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Abstract: The maximum power point tracking (MPPT) of photovoltaic systems must be as fast and
accurate as possible to increase the power production, which eventually increases the PV system
profitability. This paper proposes and mathematically analyses a sliding-mode controller to provide
a fast and accurate maximum power point tracking in grid-connected photovoltaic systems using a
single control stage. This approach avoids the circular dependency in the design of classical cascade
controllers used to optimize the photovoltaic system operation, and at the same time, it reduces
the number of controllers and avoids the use of linearized models to provide global stability in all
the operation range. Such a compact solution also reduces the system cost and implementation
complexity. To ensure the stability of the proposed solution, detailed mathematical analyses
are performed to demonstrate the fulfillment of the transversality, reachability and equivalent
control conditions. Finally, the performance of the proposed solution is validated using detailed
simulations, executed in the power electronics simulator PSIM, accounting for both environmental
and load perturbations.

Keywords: DC/DC converter; maximum power point tracking (MPPT); photovoltaic systems;
sliding mode control; grid-connection

1. Introduction

The world energy demand is projected to more than double by 2050, and more than triple by the
end of the century [1]. Incremental improvements in existing energy networks will not be adequate
to supply this demand in a sustainable way. Hence, it is necessary to find sources of clean energy
with a wide distribution around the world. The energy generation with photovoltaic (PV) systems is
inexhaustible, hence it is a suitable candidate for a long-term, reliable and environmentally friendly
source of electricity. However, PV systems require specialized control algorithms to guarantee the
extraction of the maximum power available, otherwise the system could be unsustainable.

The PV generator, also known as PV array, produces DC power that depends on the
environmental conditions and operating point imposed by the load. To provide a high power
production, the PV system includes a DC/DC converter to isolate the operating point of the generator
(voltage and current) from the load, where such a power converter is regulated by an algorithm
that searches, online, the maximum power point (MPP, i.e., the optimal operation condition) known
as Maximum Power Point Tracking (MPPT) algorithm. The classical structure of a grid-connected
photovoltaic system is presented in Figure 1, in which the PV generator interacts with a DC/DC
converter controlled by a MPPT algorithm [2,3]. Such a structure enables the PV system to modify
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the operation conditions in agreement with the environmental circumstances (mainly changed by
the irradiance and temperature) so that a maximum power production is achieved [4,5]. Figure 1
also illustrates the gird-connection side of the PV system, which is formed by a DC-link (capacitor
Cb) and a DC/AC converter (inverter). The inverter is controlled to follow a required power factor,
provide synchronization and protect against islanding, among others. Moreover, the inverter must
to regulate the DC-link voltage at the bulk capacitor Cb, where two cases are possible: first, the
inverter regulates the DC component of Cb voltage, but due to the sinusoidal power injection into
the grid, Cb voltage experiments a sinusoidal perturbation at twice the grid frequency and with a
magnitude inversely proportional to the capacitance [3]. In the second case, the DC component of
Cb voltage is not properly regulated, which produces multiple harmonic components with amplitude
inversely proportional to the capacitance [3]. In both cases, the DC/DC converter output terminals
are exposed to voltage perturbations that could be transferred to the PV generator terminals, thus
degrading the MPP tracking process. Concerning the DC/DC power converter, the boost topology is
the most widely used due to the low voltage levels exhibited by commercial PV modules [6].
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Figure 1. Typical structure of a photovoltaic (PV) system.

Multiple types of MPPT solutions are reported in the literature, which differ in complexity,
number of sensors needed for operation, convergence speed, cost-effective range, etc. [7]. Two of
the most commonly used MPPT techniques are Perturb and Observe (P & O) and Incremental
Conductance (IC); the reason for this popularity is its implementation simplicity and its relatively
good performance [4,8]. Other MPPT techniques are based on using fractional values of the open
circuit voltage and short circuit current, i.e., the Fractional Open Circuit Voltage and the Fractional
Short-Circuit Current. The main advantages of those solutions are the low cost and implementation
simplicity since they only require a single (voltage or current) sensor [9,10]; But their efficiency is
low compared with the P & O and IC algorithms. In contrasts, techniques based on computational
intelligence, such as neural networks and fuzzy logic, offer speed and efficiency in tracking the
MPP [11–13]; however its complexity and implementation costs are high compared with the P & O
and IC algorithms, which make them costly solutions.

