanation of what
a decision rule is, and revisiting the latest and most relevant works in this domain.

The use of wavelets, as relevant method for hybridization, is detailed in Section 7 as well as
discussing the most relevant improvements achieved by means of these techniques.

A compilation of several works that cannot be classified in none of the aforementioned groups
is described in Section 8. Thus, forecasting approaches based on Markov processes, on Grey models,
on Pattern-Sequence similarity or on manifold dimensionality reduction, are there detailed.

Due to the large amount of ensemble models that are being used nowadays, Section 9 is devoted
to cover these methods.

Finally, the conclusions drawn from the exploration of all existing techniques are summarized in
Section 10.

2. Time Series Description

This section is to describe temporal data features as well as to provide mathematical description
for such a kind of data. Thus, a time series can be understood as a sequence of values observed over
time and chronologically ordered. Time is a continuous variable, however, samples are recorded at
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constant intervals in practice. When the time is considered as a continuous variable, the discipline is
commonly referred as functional data analysis [15]. The description of this category is out of scope in
this survey.

Let yt, t = 1, 2, ..., T be the historical data of a given time series. This series is thus formed
by T samples, where each yi represents the recorded value of the variable y at time i. Therefore, the
forecasting process consists in estimating the value of yT+1 (ŷT+1) and, the goal, to minimize the error,
which is typically represented as a function of yT+1 − ŷT+1. This estimation can be extended when
the horizon of prediction is greater than one, that is, when the objective is to predict a sample at a time
T + h (ŷT+h). In this situation, the best prediction is reached when a function of ∑h

i=1(yT+i − ŷT+i)

is minimized.
Time series can be graphically represented. In particular, the x-axis identifies the time

(t = 1, 2, ..., T) whereas the y-axis the values recorded at punctual time stamps (yt). This
representation allows the visual detection of the most highlighting features of a series, such as
oscillations amplitude, existing seasons and cycles or the existence of anomalous data or outliers.
Figure 1 illustrates, as example, the price evolution for a particular period of 2006 in the Spanish
electricity market.
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Figure 1. Time series example.

An usual strategy to analyze time series is to decompose them in three main components [16,17]:
trend, seasonality and irregular components, also known as residuals.

1. Trend. It is the general movement that the variable exhibits during the observation period,
without considering seasonality and irregulars. Some authors prefer to refer the trend as the
long–term movement that a time series shows. Trends can present different profiles such as linear,
exponential or parabolic.

2. Seasonality. This component typically represents periodical fluctuations of the variable subjected
to analysis. It consists of the effects reasonably stable along with the time, magnitude and
direction. It can arise from several factors such as weather conditions, economical cycles
or holidays.

3. Residuals. Once the trend and cyclic oscillations have been calculated and removed, some
residual values remain. These values can be, sometimes, high enough to mask the trend and
the seasonality. In this case, the term outlier is used to refer these residuals, and robust statistics
are usually applied to cope with them [18]. These fluctuations can be of diverse origin, which
makes the prediction almost impossible. However, if by any chance, this origin can be detected or
modeled, they can be thought of precursors in trend changes.

Figure 2 depicts how a time series can be decomposed in the variables above described.
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Figure 2. Time series main components decomposition.

Obviously, real-world time series present a meaningful irregular component, which makes their
prediction a especially hard task to fulfil. Some forecasting techniques are focused on detecting trend
and seasonality (especially traditional classical methods), however, residuals are the most challenging
component to be predicted. The effectiveness of one technique or another is assessed according to its
capability of forecasting this particular component. It is for the analysis of this component where data
mining-based techniques has been shown to be particularly powerful, as this survey will attempt to
show in next sections.

3. Accuracy Measures

The purpose of error measures is to obtain a clear and robust summary of the error distribution.
It is common practice to calculate error measures by first calculating a loss function (usually
eliminating the sign of the single errors) and then computing an average. Let in the following yt

be the observed value at time t, also called the reference value, and let ŷt be the forecast for yt.
The error Et is then computed by yt − ŷt. Hyndman and Koehler [19] give a detailed review of
different accuracy measures used in forecasting and classify the measures into the groups detailed in
subsequent sections.

3.1. Scale-Dependent Measures

There are some commonly used accuracy measures whose scale depends on the scale of the data.
These are useful when comparing different methods on the same set of data, but should not be used,
for example, when comparing across data sets that have different scales.

The most commonly used scale-dependent measures are based on the absolute error
AEt = |yt − ŷt| or squared error SEt = (yt − ŷt)2. These errors are averaged by arithmetic mean or
median, leading to the mean absolute error (MAE, Equation (1)), the median absolute error (MDAE,
Equation (2)), the mean squared error (MSE, Equation (3)) or the root mean squared error (RMSE,
Equation (4)).

MAE =
1
n

n

∑
t=1
|yt − ŷt| (1)

MDAE = median(|yt − ŷt|) (2)
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MSE =
1
n

n

∑
t=1

(yt − ŷt)
2 (3)

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2 (4)

When comparing forecast methods on a single data set, the MAE is popular as it is easy to
understand and compute. While MAE do not penalize extreme forecast errors, MSE and RMSE
emphasize the fact that the total forecast error is in fact much affected by large individual errors,
i.e., large errors are much expensive than small errors. Often, the RMSE is preferred to the MSE as it
is on the same scale as the data. However, MSE and RMSE are more sensitive to outliers than MAE
or MDAE.

3.2. Percentage Errors

To address the scale-dependency, the error can be divided by the reference value. Thus, the
percentage error (PE) is given by 100(yt − ŷt)/(yt). Percentage errors have the advantage of being
scale-independent and, therefore, they are frequently used to compare forecast performance across
different data sets. The most commonly used measure is the Mean Absolute Percentage Error (MAPE,
Equation (5)).

MAPE =
1
n

n

∑
t=1

∣∣∣∣100
yt − ŷt

yt

∣∣∣∣ (5)

These measures have the disadvantage of being infinite or undefined if yt = 0 for any t in the
period of interest, and having an extremely skewed distribution when any yt is close to zero. Where
the data involves small counts (which is common with intermittent demand data) it is impossible to
use these measures as occurrences of zero values of yt occur frequently.

By using the median for averaging these problems are easier to deal with, as single infinite or
undefined values do not necessarily result in an infinite or undefined measure. However, they also
have the disadvantage that they put a heavier penalty on positive errors than on negative errors.
This observation led to the use of the so-called symmetric measures sMAPE and sMdAPE, defined in
Equations (6) and (7).

sMAPE =
1
n

n

∑
t=1

200
|yt − ŷt|
|yt|+ |ŷt|

(6)

sMdAPE = median
(

200
|yt − ŷt|
|yt|+ |ŷt|

)
(7)

3.3. Relative Errors

An alternative way of scaling is to divide each error by the error obtained using another standard
method of forecasting as benchmark. Let rt = et/e∗t denote the relative error where e∗t is the forecast
error obtained from the benchmark method. Usually, the benchmark method is the random walk
where ŷt is equal to the last observation. Then we can define Mean Relative Absolute Error (MRAE,
Equation (8)) and Median Relative Absolute Error (MdRAE, Equation (9)).

MRAE = mean(|rt|) (8)

MdRAE = median(|rt|) (9)

A serious deficiency in relative error measures is that e∗t can be small. In fact, rt has infinite
variance because e∗t has positive probability density at 0. One common special case is when et and e∗t
are normally distributed, in which case rt has a Cauchy distribution.
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3.4. Relative Measures

Rather than use relative errors, one can use relative measures. For example, let MAEb denote the
MAE from the benchmark method. Then, a relative MAE is given by:

RelMAE = MAE/MAEb (10)

Similar measures can be defined using RMSE, MDAE or MAPE. An advantage of these methods
is their interpretability. For example relative MAE measures the possible improvement from the
proposed forecast method relative to the benchmark forecast method. When RelMAE < 1, the
proposed method is better than the benchmark method and when RelMAE > 1, the proposed method
is worse than the benchmark method.

When the benchmark method is a random walk, and the forecasts are all one-step forecasts, the
relative RMSE is the Theil’s U statistic, as defined in Equation (11). The random walk (where ŷt is
equal to the last observation) is the most common benchmark method for such calculations.

U =

√
1
n ∑n

t=1 (yt − ŷt)2√
1
n ∑n

t=1 y2
t

√
1
n ∑n

t=1 ŷ2
t

(11)

The Theil’s U statistic is a normalized measure of total forecasting error and 0 ≤ U ≤ 1. This
measure is affected by change of scale and data transformations. For assessing good forecast accuracy,
it is desirable that the Theil’s U statistic is close to zero. U = 0 means a perfect fit.

