Supplementary Materials

The freezing points of sodium tetraethylenepentamine heptaacetate (STPH) solutions and de-ionized water (DI water) were measured using a self-assembled system as described in our previous work [1]. The osmotic pressure (π) was then calculated based on the reduced temperature value (ΔT) of the STPH solution as compared to that of DI according to Equation (S1).

$$\pi = \frac{\Delta T}{1.86} \times 22.66 \text{ (bar)}$$
 (S1)

Relative Viscosity Measurement of the Draw Solution

Relative viscosities (η_R) of draw solutions were determined by Equation (S2) using a commercial Ubbelohde viscometer (d = 0.4–0.5 mm) at 25 °C maintained by a water bath during test process. The detailed process was also described elsewhere [1,2].

$$\eta_{R} = \frac{t_{T} \,\rho_{T}}{t_{DI} \,\rho_{DI}} \tag{S2}$$

where t_T and t_{DI} (s) were the respective outflow time of the draw solution and DI water, while ρ_T and ρ_{DI} (g/mL) were their solution densities measured by a portable density meter (KEM DA-130N, Tokyo, Japan).

Forward Osmosis (FO) Performance Evaluation

The water flux, J_w (L/m² h, referenced to as LMH), was obtained by the weight change of draw solution, Δm (g), during a test time interval, Δt (h), using Equation (S3). The reverse salt flux, J_R (g/m² h, referenced to as gMH), was calculated from the changes of the feed solution concentration, C (mg/L), measured by a conductivity meter (Mettler toledo, FE30, Shanghai, China), and its volume, V (L), using Equation (S4).

$$J_w = \frac{\Delta m}{\rho A \Delta t} \tag{S3}$$

$$J_R = \frac{\Delta(CV)}{A\Delta t} \tag{S4}$$

where A is the effective membrane area (m^2), and ρ is the density of pure water (0.996 g/cm³ at 25 °C).

Nanofiltration (NF) Performance Evaluation

The water flux in nanofiltration (NF) process was also calculated by Equation (S3) with an upstream pressure of 3.5 bar, while the solute rejection (*R*) was obtained by Equation (S5).

$$R = \left(1 - \frac{C_{\rm p}}{C_{\rm T}}\right) \times 100\% \tag{S5}$$

where C_p (mg/L) and C_T (mg/L) are the solute concentrations in the permeate water and the diluted draw solutions, respectively.

References

- 1. Long, Q.; Qi, G.; Wang, Y. Synthesis and application of ethylenediamine tetrapropionic salt as a novel draw solute for forward osmosis application. *AIChE J.* **2015**, *61*, 1309–1321.
- Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive Magnetic Nanoparticles for Seawater Desalination. ACS Appl. Mater. Interfaces 2013, 5, 11453–11461.