The main problem of using traditional MPPT algorithms acting on the duty cycle of the DC/DC
converter associated to the PV generator, i.e., Figure 1, concerns the large disturbances caused by
irradiance transients in the system operating point, which generates a slow tracking of the MPP.
This condition is also present at the system start-up, in which the MPPT algorithm takes a large
amount of time to reach the MPP [3]. To mitigate such disturbances and speed-up the MPPT
procedure, a two-stage control structure is usually adopted: it generally involves an algorithmic
MPPT controller in cascade with a conventional voltage regulator (e.g., based on lineal or nonlinear
control) as depicted in Figure 2. Moreover, such a structure is also needed to increase the reliability
of double-stage grid-connected PV systems: the sinusoidal oscillation on the DC-link caused by the
inverter operation must be mitigated, otherwise the MPPT procedure could be inefficient as reported
in [3]. Such mitigation is traditionally performed by using large electrolytic capacitors for Cb, however
the electrolytic technology introduces reliability problems due to its high failure rate [14]. Then, the
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voltage regulator in Figure 2 enables to mitigate the voltage oscillations in the DC-link produced by
small non-electrolytic capacitors, thus improving the system reliability [3,14].

Energies 2015, 8 3 

 

Multiple types of MPPT solutions are reported in the literature, which differ in complexity, number of 

sensors needed for operation, convergence speed, cost-effective range, etc. [7]. Two of the most commonly 

used MPPT techniques are Perturb and Observe (P & O) and Incremental Conductance (IC); the reason for 

this popularity is its implementation simplicity and its relatively good performance [4,8]. Other MPPT 

techniques are based on using fractional values of the open circuit voltage and short circuit current, i.e., the 

Fractional Open Circuit Voltage and the Fractional Short-Circuit Current. The main advantages of those 

solutions are the low cost and implementation simplicity since they only require a single (voltage or 

current) sensor [9,10]; But their efficiency is low compared with the P & O and IC algorithms. In contrasts, 

techniques based on computational intelligence, such as neural networks and fuzzy logic, offer speed and 

efficiency in tracking the MPP [11–13]; however its complexity and implementation costs are high 

compared with the P & O and IC algorithms, which make them costly solutions. 

The main problem of using traditional MPPT algorithms acting on the duty cycle of the DC/DC 

converter associated to the PV generator, i.e., Figure 1, concerns the large disturbances caused by 

irradiance transients in the system operating point, which generates a slow tracking of the MPP. This 

condition is also present at the system start-up, in which the MPPT algorithm takes a large amount of 

time to reach the MPP [3]. To mitigate such disturbances and speed-up the MPPT procedure, a  

two-stage control structure is usually adopted: it generally involves an algorithmic MPPT controller in 

cascade with a conventional voltage regulator (e.g., based on lineal or nonlinear control) as depicted in 

Figure 2. Moreover, such a structure is also needed to increase the reliability of double-stage  

grid-connected PV systems: the sinusoidal oscillation on the DC-link caused by the inverter operation 

must be mitigated, otherwise the MPPT procedure could be inefficient as reported in [3]. Such 

mitigation is traditionally performed by using large electrolytic capacitors for Cb, however the 

electrolytic technology introduces reliability problems due to its high failure rate [14]. Then, the 

voltage regulator in Figure 2 enables to mitigate the voltage oscillations in the DC-link produced by 

small non-electrolytic capacitors, thus improving the system reliability [3,14]. 

 

Figure 2. Structure of a PV system with a classical pulse width modulation (PWM)-based cascade control. 