3.5. Persistence Model

The persistence model is an important dynamic property of any time series and usually related
to memory properties. Specifically, a time series is a persistent process if the effect of infinitesimally
small shock will influence future predictions of the time series for a very long time. Thus the longer
the influence time the longer is the persistence.

If a series suffers an external shock, the persistence degree provides information about the impact
of the shock on such series, whether it will soon revert to its mean path or it will be further pushed
away from the mean path. In case of a highly persistence series, a shock to the series tends to persist
for long and the series drifts away from its historical mean path. On the contrary, for the case of a
time series with low persistence degree after a shock, the time series tends to get back to its historical
mean path.

The persistence of a time series model has been measured by different ways in literature [20].

3.6. Forecasting Skill

The forecasting skill is a type of measures that scores the ability of a forecasting method to predict
future values of a time series with respect to a reference model as benchmark. The forecasting skill
is a scaled representation of the relative forecasting error and its purpose is the same of the relative
measures introduced in Subsection 3.4.

The most commonly used forecasting skill measure is shown in Equation (12) and it is based on
the previously introduced mean squared error (MSE, see Equation (3)). MSE is the error of the tested
forecasting method and MSEb is the error of the reference benchmark.

SS = 1− MSE
MSEb

(12)

A perfect forecast skill implies SS = 1, a forecast with similar skill to the benchmark forecast
produces a SS close to 0, and a forecast which is less skillful than the benchmark would produce a
negative SS value.
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4. Forecasting Based on Linear Methods

There exist real complex phenomena that cannot be represented by means of linear difference
equations since they are not fully deterministic. Therefore, it may be desirable to insert a random
component in order to allow a higher flexibility on its analysis.

Linear forecasting methods are those that try to model a time series behavior by means of a linear
function. From all the existing techniques, seven of them are quite popular: AR, VAR, MA, ARMA,
ARIMA, ARCH and GARCH. These models follow a common methodology, whose application to
time series analysis was first introduced by Box and Jenkins. The original work has been extended
and published many times since its first apparition in 1970, but the newest version can be found
in [21].

Autoregressive –AR(p)–, moving average –MA(q)–, mixed –ARMA(p, q)– autoregressive
integrated moving average –ARIMA(p, d, q)– autoregressive conditional heteroskedastic
–ARCH(q)– and generalized autoregressive conditional heteroskedastic –GARCH(p, q)– models
were described following this idea, where p is the number of autoregressive parameters, q is the
number of moving average parameters and d is the number of differentiations for the series to be
stationary. Vector autoregressive models –VAR(p)– are the natural extension for AR models to
multivariate time series, where p denotes the number of lags considered in the system.

4.1. Autoregressive Processes

An autoregressive process (AR) is denoted by AR(p), where p is the order of the AR process.
This process assumes that every yt can be expressed as a linear combination of some past values. It
is a simple model but that adequately describes many real complex phenomena. The generalized AR
model of order p is described by:

yt =
p

∑
i=1

αiyt−i + εt (13)

where αi are the coefficients that models the linear combination, εt the adjustment error, and p the
order of the model.

When the error is small compared to the actual values, a future value can be estimated as follows:

ŷt = yt + εt

=
p

∑
i=1

wiyt−i (14)

4.2. Vector Autoregressive Models

Vector autoregressive models (VAR) are the natural extension of the univariate AR to
multivariate time series. VAR models have shown to be especially useful to describe dynamic
behaviors in time series and therefore to forecast. In a VAR process of order p with N variables
–VAR(p)–, N different equations are estimated. In each equation a regression of the target variable
over p lags is carried.

Unlike the univariate case, VAR allow that each series to be related with its own lag and the
lag of the other series that form the system. For instance, in two time series systems, there are two
equations, one for each variable. This two-series system (VAR(1), N = 2) can be mathematically
expressed as follows:

y1,t = α11y1,t−1 + α12y2,t−1 + ε1,t (15)

y2,t = α21y1,t−1 + α22y2,t−1 + ε2,t (16)

where yi,t for i = 1, 2 are the series to be modeled, and α’s the coefficients to be estimated.
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Note that the selection of an optimum length of the lag is a critical task for VAR processes and,
for this reason, has been widely discussed in literature [22].

4.3. Moving Average Processes

When the error εt cannot be assumed as negligible, AR processes are not valid. In this situation
it is practical to use the moving average (MA) process, where the series is represented as linear
combination of the error values:

yt =
q

∑
i=1

βiεt−i (17)

where q is the order of the MA model and βi the coefficients of the linear combination. As observed,
it is not necessary to make explicit use of past values of yt to estimate its future value. Finally, MA
processes are seldom used alone in practice.

4.4. Autoregressive Moving Average Processes

Autoregressive and moving average models are combined in order to generate better
approximations than that of Wold’s representation [23]. This hybrid model is called autoregressive
moving average process (ARMA) and denoted by ARMA(p, q). Formally:

yt =
p

∑
i=1

αiyt−i +
q

∑
i=1

βiεt−i + εt (18)

Again, ARMA assumes that εt is small compared to yt to estimate future values of yt. The
estimates of εt past values at time t− i can be obtained from past actual values of yt and past estimated
values of ŷt:

êt−i = yt−i − ŷt−i (19)

Therefore, the estimate for ŷt is calculated as follows:

ŷt =
p

∑
i=1

αiyt−i +
q

∑
i=1

βi ε̂t−i (20)

4.5. Generalized Autoregressive Conditional Heteroskedastic Processes

Autoregressive conditional heteroskedastic processes (ARCH), firstly presented in [24], or
extended ARCH models, called generalized autoregressive conditional heteroskedastic processes
(GARCH), introduced in [25], are especially designed to deal with volatile time series, that is, with
series that exhibit high volatility and outlying data (for detailed information refer to [26,27]). The
ARCH model considers that the conditional variance is dependent of the time, namely, a MA process
of order q of the square error values:

σ(εt|εt−1) =
q

∑
i=1

βiε
2
t−i (21)

The extension of an ARCH model to a GARCH model is similar to the extension of AR models
to ARMA models. The conditional variance depends on their own past values in addition to the past
values of the square errors:

σ(εt|εt−1) =
p

∑
i=1

αiσ(εt−i|εt−i−1) +
q

∑
i=1

βiε
2
t−i (22)
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4.6. Autoregressive Integrated Moving Average Processes

Autoregressive integrated moving average processes (ARIMA) are the most general methods
and are the result of combining AR and MA processes. ARIMA models are denoted as
ARIMA(p, d, q), where p is the number of autoregressive terms, d the number of nonseasonal
differences, and q the number of lagged forecast errors in the prediction equation. These models
follows a common methodology, whose application to time series analysis was first introduced by
Box and Jenkins [21]. Thus, this methodology proposes an iterative process formed by four main
steps as illustrated in Figure 3.

Figure 3. The Box-Jenkins methodology.

1. Identification of the model. The first task to be fulfilled is to determine wether the time series
is stationary or not, that is, to determine if the mean and variance of a stochastic process do not
vary along with time. If the time series does not satisfy this constraint, a transformation has to
be applied and the time series has to be differentiated until reaching stationarity. The number of
times that the series has to be differentiated is denoted by d and is one of the parameters to be
determined in ARIMA models.

2. Estimation of the parameters. Once d is determined, the process is reduced to an ARMA model
with parameters p and q. These parameters can be estimated by following non-linear strategies.
From all of them, three stand out: the evolutionary algorithms, the least squares (LS) minimization
and the maximum likelihood (ML). Evolutionary algorithms and LS consist in minimizing the
square error of forecasting for a training set while the ML consists in maximizing the likehood
function, which is proportional to the probability of obtaining the data given the model.

Comparisons between different Box-Jenkins time series models can be easily found in the
literature [28–31], but there are very few works comparing the results of different parameter
estimation methods. ML and LS were compared in [32] to obtain an ARIMA model to predict
the gold price. The results reported an error of 0.81% and 2.86% when using a LS and a ML,
respectively. A comparative analysis between autocorrelation function, conditional likelihood,
unconditional likelihood and genetic algorithms in the context of streamflow forecasting was
made in [33]. Although similar results were obtained by the four methods, the autocorrelation
function and the methods based on ML were the most computationally cost, especially when
increased the order of the model. For that, the authors finally recommended the use of
evolutionary algorithms.