However, the design process of such a voltage regulator depends on the MPPT parameters, while 

the MPPT controller stability also depends on the cascade controller performance [3]: for example, to 

ensure the stability of a P & O algorithm, its perturbation period must be larger than the settling time 

of the PV voltage, which depends on the system operating point and on the cascade voltage controller. 

However, the voltage controller design requires performance criteria, e.g., the settling time as in [3], 

Figure 2. Structure of a PV system with a classical pulse width modulation (PWM)-based
cascade control.

However, the design process of such a voltage regulator depends on the MPPT parameters, while
the MPPT controller stability also depends on the cascade controller performance [3]: for example, to
ensure the stability of a P & O algorithm, its perturbation period must be larger than the settling time
of the PV voltage, which depends on the system operating point and on the cascade voltage controller.
However, the voltage controller design requires performance criteria, e.g., the settling time as in [3],
which are usually imposed in terms of the P & O parameters. Such a circular dependency in the two
controllers design makes difficult to guarantee both system stability and desired performance in all
the operating conditions.

When the voltage regulator is implemented using conventional linear control techniques it is
necessary to linearize the system model around a given operation point, which is usually the MPP at
some irradiance condition [3]. However, due to the nonlinear nature of the PV module and DC/DC
converter, the performance (and even stability) of the linear controller is limited to the neighborhood
around the MPP [15]. This constraint puts at risk the system performance since the operating
point changes with the unpredictable and unavoidable environmental perturbations. To address this
problem, the work in [16] uses a sliding mode controller (SMC) to regulate the inductor current of
a boost converter associated to the PV module, which enables to guarantee global system stability
at any operating point. The solution proposed in that work considers three controllers in cascade
as follows: the SMC that generates the activation signal for the MOSFET, a PI controller designed
to provide the SMC reference depending on the command provided by a P & O algorithm, which
is in charge of optimizing the power. However, the design of the PI controller requires a linearized
model of the system around the MPP, hence it cannot guarantee the same performance in all the range
of operation. In fact, a wrong design of such a PI controller could make the P & O unstable, hence
both PI and P & O controllers have a circular dependency on their parameters. Similarly, the work
in [17] uses a SMC to regulate the input capacitor current of the boost converter. This solution has
a major advantage over the work reported in [16]: the solution in [17] does not require a linearized
model since the transfer function between the capacitor current and voltage is linear and it does not
depend on the irradiance or temperature conditions. Therefore, such a solution is able to guarantee
the desired performance in all the operating range. However, as in the previous work, the three
controllers are designed separately, which makes difficult to perform the system design: again, a
wrong P & O perturbation period could lead to an unstable system operation.

To avoid the circular dependency between voltage controllers and MPPT algorithms, a single
controller in charge of both MPPT and voltage control operations is required. This problem has
been addressed in [18–21] by using the sliding mode control technique. However, those works
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are based on two considerations difficult to apply to grid-connected PV systems: First, there is not
considered a capacitor linking the PV array and the DC/DC converter; second, the load impedance
is considered constant.

Regarding the first consideration, PV systems commonly consider a capacitor between the PV
source and the DC/DC converter to stabilize the PV voltage, which in turns stabilizes the power
produced, otherwise the current ripple at the DC/DC converter input will produce undesired
oscillations that will degrade the MPPT procedure. The worst case of that current ripple is exhibited
by DC/DC converters with discontinuous input current, e.g., buck or buck-boost topologies, while
DC/DC converters with continuous input current only inject the inductor current ripple, e.g., boost,
Sepic or Cuk topologies. In any case, a capacitor in parallel with the PV source is almost always
considered; in fact, the experimental scheme of [21] includes such a capacitor despite it is not taken
into account for the SMC analysis. It must be noted that this capacitor defines the dynamic behavior
of the PV voltage and power, therefore it must be considered in the PV controller design.

Regarding the second consideration, which assumes constant the load impedance, it is not
applicable to grid-connected inverters since, as reported in [22], such inverters are controlled to
provide a constant average value in the DC-link, with sinusoidal oscillations at twice the grid
frequency due to the injection of single-phase AC power. Therefore, the best representation of such a
load (from the DC/DC converter side) is a voltage source and not a constant impedance. This model
will be further justified in Section 2. Therefore, in the design of a PV controller for grid-connected
applications it is desirable to account for loads with non-constant impedance.

Other interesting sliding-mode controller for PV systems is presented in [23], it considering a
buck converter. Despite this work considers the capacitor linking the PV source and the power stage,
it is not applicable to grid-connected PV systems since the DC/DC converter provides an output
voltage lower than the one provided by the PV source. Such a condition is incompatible with the
high input-voltage required by classical buck inverters for grid-connection [22,24]. Moreover, this
work also assumes constant the load impedance, and it does not analyze the switching frequency,
which is an important parameter for implementation.

On the basis of those previous works and considerations, this paper presents the analysis and
design of a SMC aimed at performing a fast MPPT action on grid-connected PV systems using a single
control stage. This approach avoids the circular dependency among cascade controllers, reduces the
number of controllers and avoids the use of linearized models to provide global stability in all the
operation range. In such a way, even the use of a PWM is not needed. Such a compact design also
reduces the system cost and complexity.

The paper is organized as follows: Section 2 presents the non-linear mathematical model
representing the PV system, then Section 3 introduces the proposed sliding surface and the controller
structure. Section 4 presents the mathematical analysis of the transversality, reachability and
equivalent control conditions to demonstrate the global stability of the proposed controller. Finally,
Section 5 illustrates the performance of the proposed solution using detailed simulations executed in
a standard power electronics simulator. The conclusions close the paper.

2. System Model

A simplified circuital scheme of the PV system is presented in the Figure 3, which considers
a boost converter due to the widely adoption of such a step-up DC/DC structure in PV systems,
however the analysis presented in this paper can be extended to other DC/DC topologies.
The scheme includes a voltage source as the system load, this to model the DC-link of double-stage
structures in commercial PV inverters, in which the DC/AC stage regulates the DC-link voltage
(Cb capacitor voltage) [25]. This voltage source model is widely used to represent the closed-loop
grid-connected inverters due to its satisfactory relation between accuracy and simplicity, which is
confirmed in references [3,17,25–29].
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The scheme considers the SMC acting directly on the MOSFET by means of the signal u, which
is a discontinuous variable. Hence, no linearization or PWM are needed. This condition reduces the
implementation cost, and circuit complexity, in comparison with SMC solutions implemented with
PWM circuits, e.g., [21].Energies 2015, 8 6 
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The dynamic behavior of the DC/DC converter is modeled by the switched Equations (1) and
(2) [30], where iL represents the inductor current, vpv is the PV voltage, ipv represents the PV module
current, vb is the load voltage and L and Cin represent the inductor and capacitor values:

diL
dt
“

vpv ´ vb p1´ uq
L

(1)

dvpv

dt
“

ipv ´ iL

Cin
(2)

The current of the PV module is modeled with the simplified single diode model [17] given in
Equation (3). In such a model isc represented the short-circuit current that is almost proportional
to the irradiance [17], B is the diode saturation current and A represents the inverse of the
thermal voltage that depends on the temperature [25]. Such a model parameters are calculated
as A “ istc.exp p´Bstc.vocq, B “

Bstc
1`av .pTpv´Tstcq

and Bstc “
lnp1´iMPP{istcq
pvMPP´vocq

, where istc and Tstc

are the short-circuit current and temperature of the module under standard test conditions (STC),
respectively. voc represents the open-circuit voltage, while vMPP and iMPP correspond to the PV
voltage and current, respectively, at the MPP for the given operating conditions. Finally, av is the
voltage temperature coefficient [31]:

ipv “ isc ´ B
´

eAvpv ´ 1
¯

(3)

In conclusion, the non-linear equations system formed by Equations (1)–(3) describes the PV
system dynamic behavior in any operation condition.