The good performance of several metaheuristics to solve optimization problems along with
the limitations of the classical methods, such as the low precision and poor convergence, has
motivated the appearance of recent works comparing evolutionary algorithms and traditional
methods for parameter estimation in time series models [34,35]. In general, evolutionary
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algorithms obtain better results due to the likelihood function is highly nonlinear, and therefore,
conventional methods usually converge to a local maxima contrarily to genetic algorithms, which
tend to find the global maxima [36].

3. Validation of the model. Once the ARIMA model has been estimated several hypotheses have
to be validated. Thus, the fitness of the model, the residual values or the significance of the
coefficients forming the model are forced to agree with some requirements. In cases in which this
step is not fulfilled, the process begins again and the parameters are recalculated.

In particular, an ARIMA model is validated if estimated residuals behave as white noise, that is,
if they exhibit normal distribution as well as constant variance and null mean and covariance.
To determine if they are white noise, autocorrelation and partial autocorrelation functions are
calculated. These values must be significatively small.

Additionally, to assess different models’ performance, Akaike information criterion (AIC)
and Bayesian information criterion (BIC) measures are typically used (instead of classical
error measures, such as MAE or RMSE) given their ability to avoid the overfitting that
overparameterization causes.

A problem with the AIC is that it tends to overestimate the number of parameters in the model
and this effect can be important in small samples. If AIC and BIC are compared, it can be seen
that the BIC penalizes the introduction of new parameters more than the AIC does, hence it tends
to choose more parsimonious models [37].

4. Forecasts. Finally, if the parameters have been properly determined and validated, the system is
ready to perform forecasts.

4.7. Related Work

The authors in [38] used the GARCH method to forecast the electricity prices in two regions
of New York. The obtained results were compared to different techniques such as dynamic
regression (DR), transfer function models (TFM) and exponential smoothing. They also showed that
accounting for the spike values and the heteroscedastic variance in these time series could improve
the forecasting, reaching error rates lesser than 2.5%.

García et al. [39] proposed a forecasting technique based on a GARCH model. Hence, this paper
focused on day-ahead forecast of electricity prices with high volatility periods. The proposal was
tested on both mainland Spanish and California deregulated markets.

Also related with electricity prices time series, the approach proposed by Malo et al. in [40]
was equally noticeable. In it, the authors considered a variety of specification tests for multivariate
GARCH models that were used in dynamic hedging in the Nordic electricity markets. Moreover,
hedging performance comparison were conducted in terms of unconditional and conditional
ex-post variance.

An application of ARMA models to electricity prices can be found in [41], where the exogenous
variable is the electricity demand. The study was carried out with data of California. The average
error verges on 10%.

In [42] ARIMA models, selected by means of Bayesian Information Criteria, were proposed to
obtain the forecasts of electricity prices in the Spanish market. In addition, the work analyzed the
optimal number of samples used to build the prediction models.

Weron et al. [43] presented twelve parametric and semi-parametric time series models to predict
electricity prices for the next day. Moreover, in this work forecasting intervals were provided and
evaluated taking into account the conditional and unconditional coverage. They concluded that the
intervals obtained by semi-parametric models are better than that of parametric models.

Table 1 summarizes the content of this section. Note that 5+ models means that the approach has
been compared to five or more models. As it can be appreciated, linear methods were very popular
at the beginning of 2000’s as main methods to make predictions. However, nowadays, these kind of
methods have turned into baselines for other methods to be compared to.
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Table 1. Summary on linear methods.

Reference Technique Outperforms Metrics Horizon Year Market

[38] GARCH DR/TFM/Smoothing RMSE/MAPE 1 day 2002 NYISO
[39] GARCH ARIMA RMSE 1 day 2000 CAISO/OMEL
[40] GARCH 5+ models MAPE/MAE 1 day 2004 Northern Europe
[41] ARMA 5+ models RMSE 1 day 2000 CAISO
[42] Mixed ARIMA ARIMA RMSE/MAPE 1 day 2000–2002 OMEL
[43] ARIMA 5+ models MAE/MAPE 1 day 2004 CAISO/Nord Pool

5. Forecasting Based on Non-Linear Methods

Non linear forecasting methods are those that try to model a time series behavior by means of
a non linear function. This function is often generated by lineally combining non-linear functions
whose parameters have to be determined. Moreover, the non linear methods can be classified in
global or local methods depending on the characteristics required for the function to find.

5.1. Global Methods

On the other hand, global methods are based on finding a linear function able to model the
output data from the input ones. Several techniques form this family of methods, among which the
most important are: artificial neural networks, whose main advantage is that they do not need to
know the input data distribution; the support-vector machines, which are very powerful classifiers
that follow a philosophy similar to that of the artificial neural networks; and genetic programming,
where the type of non-linear function that models the data behavior can be selected.

5.1.1. Artificial Neural Networks

This section is devoted to artificial neural networks (ANN) which have widely applied for
forecasting energy time series. In particular, a general description is presented in Section 5.1.1.1 and
two specific ANN, namely extreme learning machine (ELM) and self-organizing Kohonen’s maps
(SOM) are introduced in Sections 5.1.1.2 and 5.1.1.3, respectively. Finally, Section 5.1.1.4 presents a
review of recently published literature related to ANN.

5.1.1.1 Fundamentals

ANNs were originally conceived by McCulloch and Pitts in [44]. These mechanisms search for
solving problems by using systems inspired in the human brain and not by applying step by step
as usually happens in most techniques. Therefore, these systems own a certain intelligence resulting
from the combination of simple interconnected units –neurons– that work in parallel in order to solve
several tasks, such as prediction, optimization, pattern recognition or control.

Neural networks are inspired in the structure and running of nervous systems, in which the
neuron is the key element due to its communication ability. The existing analogies between ANN
and the synaptic activity are now explained. Signals that arrive to the synapse are the neuron’s inputs
and can be whether attenuated or amplified by means of an associated weight. These input signals
can excite the neuron if a positive weighted synapsis is carried out or, on the contrary, they can inhibit
it if the weight is negative. Finally, if the sum of the weighted inputs is equal or greater than a certain
threshold, the neuron is activated. Neurons present, consequently, binary results: activation or not
activation. Figure 4 illustrates an usual structure of an ANN.

There are three main features that characterize a neural network: topology, learning paradigm
and the representation of the information. A brief description of them are now provided.

1. Topology of the ANN. Neural networks architecture consists in the organization and position of
the neurons with regard to the input or output of the network. In this sense, the fundamental
parameters of the network are the number of layers, the number of neurons per layer, the
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connection grade and the type of connections among neurons. With reference to the number
of layers, ANN can be classified into monolayer or multilayer networks (MLP). The first ones
only have one input layer and one output layer, whereas the multilayer networks [45] are a
generalization of the monolayer ones, which add intermediate or hidden layers between the input
and the output. When discussing about the connection type, the ANN can be feedforward if the
signal propagation is produced in just one way and, therefore, they do not have a memory or
recurrent if they keep feedback links between neurons in different layers, neurons in the same
layer or in the same neuron. Finally, the connection grade can be totally connected if all neurons
in a layer are connected with the neurons in the next layer (feedforward networks) or with the
neurons in the last layer (recurrent networks) and, otherwise, partially connected networks in
cases where there is not total connection among neurons from different layers.

2. Learning paradigm. The learning is a process that consists in modifying the weights of the ANN,
according to the input information. The changes that can be carried out during the learning
process are removing (the weight is set to zero), adding (conversion of a weight equal to zero
to a weight different to zero) or modifying neurons connections. The learning process is said to
be finished or, in other words, the network has learnt when the values assigned to the weights
remain unchanged.

3. Representation of the input/output information. ANN can be also classified according to the
way in which information relative to both input and output data is represented. Thus, in a great
number of networks input and output data are analog which entails activation functions also
analogs, either linear or sigmoidal. In contrast, there are some networks that only allow discrete
or even binary values as input data. In this situation, the neurons are activated by means of an
echelon function. Finally, hybrid ANNs can be found in which input data may accept continuous
values and output data would provide discrete values or viceversa.

Figure 4. Mathematical model of an artificial neural network (ANN).

5.1.1.2 Extreme Learning Machine

Extreme Learning Machine (ELM) [46] is a feedforward neural network with an only hidden
layer that uses a method for the training faster than the classical ANNs. Namely, the ELM randomly
generates the weights W1 that connect the input layer with the hidden layer and computes the
weights W2 that connect the hidden layer with the output using a simple matrix computation. Thus,
the output y is defined by the following model:

y = W2φ(W1x) (23)

where φ is the activation function and x is the input vector.