3. Sliding Surface and Controller Structure

The non-linear relation between the PV current and voltage, given in Equation (3), produces
a non-linear relation between the PV power and voltage (or current), which exhibits a maximum as
depicted in Figure 4. In such a maximum, i.e., the MPP, the derivative of the power with respect to the
voltage (or current) is zero as given in Equation (4). Therefore, the sliding-mode controllers proposed
in [18–21,23] are based on Equation (4). In a similar way, this paper proposes a sliding surface based
on Equation (4):

dppv

dvpv
“ 0 and

dppv

dipv
“ 0 (4)
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Figure 4. Power curves of a PV module.

Taking into account that ppv = vpv. ipv, the following relation holds at the MPP:

dppv

dipv
“

d
dipv

`

vpv.ipv
˘

“ vpv ` ipv
dvpv

dipv
“ 0 (5)

Then, the following relation defines the maximum power condition, i.e., at the MPP:

dvpv

dipv
`

vpv

ipv
“ 0 for vpv “ vMPP and ipv “ iMPP (6)

To correlate the MPP condition Equation (4) with the time-varying signals of the DC/DC
converter, the condition in Equation (6) is expressed in terms of the time derivatives of both the PV
voltage and current, obtaining expression Equation (7):

dvpv{dt
dipv{dt

`
vpv

ipv
“ 0 for vpv “ vMPP and ipv “ iMPP (7)

From such an expression, the proposed switching function Ψ and sliding surface Φ, given in
Equation (8), are defined:

Ψ “
dvpv{dt
dipv{dt

`
vpv

ipv
^ Φ “ tΨ “ 0u (8)

Then, the state-space model of both the PV system and SMC is formed by the simultaneous
Equations (1)–(3) and (8). The relations within such a state-space model are illustrated in the block
diagram of Figure 5, which put in evidence the signals processing and variables exchanged between
the PV system and the SMC: the PV system disturbances are the short-circuit current (defined by the
irradiance and temperature) and the load voltage; the control signal u is generated by the SMC on the
basis of the PV current and voltage; and the SMC derives both the PV voltage and current to construct
the switching function. Finally, the SMC includes a comparator to implement the sign function that
triggers the changes on the signal u. The design of such a comparator is described in the following
section in terms of the transversality and reachability conditions.
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4. Analysis of the Sliding-Mode Controller

The SMC must fulfill three conditions to guarantee stability and a satisfactory performance:
transversality, reachability and equivalent control [32]. The transversality analyses the controllability
of the system, the reachability analyses the ability of the closed-loop system to reach the surface, and
the equivalent control grants local stability.

Those conditions grant the existence of the sliding-mode, which also imposes the conditions
defined in Equation (9) [33]:

Ψ “ 0 ^
dΨ
dt
“ 0 (9)

Such expressions provide information concerning the surface and its derivative. In that way, the
derivate of the switching function is given in Equation (10):

dΨ
dt
“

d2vpv

d2t
ipv `

d2ipv

d2t
vpv ` 2

ˆ

dvpv

dt
˚

dipv

dt

˙

(10)

To analyze expression Equation (10) it is required to also derive expressions Equations (2) and
(3), it leading to expressions Equations (11)–(13), which are components of Equation (10):

d2vpv

d2t
“

1
Cin

ˆ

disc

dt
´ BA

dvpv

dt
eAvpv ´

diL
dt

˙

(11)

d ipv

dt
“

disc

dt
´ BA

dvpv

dt
eAvpv (12)

d2 ipv

d2t
“

d2isc

d2t
´ BA

d2vpv

d2t
eAvpv ´ BA2

ˆ

dvpv

dt

˙2

eAvpv (13)

Then, the small-signal admittance of the PV module y “ ´BAeAvpv is introduced into the
previous equations to provide more compact expressions:

d2vpv

d2t
“

1
Cin

ˆ

disc

dt
` y

dvpv

dt
´

diL
dt

˙

(14)
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d ipv

dt
“

disc

dt
` y

dvpv

dt
(15)

d2 ipv

d2t
“

d2isc

d2t
` y

d2vpv

d2t
` Ay

ˆ

dvpv

dt

˙2

(16)

Replacing Equations (1) and (14)–(16) into Equation (10), and performing some mathematical
manipulations, the following expression for the switching function derivate is obtained:

dΨ
dt “

disc
dt

´

ipv`y vpv
Cin

¯

´
vpv´vbp1´uq

L

´

ipv`y vpv
Cin

¯

`
dvpv

dt

´

y
´

ipv`y vpv
Cin

¯

` yAvpv
dvpv

dt ` 2 disc
dt ` 2y dvpv

dt

¯

` vpv
d2isc
d2t

(17)

This new expression is used to analyze the transversality, reachability and equivalent control
conditions in the following subsections.

4.1. Transversality Condition

To ensure the ability of the controller to act on the system dynamics, the transversality condition
given in Equation (18) should be granted [33]:

d
du

ˆ

dΨ
dt

˙

‰ 0 (18)

Deriving Equation (17) with respect to the signal u leads to expression Equation (19):

d
du

ˆ

dΨ
dt

˙

“ ´
vb
L

ˆ

ipv ` y vpv

Cin

˙

(19)

The analysis of Equation (19) requires to review the condition in which the MPP occurs: taking
into account that ppv = vpv ¨ ipv, condition Equation (4) corresponds to expression Equation (20).
Therefore, expressions Equations (18) and (19) lead to the transversality condition Equation (21):

dppv

dvpv
“ vpv¨

´

´BAeAvpv
¯

` ipv “ vpv.y` ipv “ 0 (20)

d
du

ˆ

dΨ
dt

˙

‰ 0 i f vpv ‰ vMPP (21)

Figure 6 shows the simulation of Equation (19) considering the following conditions: a BP585 PV
module with parameters B = 0.894 µF and A = 0.703 V´1, and a DC/DC converter with L = 100 µH,
Cin = 44 µF and vb = 24 V. The simulation illustrates the transversality condition provided by
Equation (21):

‚ At the left of the MPP (voltages lower than vMPP) the transversality condition is fulfilled, hence
the SMC is able to act on the PV system to drive it towards the MPP.

‚ At the right of the MPP (voltages higher than vMPP) the transversality condition is also fulfilled.
‚ At the MPP (vpv = vMPP) the transversality condition is not fulfilled. This is not a problem

because the PV system is already at the MPP. Moreover, if the system diverges from the MPP
the transversality condition is fulfilled.
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Figure 6. Simulation of the transversality condition.

The previous conditions impose a behavior similar to the classical hysteresis implementation
of the SMC for DC/DC converters: the system oscillates around the surface forming a hysteretic
trajectory. In the following subsections it will be demonstrated that such hysteresis band is imposed
by the peak-to-peak amplitude of the voltage ripple at the PV module terminals.

4.2. Equivalent Control Condition

The equivalent control condition analyzes the ability of the system to remain trapped inside
the surface [31,32]. This condition is analyzed in terms of the equivalent analog value ueq of the
discontinuous control signal u: if such an equivalent value is constrained within the operational
limits the system will not be saturated and its operation inside the surface is possible. Since the
control signal u corresponds to the MOSFET activation signal, its operational limits are 0 and 1.
Moreover, since the analysis considers the system inside the surface, the condition dΨ

dt “ 0 holds.
Then, matching expression Equation (17) to zero, and replacing u = ueq, enables to obtain the ueq

value given in Equation (22):

ueq “ 1´ vpv
vb
` 1

vb

disc
dt `

y
vb

dvpv
dt `

Cin
vbpipv`y vpvq

dvpv
dt

˚

´

yAvpv
dvpv

dt ` 2 disc
dt ` 2y dvpv

dt

¯

`
Cinvpv

vbpipv`yvpvq
d2isc
d2t

˙

(22)