13173



Energies 2015, 8, 13162–13193

The training consists in computing the weights W2 as follows:

H = φ(W1xi) (24)

W2 = H+yi (25)

where (xi, yi) are the points of the training set and H+ represents the pseudoinverse of the matrix H.

5.1.1.3 Self Organizing Maps

The learning in ANN can be either supervised (perceptron and backpropagation [47] techniques)
or unsupervised, from which the self-organizing Kohonen’s maps (SOM) [48] stands out.

SOM have been mainly applied to discover patterns in data. The learning paradigm is based on
a competitive learning, that is the neurons compete among them and win the neuron with the nearest
weights to the input vector. Then, all neurons near to the win neuron update their weights according
to a specific rule defined by:

wj
n+1 = wj

n + µn(x− wj
n) (26)

where wj
n is the weight associated to the neuron j at the n-th iteration, µn is the learning factor and x

is the input vector.
The neurons that are not neighbors to the win neuron do not update their weights. Finally,

a clustering of the data is obtained when the training phase ends.

5.1.1.4 Related Work

Many references proposing the use of ANNs, or a variation of them, as a powerful tool to forecast
time series, can be found in the literature. The most important works are detailed below. Furthermore,
the creation of hybrid methods that highlight most of the strengths of each technique is currently the
most popular work among the researchers. However, from all of them, the combination of ANN and
fuzzy set theory has become a new tool to be explored.

Rodríguez and Anders [49] presented a method to predict electricity prices by means of an ANN
and fuzzy logic, as well as a combination of both. The basic selected network configuration consisted
of a back propagation neural network with one hidden layer that used a sigmoid transfer function and
a one-neuron output layer with a linear transfer function. They also reported the results of applying
different regression-based techniques over the Ontario market.

A hybrid model which used ANNs and fuzzy logic was introduced in [50]. As regards the neural
network presented, it had a feed-forward architecture and three layers, where the hidden nodes of
the proposed fuzzy neural network performed the fuzzyfication process. The approach was tested
over the Spanish electricity price market and showed to be better than many other techniques such
as ARIMA or MLP.

Taylor et al. [51] compared six univariate time series methods to forecast electricity load for
Rio de Janeiro and England and Wales markets. These methods were an ARIMA model and an
exponential smoothing (both for double seasonality), an artificial neural network, a regression model
with a previous principal component analysis and two naive approaches as reference methods. The
best method was the proposed exponential smoothing and the regression model showed a good
performance for the England and Wales demand.

Another neural network-based approach was introduced in [52] in which multiple combinations
were considered. These combinations consisted of networks with different number of hidden layers,
different number of units in each layer and several types of transfer functions. The authors evaluated
the accuracy of the approach reporting the results from the electricity markets of mainland Spain
and California.
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The use of ANN for forecasting electricity prices in the Spanish market was also proposed in [53].
The main novelty of this work lies on the proposed training method for ANN, which is based on
making a previous selection for the MLP training samples, using an ART-type [54] neural network.

In [55], the authors discussed and presented results by using an ANN to forecast the Jordanian
electricity demand, which is trained by a particle swarm optimization technique. They also showed
the performance obtained by using a back propagation algorithm (BP) and autoregressive moving
average models.

Neupane et al. [56] used an ANN model with carefully selected inputs. Such inputs were selected
by means of a wrapper method for feature selection. The proposal was applied to data from Australia,
New York and Spain electricity markets, outperforming the PSF algorithm performance.

The feature selection problem to obtain optimal inputs for load forecasting has also been
addressed by means of ANN [57]. The authors evaluated the performance of four feature selection
methods in conjunction with state-of-the-art prediction algorithms, using two years of Australian
data. The results outperformed those of exponential smoothing prediction models.

In spite of the widespread use of the ANNs, the ELM has not been too explored to predict energy
time series. An ELM and bootstrapping to predict probabilistic intervals for Australian electricity
market was proposed in [58]. First, an ELM was applied to obtain point forecasts, and later, a
bootstrap method was used for uncertainty estimations. The results were compared with two ANNs,
namely a back-propagation ANN and a radial basis function neural network, showing that ELM
outperforms other methods in most of the test sets. For the same market, prediction intervals (PI)
were also obtained in [59]. In this case, a maximum likelihood method was used to estimate the noise
variance indeed of a bootstrap method. The results were compared to a random walk (RW), and both
traditional ANN and ELM with a bootstrap method. The proposed method provided the best training
time and errors.

In [60] five recent methods to train radial-basis function (RBF) networks were applied to obtain
the short-term load forecasting in New England. These method were SVR, ELM, decay RBF neural
networks, improved second order and error correction. The best results regarding the training, errors,
network size, and computational time were obtained with the error correction.

Li et al. [61] presented a wavelet transform to deal with the nonstationary of the load time series
and an ELM with weights initially computed by an artificial bee colony algorithm to predict the load
time series in New England and North American from the wavelet series. The authors showed that
the use of an optimization algorithm to set the weights in ELM improves the forecasting errors.

Most approaches based on SOMs published in the literature for forecasting tasks, use the SOM
to group the data in an initial stage, and later obtain a prediction model for each group. In [62] the
authors propose to combine SOM and support vector machines to predict hourly electricity prices
for next-day. First, they applied a SOM to split the data into groups, and then, a support vector
machine model for each group is used to obtain the prediction of the prices in the New England
electricity market. In this work, two months were used to validate the method, which provided
errors of 7% approximately. Likewise, a SOM along with an ANN was applied to forecast the prices
for Australian and New York electricity markets [63]. In this case, the ANN predicted the nearest
cluster and the prediction was obtained by the centroid of the cluster. The errors reported for the year
2006 were around a 1.76% and 2.88% for Australian and New York markets, respectively. A SOM
without combining with another technique was presented in [64] to predict the prices for the Spanish
electricity market. A preprocessing to select the input variables was proposed as a previous step to
the prediction, which was obtained from the prices of the nearest centroid to the input data. The
proposed SOM obtained forecasts with an error of 2.32% for the daily market.

Table 2 summarizes the content of this section.
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Table 2. Summary on ANN, self-organizing Kohonen’s maps (SOM) and extreme learning machine
(ELM) for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[49] Hybrid ANN 5+ models MAPE 1 day 2002 Ontario
[50] Hybrid ANN MLP/ARIMA/RBF MRE 1 day 2002 OMEL
[51] ANN 5+ models RMSE/MAE 1 day 2003 Brazil
[52] ANN ARIMA/Naive MAPE 1 day 2000/2002 CAISO/OMEL
[53] ART-NN ARIMA/ANN MAPE 1 day 2003 OMEL
[55] ANN ARMA/BP RMSE/MAPE 1 day 2004 Jordan
[56] ANN PSF MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[57] ANN Smoothing MAE/MAPE 1 day 2007 ANEM

[58] ELM 5+ models MAE/MAPE/RMSE 1 day 2006/07 ANEM
[59] ELM RW/ANN PI 1 day 2007/09 ANEM
[60] ELM RBF/SVR MAPE 1 day 2011 ANEM
[61] ELM 5+ models MAPE 1 day 2006 NYISO/ANEM

[62] SOM SVM MAE/MAPE 1 day 2005 ANEM
[63] SOM PSF MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[64] SOM 5+ models MAPE 1 day 2011 OMEL

5.1.2. Genetic Programming

5.1.2.1 Fundamentals

A genetic algorithm (GA) [65] is a kind of searching stochastic algorithm based on natural
selecting procedures. Such algorithms try to imitate the biological evolutive process since they
combine the survival of the best individuals in a set, by means of an structured and random process
of information exchange.

Every time the process iterates, a new set of data structures is generated gathering just the best
individuals of older generations. Thus, the GA are evolutionary algorithms due to their capacity to
efficiently exploit the information relating to past generations. This fact allows the speculation about
new searching points in the solution space, trying to obtain better models thanks to its evolution.

Many genetic operators can be defined. However, selection, crossover and mutation are the most
relevant and used and are now going to be briefly described.

1. Selection. During each successive generation, a proportion of the existing population is selected
to breed a new generation. Individual solutions are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typically more likely to be selected.
Certain selection methods rate the fitness of each solution and preferentially select the best
solutions. Other methods rate only a random sample of the population, as this process may be
very time-consuming. Most functions are stochastic and designed so that a small proportion of
less fit solutions are selected. This helps keep the diversity of the population large, preventing
premature convergence on poor solutions. Popular and well-studied selection methods include
roulette wheel selection and tournament selection.