Such an expression can be rewritten as Equation (23), where u1 and u2 are given in Equations
(24) and (25), respectively:

ueq “ u1 ` u2 (23)

u1 “ 1´
vpv

vb
(24)

u2 “
1
vb

„

disc

dt
` y

dvpv

dt
`

Cin
ipv ` y vpv

dvpv

dt

ˆ

yAvpv
dvpv

dt
` 2

disc

dt
` 2y

dvpv

dt

˙

`
Cinvpv

ipv ` y vpv

d2isc

d2t



(25)
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The analysis of Equation (23) must be addressed by writing the derivative of Equation (8) in a
different way as given in Equation (26):

dΨ
dt
“

ipv
2
ˆ

d2vpv
d2t

dipv
dt ´

d2ipv
d2t

dvpv
dt

˙

`

´

dipv
dt

¯2 ´

dvpv
dt ipv ´

dipv
dt .vpv

¯

ipv
2
˚

´

dipv
dt

¯2 (26)

Since the solar irradiance does not exhibit fast changes in comparison with the switching
frequency of the converter, it is assumed constant ( disc

dt “ 0) to simplify the analysis of Equations
(17), (25) and (26), obtaining the simplified expressions Equations (27) and (28), respectively:

dΨ
dt
“

dvpv

dt

˜

ipv
`

y´ ipv A
˘

´ y2vpv

y ˚ ipv

¸

(27)

u2 “
y
vb

dvpv

dt

ˆ

1`
Cin

ipv ` y vpv

dvpv

dt
`

Avpv ` 2
˘

˙

(28)

Taking into account that ipv “ 0 is a realistic condition since ipv = 0 does not occur at any MPP,

the sliding-mode condition dΨ
dt “ 0 is reached in Equation (27) for dvpv

dt “ 0. Then, replacing those

conditions dvpv
dt “ 0 and ipv “ 0 into Equation (28) leads to u2 = 0.

Therefore, at low irradiance derivatives, expression Equation (23) for ueq is approximately
equal to u1. To evaluate the validity of such an approximation, ueq from Equation (23) was
simulated at different irradiance derivatives and contrasted with u1 from Equation (24): the first test
considers a change from the highest irradiance possible on earth to a complete shade in 1 second,
i.e., 1 sun per second or dS/dt = 1 kW/(m2 ¨ s). The second test considers a derivative of
10 suns per s (dS/dt = 10 kW/(m2 ¨ s)), and the third test considers a derivative of 100 suns per s
(dS/dt = 100 kW/(m2 ¨ s)), which is very large. The tests results are presented in the Table 1, where it
is observed that the error generated by assuming ueq « u1 is less than 1% for the case with the largest
derivative, while the errors for the other cases are less than 0.1% and 0.01%.

Table 1. Error presented at different irradiance changes.

dS/dt Error (%) = ((ueq ´ u1)/ueq ˆ 100%

1 kW /(m2. s) 0.0075% < e < 0.008%
10 kW /(m2. s) ´0.0912% < e < 0.04%
100 kW /(m2. s) 0.989% < e < 0.6883%

Thus, the equivalent control analysis is based on expression Equation (29), which does not
introduce a significant error:

ueq « 1´
vpv

vb
(29)

Finally, since the equivalent control condition for a DC/DC converter application is 0 < ueq < 1,
such an expression is analyzed using the ueq value given in Equation (29), which leads to expression
Equation (30):

0 ă 1´
vpv

vb
ă 1 Ñ 0 ă vpv ă vb (30)

The condition in Equation (30) is always fulfilled since the analyzed PV system considers a boost
converter. Therefore, the equivalent control is fulfilled.
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4.3. Reachability Conditions

The reachability conditions analyze the ability of the system to reach the desired condition Ψ = 0.
The work in [32] demonstrated that a system that fulfills the equivalent control condition also fulfills
the reachability conditions. That work also shows that the sign of the transversality condition imposes
the value of u for each reachability condition. A positive value of the transversality condition imposes
the following reachability conditions:

lim
ΨÑ0´

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“1
“

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“1,Ψ“0
ą 0 (31)

lim
ΨÑ0`

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“0
“

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“0,Ψ“0
ă 0 (32)