2. Crossover. Just after two parents are selected by any selection method, crossover takes place.
Crossover is an operator that mates these two parents to produce offspring. The newborn
individuals may be better than their parents and the evolution process may continue. In most
crossover operators, two individuals are randomly selected and recombined with a crossover
probability, pc. That is, an uniform number r is generated and if r ≤ pc the two randomly selected
individuals undergo recombination. Otherwise, the offspring can be sheer copies of their parents.
The value of pc can either be set experimentally or set based on schema-theorem principles [65].

3. Mutation. Mutation is the genetic operator that randomly changes one or more of the individuals’
genes. The purpose of the mutation operator is to prevent the genetic population from converging
to a local minimum and to introduce to the population new possible solutions.

Genetic programming (GP) is a natural evolution of GA and its first apparition in the
literature dates of 1992 [66]. It is a specialization of genetic algorithms where each individual
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is a computer program. Therefore it is used to optimize a population of computer programs
according to a fitness landscape determined by a program’s ability to perform a given computational
task. Hence, specialized genetic operator that generalize crossover and mutation are used for
tree-structured programs.

The main steps to be followed when using GP are now summarized. Obviously, depending on
the type of the application, these steps may change in order to be adapted to the particular problem
to be dealt with.

1. Random generation of an initial population, that is, programs.
2. Iterative execution until the stop condition—to be determined in each situation—is fulfilled:

(a) To execute each program of the population and to assign an aptitude value, according to
their behavior in relation with the problem.

(b) To create new programs by applying different primary operations to the programs.

i. To copy an existing program in the new generation.
ii. To create two programs from two existing ones, genetically and randomly recombining

some chosen parts of both programs, making use of the crossover operator, which will
also be randomly chosen for each program.

iii. To create a program from another randomly chosen by randomly changing a gene.

3. The program identified as possessing the best aptitude (the best for the last generation) is the
designed result of the GP running.

5.1.2.2 Related Work

The viability of forecasting the electricity demand via linear GP is analyzed in [67]. Hence, the
authors considered load demand patterns for ten consecutive months, observed every thirty minutes
for the Victoria State of Australia. The performance was compared with an ANN and a neuro-fuzzy
system (EFuNN) and the system delivered best results in terms of accuracy and computational cost.

An evolutionary technique applied to the optimal short-term scheduling of the electric energy
production was presented in [68]. The equations that define the problem led to a nonlinear
mixed-integer programming problem with a high number of real and integer variables. The required
heuristics, introduced to assure the feasibility of the constraints, are analyzed, along with a brief
description of the proposed GA. Results from the Spanish power system were reported and compared
to dynamic regression (DR).

Another price forecasting strategy was proposed in [69]. In fact the authors presented a mutual
information-based feature selection technique (MI) in which the prediction part was a cascaded
neuro-evolutionary algorithm. The accuracy was largely evaluated since they compared their
results—obtained from Pennsylvania-New Jersey-Maryland and Spanish electricity markets—with
seven different models.

The electricity energy consumption is forecasted by using genetic algorithms in Turkey [70].
The results were compared with conventional regression techniques, and the estimated values of
the Turkish Ministry of Energy and Natural Resources (TMENR). An estimation for the electricity
demand in the year 2020 is also provided.

A variant of genetic programming, Multi-Gene Genetic Programming (MGGP), was introduced
in [71] and applied to Egypt load forecasting. The method was compared with RBF network and the
standard genetic programming.

A variant of genetic programming, improved by incorporating semantic awareness in algorithm,
for short term load forecasting is described in [72]. The authors analyzed South Italy data and
outperformed standard GP and some other machine learning methods.

Finally, Table 3 summarizes all the methods reviewed in this section.
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Table 3. Summary on genetic programming (GP) for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[67] Linear GP ANN/EFuNN RMSE 2 days 1995 ANEM
[68] GP DR MRE/MAE 1 day 2002 OMEL
[69] MI GP 5+ models MAE/MSRE 1 day 2007 PJM/OMEL
[70] GP TMENR MSE 1 day 2020 Turkey
[71] MGGP RBF/GP MAPE 1 day 2012 Egypt
[72] Semantic GP 5+ models MAE/MSRE 1 day 2009/10 Italy

5.1.3. Support Vector Machines

5.1.3.1 Fundamentals

The support vector machine (SVM) model the way is nowadays understood, initially appeared
in 1992 in the Computational Learning Theory (COLT) Conference and it has been subsequently
studied and extended [73,74]. The interest for this learning model is continuously increasing and
it is considered an emerging and successful technique nowadays. Thus, it has become to a widely
accepted standard in machine learning and data mining disciplines.

The learning process in SVM represents an optimization problem under constraints that can be
solved by means of quadratic programming. The convexity guarantees a single solution which is an
advantage with regard to the classical model of ANN. Furthermore, current implementations provide
moderate efficiency for real-world problems with thousands of samples and attributes.

Support vector machines aims at separating points by means of what they defined as hyperplane,
which are just linear separators with a high dimensionality whose functions are defined according to
different kernels. Formally, a hyperplane in a D-dimensional space is defined as follows:

h(x) =< w, x > +b (27)

where x is the sample, wεRD is the orthogonal vector to the hyperplane, bεR, w is the weight vector,
b is the bias or threshold decision and < w, x > expresses the scalar product in RD.

In case of a binary classifier is required, the equation can be reformulated as:

f (x) = sign (h(x)) (28)

where the sign function is defined as:

sign(x) =

{
+1, i f x ≥ 0
−1, i f x < 0

(29)

There exist many algorithms directed to create hyperplanes (w, b) given a dataset linearly
separable. These algorithms guarantee the convergency to a solution hyperplane although
particularities of all of them will lead to slightly different solutions. Note that there can be infinity
hyperplanes that perform adequate separations. So the key problem for the SVM is to choose the
best hyperplane, in other words, the hyperplane that maximizes the minimum distance (or geometric
margin) between the samples in the dataset and the hyperplane itself.

Another peculiarity of SVM is that only take into consideration those points belonging to the
frontiers of the region of decision, which are the points that do not clearly belong to a class or to
another. Such points are named support vectors. Figure 5 illustrates a bidimensional representation
of an hyperplane equidistant to two classes, as well as showing the support vectors and the
existing margin.
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Figure 5. Hyperplane (w, b) equidistant to two classes, margin and support vectors.

If non linear transformation is carried out from the input space to the feature space, non
linear separators-based learning is reached with SVM. Kernel functions are used thus in order to
estimate the scalar product of two vectors in the features space. Consequently the election of an
adequate kernel function is crucial and a priori knowledge of problem is required for a proper
application of SVM. Nevertheless, the samples may not be linearly separable (see Figure 6) even
in the features space.

Figure 6. Non linearly separable dataset.

Trying to classify properly all the samples can seriously compromise the generalization of the
classifier. This problem is known as overfitting. In such situations it is desirable to admit that some
samples will be misclassified in exchange for having more promising and general separators. This
behavior is reached by inserting soft margin in the model, whose objective function is composed by
the addition of two terms: the geometric margin and the regularization term. The importance of both
terms is pondered by means of a typically called parameter C. This model appeared in 1999 [75], and
it was the model that really allowed the practical use that SVMs have nowadays, since it provided
robustness against the noise.

On the other hand, SVMs can be easily adapted to solve regression problems by means of the
introduction of a loss function. SVMs are commonly called Support Vector Regression (SVR) for time
series forecasting. Now, the problem consists in finding a non linear function f that minimizes the
forecasting error for the training set. The ε-insensitive loss function Lε defined by Equation (30) is
typically used due to a reduced number of support vectors is obtained. The ε parameter represents
the error allowed for each point of the training set.

Lε(y) =


0 i f |y− f (x)| ≤ ε

|y− f (x)| − ε otherwise
(30)
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To approximate all data of the training set with an error less than ε is not always possible in
practice. For this reason, slack variables ξi and ξ∗i are inserted to allow errors greater. Thus, the SVR
model consists in solving the following problem:

minimize
1
2
||w||2 + C ∑

i
(ξi + ξ∗i )

subject to yi − f (xi) ≤ ε + ξi

f (xi)− yi ≤ ε + ξ∗i

(31)

where (xi, yi) are the points of the training set, w is the margin and C is the regularization parameter.
Once the optimization problem has been solved, the following function is obtained:

f (x) =
n

∑
i=1

(α+i − α−i )K(x, xi) (32)

where α+i and α−i are the multipliers of Lagrange of the dual optimization problem and K is the
kernel function.

5.1.3.2 Related Work

Many works have been focussed on forecasting time series by applying SVM. Hence, the study
carried out in [76] analyzed the suitability of applying SVM to forecast the electric load for the
Taiwanese market. The results were compared to that of linear regressions and ANN. The same time
series type, but related to the Chinese market, was forecasted in [77], in which the authors reached a
globally optimized prediction by applying a SVM.

The occurrence of outliers (also called spike prices) or prices significantly larger than the
expected values is an usual feature found in these time series. With the aim of dealing with
this feature, the authors in [78] proposed a data mining framework based on both SVM and
probability classifiers.

The research published in [79] proposed a new prediction approach based on SVM and rough
sets techniques (RS) with a previous selection of features from data sets by using an evolutionary
method. The approach improved the forecasting quality, reduced the speed of convergence and
the computational cost as regards a conventional SVM and a hybrid model formed by a SVM and
simulated annealing algorithms (SAA).

The Taiwanese electricity market was forecasted by means of SVR in [80]. The author proposed
a novel initialization of the SVR by using particle swarm optimization. The results were compared to
other SVR but with different initialization strategies, mainly, the least-squares (LS) method.

A two-stage multiple SVM based model for midterm electricity price forecasting was proposed
in [81]. The first stage was used to separate input data into different price zones, and was carried out
by means of a single SVM. Then, four parallel designed SVM were applied to forecast the electricity
price. The method was applied to PJM market and the results compared to the standard SVM.

Finally, Table 4 summarizes all the methods reviewed in this section. Note the GRNN stands for
general regression neural networks.

Table 4. Summary on support vector machine (SVM) for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[76] SAA-SVM ARIMA/GRNN MAE/MSRE 1 day 2004 China
[77] SVM ANN MAPE 1 day 2005 China
[78] M-SVM SVM MAE/MSRE 1 day 2006 ANEM
[79] RS-SVM SAA-SVM MAE/MSRE 1 day 2007 NYISO
[80] PSO-SVM LS-SVM MSE 1 day 2009 Taiwan
[81] M-SVM SVM MAE/MSRE 1 day 2009/10 PJM
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5.2. Forecasting Based on Local Methods

Due to the complexity to find a global function that models the whole system, the local models
emerge as learning methods for time series forecasting. Conversely to global methods, a local model
does not use the input data to predict the output but only the points close to the point to forecast.
In general, global models have a lower computational cost than local models, since the latter have to
be rebuilt for each point of the test set. But, the accuracy achieved by local methods is usually better
than that of global methods. The main local methods for prediction tasks are the methods based on
nearest neighbors.

5.2.1. Forecasting Based on Nearest Neighbors

5.2.1.1 Fundamentals

One of the most popular way of either predicting or classifying a new data, based on past and
known observations, it the nearest neighbors technique (NN), that was first formulated by Cover
and Hart in 1967 [82]. The classical example to illustrate the application of NN refers to a doctor
that tries to predict the result of a surgical procedure by comparing it with the obtained result from
the most similar patient subjected to the same operation. However, a single case in which surgery
had failed may have an excessive influence over other slightly different cases in which the operation
had successfully carried out. For this reason, the NN algorithm is generalized with the k nearest
neighbors, kNN. Thus, a simple election of the k nearest neighbors generates a prediction for every
cases. Moreover, this rule can be extended by weighting the importance of the neighbors, giving a
larger weight to the really nearest neighbors.

The search of the nearest neighbor process can be defined as follows:

Definition 1. Given a dataset P = p1, ..., pn in a metric espace X of distance d, two different type of queries
are wanted to be answered:

• Nearest neighbor: find the point in P nearest to qεX
• Range: given a point qεX and r > 0, return all the points pεP that satisfy d(p, q) ≤ r

Figure 7 illustrates an example in which k is set to three (three nearest neighbors are searched
for) and an Euclidean metric is used.

Figure 7. Three nearest neighbors of an instance to be classified.

Formally, the classification rule is formulated as follows:

Definition 2. Let D = {e1, . . . , eN} be a dataset with N labeled examples, in which each example ei has m
attributes (ei1, . . . , eim) belonging to the metric space Em and a class Ci ∈ {C1, . . . , Cd}. The classification of
each new example e′ fulfils that:

e′ a Ci ⇔ ∀j 6= i · d(e′, ei) < d(e′, ej) (33)

where e′ a Ci indicates the assignation of the class label Ci to the example e′; and d expresses a distance defined
in the m-dimensional space, Em.
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5.2.1.2 Related Works

One example is thus labeled according to the nearest neighbor’s class. This closeness is defined
by means of the distance d which turns the election of this metric essential, since different metrics will
most likely generate different classifications. As a consequence the election of the metric is widely
discussed in the literature, as shown in [83]. Note that the other main drawback that this technique
presents is the selection of the number of neighbors to consider [84].

In [85] a forecasting algorithm based on nearest neighbors was introduced. The selected metric
was the weighted Euclidean distance and the weights were calculated by means of a GA. The
authors forecasted electricity demand time series in the Spanish market and the reported results were
compared to those of an ANN. The same algorithm was tested on electricity price time series in [86] in
which the authors proposed a methodology based on weighted nearest neighbors (WNN) techniques.
The proposed approach was applied to the 24-h load forecasting problem and they built an alternative
model by means of a conventional dynamic regression (DR) technique, where the parameters are
estimated by solving a least squares problem, to perform a comparative analysis.

A modification of the WNN (mWNN) methodology was proposed in [87]. To be precise, they
explained how the relevant parameters—the window length of the time series and the number of
neighbors to be chosen—are adopted. Then, the approach weighted the nearest neighbors in order to
improve the prediction accuracy. The methodology was evaluated with the Spanish electricity prices
time series.

Later, WNN was also applied to the California electricity market (CAISO) [88]. This time, the
authors reported results for year 2000 and compared the approach to ARIMA-based models.

A multivariate KNN (mKNN) regression method for forecasting the electricity demand in the
UK market was presented in [89]. They reported results date from 2004 and were compared to several
benchmarks, as well as to univariate KNN (uKNN).

A work reporting short term load forecasting results for India, years 2012 and 2013, can be
found in [90]. This paper evaluates the accuracy of Holt-winter model and K-NN algorithm. Their
performance is compared to SARIMA, ANN and SVM, showing that K-NN is the method with better
results in terms of MAPE.

Finally, Table 5 summarizes all the methods reviewed in this section. It can be concluded that
there exist few works based on KNN to forecast time series, which have mainly been assessed by
means of diverse distance metrics in order to identify univariate time series motifs or episodes in the
historical data [91].

Table 5. Summary on k nearest neighbors (KNN) methods for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[85] KNN ANN MRE/MAE 1 day 2002 OMEL
[86] WNN DR MRE/MAE 1 day 2002 OMEL
[87] mWNN ANN/GARCH MRE/MAE 1 day 2002 OMEL
[88] WNN ARIMA MAE/MAPE 1 day 2000 CAISO
[89] mKNN uKNN/Benchmarks MAPE 1 day 2004 UK
[90] KNN/Holt SARIMA/ANN/SVM MAPE 1 day 2012/13 India

6. Rule-Based Forecasting

6.1. Fundamentals

Prediction based on decision rules usually makes reference to the expert system developed by
Collopy and Armstrong in 1992 [92]. The initial approach consisted of 99 rules that combined four
extrapolation-based forecasting methods: linear regression, Holt-Winter’s exponential smoothing,
Brown’s exponential smoothing and random walk. During the prediction process, 28 features were
extracted in order to characterize the time series. Consequently, this strategy assumed that a time
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series can be reliably identified by some features. Nevertheless, just eight features were obtained
by the system itself since the remaining ones were selected by means of experts’ inspections. This
fact implies high inefficiency insofar as too much time is taken, the ability of the analyst plays an
important (and subjective) role and it shows a medium reliability.

Formally, an association rule (AR) can be expressed as a sentence such that: If A Then B, with A
a logic predicate over the attributes whose fulfillment involves to classify the elements with a label B.
The learning based on rules tries to find rules involving the highest number of attributes and samples.

ARs were first defined by Agrawal et al. [93] as follows. Let I = {i1, i2, ..., in} be a set of n items,
and D = {tr1, tr2, ..., trN} a set of N transactions, where each trj contains a subset of items. Thus, a
rule can be defined as X ⇒ Y, where X, Y ⊆ I and X ∩Y = ∅. Finally, X and Y are called antecedent
(or left side of the rule) and consequent (or right side of the rule), respectively.

When the domain is continuous, the association rules are known as quantitative association rules
(QAR). In this context, let F = {F1, ..., Fn} be a set of features, with values in R. Let A and C be two
disjunct subsets of F, that is, A ⊂ F, C ⊂ F, and A∩C = ∅. A QAR is a rule X ⇒ Y, in which features
in A belong to the antecedent X, and features in C belong to the consequent Y, such that:

X =
∧

Fi∈A
Fi ∈ [li, ui] (34)

Y =
∧

Fj∈C
Fj ∈ [lj, uj] (35)

where li and lj represent the lower limits of the intervals for Fi and Fj respectively, and the couple ui
and uj the upper ones. For instance, QAR could be numerically expressed as:

F1 ∈ [12, 25] ∧ F3 ∈ [5, 9]⇒ F2 ∈ [3, 7] ∧ F5 ∈ [2, 8] (36)

where F1 and F3 constitute the features appearing in the antecedent and F2 and F5 the ones in
the consequent.

6.2. Related Work

Ismail et al. [94] presented a mathematical model for forecasting electricity peak load demand
using a rule-based approach. The method was applied to data from Malaysia. The results were
compared to SARIMA and regression models.

A data association mining-based rule extraction mechanism to extract the patterns in consumers’
reaction to price forecasts can be found in [95]. The resulting rules were then employed to fine-tune
the initially generated demand and price forecasts of a multi-input multi-output (MIMO) engine. The
methodology was tested on Australia’s and New England’s electricity data.

A rule-based approach to forecast anomalous load conditions for Great Britain data was
introduced in [96]. The authors used Holt-Winters-Taylor exponential smoothing, ARMA, ANN, and
singular value decomposition based exponential smoothing to demonstrate how these methods can
be adapted to discover outliers, when used together with a rule-based approach.

By contrast, not all the rule-based system provides crisp decisions. Hence, fuzzy rule-based
systems are usually used when the available data presents missing values. In these systems, each
element can belong to different groups with different grade of membership, not providing thus strict
rules for every sample. Due to its flexibility for dealing with incomplete, imprecise or uncertain data,
fuzzy rule-based strategies are often applied to prediction purposes. Hence a fuzzy association rule
can be expressed as: If X is A Then Y is B, where X, Y are disjoint subsets of attributes that forms the
database and A, B contain the fuzzy sets that are associated with X and Y.

A fuzzy rule based approach is presented to generate a crisp estimate for system load in [97].
To get this done, historical load, temperature, and time information were converted into fuzzy
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information. The method was applied to the European Energy Exchange (EEE) and the prediction
results were compared to the conventional method (CM).

A novel fuzzy logic methodology for short term load forecasting was introduced in [98]. It
was concluded that using time, temperature and similar previous day load as the inputs and by
formulating rule base of fuzzy logic using available data where enough to obtain reliable fuzzy rules
for some particular days. Data from Indian market were analyzed.

A paper focused on improving the performance of fuzzy rules-based forecasters through
application of FCM algorithm can be found in [99]. The approach was evaluated by using data of
certain region of the USA.

In general, the search of rule-based works to forecast electricity led to the conclusion that this
kind of works is scarce. That is, there could be an interesting starting point for those researchers
wanting to develop new algorithms.

Finally, Table 6 summarizes all the methods reviewed in this section, where NP means not
provided (the authors did not compared their approach to any other).

Table 6. Summary on rule-based methods for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[94] Rules MA/Smoothing MAE 1 day 2001–2005 Malaysia
[95] MIMO NP MAPE 1 day 2009 ANEM
[96] Holt/Rules SARMA/ANN MAPE 1 day 2007 UK
[97] Fuzzy rules CM MAPE 1 day 2002–2005 EEE
[98] Fuzzy rules NP MRE 1 day 2013 India
[99] Fuzzy rules Holt/ARIMA MSE/MAPE 1 day 2005 Brazil

7. Wavelet Transform Methods

7.1. Fundamentals

All the methods described are applied in the time domain. However, time series can also be
analyzed in the frequency domain by means of several techniques. Fourier transform—and different
Fourier-related transforms such as short-time Fourier transform (STFT), fast Fourier transform (FFT)
or discrete Fourier transform—is the most widely used tool to extract the spectral components from
temporal data. However, there is another technique derived from this analysis which is more suitable
to time series analysis in the frequency domain: the wavelet transform.

There are two different types of wavelet transforms. The discrete wavelet transform (DWT)
performance is similar to that of low and high-pass filters, since it divides the time series in high and
low frequencies. On the other hand, the continuous wavelet transform (CWT) works as if it was a
band-pass filter, isolating just the frequency band of interest. Although both strategies can be used to
perform spectral analysis, only the CWT is going to be described in this Section because it is much
more useful—and, consequently, used—in time series analysis. DWT is usually used in data that
present great variations and discontinuities, which is not the case of time series that frequently as
modeled by smooth variations.

Hence, the CWT is a convolution of a time series and the wavelet function [100]. That is, the time
series is filtered by a function that plays the same role of the window in the STFT. Nevertheless, in
wavelet transform this window has a variable length according to the frequency band to be studied.
Formally, the N points-CWT of a time series xn, sampled each ∆t units of time, is defined as the
convolution of such series with an extended and delayed wavelet function Ψ(t):

CWTx(n, s) =
1√

s

N−1

∑
n′=0

xn′Ψ
∗
(

n′ − n
s

∆t

)
with n = 0 . . . N − 1 (37)
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As this product has to be done N times for the scale s considered, if N is too large it is faster
to estimate the result by using the FFT than by means of the definition. From the convolution
theorem [101], the CWT can be obtained from the inverse fast Fourier transform (IFFT) of time series
and the wavelet’s direct transform:

CWTx(n, s) = IFFT

(
1√

s
FFT(x(n, ∆t)FFT(Ψ(n, ∆t, s)

)
(38)

Since s is the single parameter from which the transform depends on, the estimation of the CWT
can be carried out by means of FFT algorithms for each scale as well as simultaneously for all the
points forming the series.

7.2. Related Work

Conejo et al. [102] proposed a new approach to predict day-ahead electricity prices based on
the wavelet transform and ARIMA models. Thus, they decomposed the time series in a set of
better-behaved constitutive series by applying the wavelet transform. Then, the future values of
these new series were forecast using ARIMA models, with a prior application of the inverse wavelet
transform. This approach improved former strategies that they had also published [103–105].

Aggarwal et al. [106] also forecasted electricity prices. For this purpose, they divided each
day into segments and they applied a multiple linear regression (MLR) to the original series or
the constitutive series obtained by the wavelet transform depending on the segment. Moreover, the
regression model used different input variables for each segment.

Pindoriya et al. [107] proposed an adaptive wavelet-based neural network (AWNN) for
short-term electricity price time series forecasting for Spanish and California markets. As for the
neural network, the output of the hidden layer neurons was based on wavelets that adapted their
shape to training data. The authors concluded that their approach converged with higher rate and
outperformed in the forecasting the electricity prices compared to other methods due to the ability
for modeling the non-stationary and high frequency signals. The target market was PJM.

An approach based on non-decimated multilevel wavelet (ML-WL) transform, combined with
feature selection and machine learning prediction algorithm was presented in [108]. The feature
selection integrated autocorrelation and ranking-based methods. The method was applied to
Australian electricity data, outperforming exponential smoothing with single and double seasonality,
the industry model and all other baselines.

A methodology to forecast normal and spike prices was proposed in [109]. Normal price module
was forecasted as a mixture of wavelet transform, ARIMA and ANN models. Price spike occurrences
were generated by a three classifiers ensemble. The forecasting accuracy of the proposed method is
evaluated with real data from Finland energy market.

The work presented in [110] used Local Linear Wavelet Neural Network (LLWNN) trained by a
special adaptive version of the PSO algorithm, with parallel implementation. Experiments for short
term load and price forecasting were conducted for Greece and the USA energy markets and were
compared to a classic PSO algorithm.

Finally, Table 7 summarizes all the methods reviewed in this section, where WL stands
for wavelets.

Table 7. Summary on wavelets for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[102] WL-ARIMA ARIMA MRE 1 day 2002 OMEL
[106] WL-MLR GARCH RMSE/MAPE 1 day 2003–2005 ANEM
[107] AWNN ANN/MLP/RBF MAPE/MSE 1 day 2002/2004 OMEL/PJM
[108] ML-WL-FS Smoothing MSE 1 day 2010 ANEM
[109] WL-ARIMA-ANN ARIMA MAPE 1 day 2010 Finland
[110] LLWNN PSO RMSE/MAPE 1 day 2012 Greece/NYISO
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8. Other Models

Despite of the vast description of methods provided in prior sections, some authors proposed
new forecasting approaches that cannot be classified into any of the aforementioned categories. For
this reason, this section is describe to introduce all these works.

Hence, transfer functions models (TFM)—known as dynamic econometric models in the
economics literature—based on past electricity prices and demand were proposed to forecast
day-ahead electricity prices by Nogales et al. in [111], but the prices of all 24 h of the previous day
were not known. They used the median as measure due to the presence of outliers and they stated
that the model in which the demand was considered presented better forecasts.

The authors in [112] focussed on the one year-ahead electricity demand prediction for winter
seasons by defining a new Bayesian hierarchical model (BH). They provided the marginal posterior
distributions of demand peaks. The results for one year-ahead were compared to those of the National
Grid Trasc (NGT) group in the United Kingdom.

A fuzzy inference system (FIS)—adopted due to its transparency and interpretability—combined
with traditional time series methods was proposed for day-ahead electricity price forecasting [113].

A novel non-parametric model using the manifold learning (MFL) methodology was proposed
in [114] in order to predict electricity price time series. For this purpose, the authors used cluster
analysis based on the embedded manifold of the original dataset. To be precise, they applied
manifold-based dimensionality reduction to curve modeling, showing that the day-ahead curve can
be represented by a low-dimensional manifold.

Another different proposal can be found in [115], where a forecasting algorithm based on Grey
Models was introduced to predict the load of Shanghai. In the Grey model the original data series was
transformed to reduce the noise of the data series and the accuracy was improved by using Markov
chains techniques.

The use of clustering as an initial step to forecast electrical time series has been used. For instance,
the authors in [116,117] evaluated the performance of both K-means and Fuzzy C-Means in detecting
patterns in the Spanish market. Later, these patterns were used to transform the time series into
a sequence of labels showing the benefits of using this information as previous step in time series
forecasting [118]. Finally, an extended and improved approach, PSF, was introduced in [119], where
New York, Australian and Spanish electricity and demand time series were successfully forecasted,
showing remarkable performance compared to classical methods. The same method was adapted to
forecast outliers (o-PSF) for the same markets in [120].

A method using a principal component analysis (PCA) network was introduced in [121] to
forecast day-ahead prices. The PCA network extracts essential features from periodic information
in the market. Later, these features are used as inputs in a multilayer feedforward network. PJM
market was used to test the proposed method and the results compared to ARIMA models.

Finally, Table 8 summarizes all the methods reviewed in this section.

Table 8. Summary on other models for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[111] TFM ARIMA RMSE/MAPE 1 day 2003 PJM
[112] BH NGT RMSE 1 year 2002/03 UK
[113] FIS ARMA/GARCH RMSE/MAPE 1 day 2003/04 PJM
[114] MFL ARIMA/Holt MSE up to 1 month 2010 NYISO
[115] Grey-Markov Grey MRE 1 day 2005/06 Shangai
[119] PSF 5+ methods MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[120] o-PSF 5+ methods MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[121] PCA ANN MAE 1 day 2008 PJM
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9. Ensemble Models

Recently, ensemble models are beginning to receive attention from the research community due
to the good performance obtained for classification problems [122,123]. In general, ensemble models
consists in combining different models in order to improve the accuracy of the individual models. In
most of works, the combination is usually based on a system of majority votes (bagging) or weighted
majority votes (boosting).

In the last years, ensemble techniques have been also applied to the prediction of energy time
series. Fan et al. [124] proposed a machine learning model based on Bayesian Clustering by Dynamics
(BCD) and SVM. First, Bayesian clustering techniques were used to split the input data into 24 subsets.
Then, SVM methods were applied to each subset to obtain the forecasts of the hourly electricity load
for the city of New York.

The work in [125] introduced a price forecasting method based on wavelet transform combined
with ARIMA and GARCH models. The method was assessed on Spanish and PJM electricity markets
and compared to some other forecasting methods.

An ensemble of RBF neural networks for short-term load forecasting in seven buildings from
Italy can be found in [126]. The main novelty of this work is the introduction of a new term in the
objective function to minimize the correlation between the error of a network with the errors of the
rest of networks of the ensemble. In this case, the results were compared to SARIMA, which proved
to be more competitive in most of the buildings.

An ensemble of ELM was presented in [127] to short-term load forecasting of Australian
electricity market. Both the weights of the input layer and the number of nodes in hidden layer
for each ELM were randomly set. The median of the outputs generated for each ELM was the final
prediction. The results reported an error of 1.82% for the year 2010 versus 2.89%, 2.93%, and 2.86%
obtained by a single ELM, a back-propagation ANN and a RBF neural network, respectively.

Many ensembles of ANN have been recently published in the literature with the purpose of
electricity prices or load forecasting. In fact, most of the proposed ensemble techniques for regression
tasks have been ensembles of ANN. For instance, the authors in [128] proposed the hybrid method
PSF-NN, which combines pattern sequence similarity with neural networks. The results show that
the use of ensemble of NNs instead of a single NN in the NN component of the PSF-NN prediction
method is beneficial considering that it produces better accuracy at acceptable computational cost.

Another ensemble based on PSF was introduced in [129]. In this case, five forecasting models
using different clustering techniques: K-means, SOM, Hierarchical Clustering, K-medoids model,
and Fuzzy C-means were used. The ensemble model was implemented with an iterative prediction
procedure. The method was applied to New York, Australia and Spain markets, and the results
compared to those of the original PSF algorithm.

The performance of an ensemble of ANN was compared with a Seasonal Autoregressive
Integrated Moving Average (SARIMA) model, a Seasonal Autoregressive Moving Average (SARMA),
a Random Forest, a Double Exponential Smoothing and Multiple Regression in [130], providing the
best results. The ANNs composing of the ensemble were trained with different subsets provided by
a previous clustering.

An ensemble was proposed in [131] to predict the load in California for the next day. The
authors used a reference forecast made by the system operator as input variable of the proposed
method, and this prediction was improved by means of two Box-Jenkins time series models. Then,
the forecasts provided by these two models were combined to obtain the final prediction. The weights
of the combination were optimized by means of least square method, and moreover, the authors built
different ensembles considering global weights or weights depending on the hour or the day.

Finally, Table 9 summarizes all the methods reviewed in this section.
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Table 9. Summary on ensembles for electricity forecasting.

Reference Technique Outperforms Metrics Horizon Year Market

[124] BCD+SVM SVR MAPE 1 day 2001–2003 NYISO
[125] WL+GARCH 5+ models RMSE/MAPE 1 day 2002 OMEL/PJM
[126] ANN SARIMA MSE/MAE/MAPE 1 day 2010 Italy
[127] ELM ANN/RBF MAE/MAPE 1 day 2010 ANEM
[128] PSF+ANN 5+ models MAE/MAPE 1 day 2010 ANEM
[129] PSF+Clust PSF MRE/MAPE 1 day 2006 NYISO/ANEM/OMEL
[130] ANN SARIMA MAPE 1 day 2012 C & I
[131] ARIMA 5+ models RMSE/MAE/MAPE 1 day 2013 CAISO/ERCOT

10. Conclusions

It is expected that this work serve as initial guide for those researchers interested in time
series forecasting and, in particular, in forecasting based on data mining approaches. Thus, a brief
but rigorous mathematical description of the main existing data mining techniques that have been
applied to forecast time series is reported. Due to the wide variety of application of such techniques,
one case study has been selected: The analysis of energy-related time series (electricity price and
demand). The large amount of works carried out during the last decade in this topic highlights
the strengths that data mining had already exhibit in other fields. With reference to the type of
prediction, it can be concluded that almost all methods use a horizon of prediction equals to one
day. There are few works forecasting recent years since, for comparative purposes, they prefer to
use older data. Moreover, there are several techniques that have been rarely used so far in this
research areas: nearest-neighbors and genetic programming. This fact suggests that much work is
still remaining for such models. On the contrary, ANN and SVM have been extensively used for
this forecasting task. Linear models are still being used, but mainly to be used as baselines, since
most of the data mining approaches outperform them in terms of accuracy. Wavelets and rule-based
methods are mainly used in hybrid approaches and are causing significative accuracy improvement
when properly combined. The accuracy measures mainly used are MAPE and RMSE. Finally, the
current trend in electricity forecasting points to the development of ensembles, thus highlighting
single strengths of every method.
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