Instead, a negative value of the transversality condition imposes the following
reachability conditions:

lim
ΨÑ0´

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“0
“

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“0,Ψ“0
ą 0 (33)

lim
ΨÑ0`

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“1
“

dΨ
dt

ˇ

ˇ

ˇ

ˇ

u“1,Ψ“0
ă 0 (34)

Moreover, the reachability conditions define the implementation of the switching law [32].
However, Section 4.1 shows that the transversality condition in this SMC is both positive and negative
depending on the operation condition. In such a way, from Figure 6 it is observed that the voltage
range for negative transversality (vpv < vMPP) is much larger than the voltage range for positive
transversality (vpv > vMPP); therefore the implementation and analysis of the proposed SMC is
performed in such a negative transversality condition, which imposes the following control law:
{Ψ < 0Ñ u = 0 ^ Ψ > 0Ñ u = 1}.

Then, the reachability of the surface is fulfilled in the following conditions: dΨ
dt ă 0 with u = 1

and dΨ
dt ą 0 with u = 0. Moreover, from Equation (27) it is observed that the sign of dΨ

dt is the same

sign of dvpv
dt . Therefore, the analyzed reachability conditions are fulfilled in the following states:

‚ The MOSFET is ON (u = 1) and the voltage is decreasing, i.e., dvpv
dt ă 0.

‚ The MOSFET is OFF (u = 0) and the voltage is increasing, i.e., dvpv
dt ą 0.

It must be noted that a DC/DC converter always exhibits a periodic voltage ripple around an
average value [34]. In fact, the PV voltage corresponds to the voltage at the input capacitor Cin in
Figure 3, which voltage ripple is defined by the second order filter formed by Cin and the inductor L.
From the first differential equation of the DC/DC converter, i.e., Equation (1), it is observed that
the inductor current exhibits an almost triangular waveform as in any other second-order filter;
hence in steady-state the capacitor current has a triangular waveform centered in zero, again as in
any other second order filter [30]. Therefore, the capacitor current increases with the MOSFET OFF
(u = 0). This behavior is observed in the simulation of Figure 7, which includes the proposed SMC
with the control action implemented as u = 1 for Ψ < 0 and u = 0 for Ψ > 0, and adopting the same
electrical parameters previously described in Section 4.1. The implementation of the SMC is described
in Section 5. The simulation also confirms that the capacitor current decreases with the MOSFET ON
(u = 1). Moreover, it is noted that with a constant value for u (u = 0 or u = 1) the capacitor current
exhibits positive, negative and zero values.
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Figure 7. PV system dynamic behavior.

This means that, as reported by the second differential equation of the DC/DC converter, i.e.,
Equation (2), the voltage ripple is a series of quadratic waveforms generated from the integral of
the capacitor current since iCin = ipv ´ iL. In such a way, the PV voltage exhibits positive and
negative derivatives for both states of u as reported in Figure 7. Therefore, since the switching
function derivative has the same sign of the PV voltage derivative, as reported in Equation (27), the
reachability conditions are fulfilled in a fraction of the time intervals in which the MOSFET is in ON
and OFF states, which means that in the other fractions of the time intervals the system diverges from
the surface. Such conditions create a periodic behavior in which the system converges and diverges
to/from the surface.

To illustrate the periodic behavior of the reachability conditions, and the resulting periodic
behavior of the SMC, Figure 8 shows two diagrams: A state flow describing the convergence and
divergence states in Figure 8(a), and the associated time-depending signal of the switching function
in Figure 8(b). For the sake of illustration, the system is considered at the beginning of the analysis
under the surface, i.e., Ψ < 0, and with a negative switching function derivative, i.e., dΨ

dt ă 0, which

corresponds to a negative PV voltage derivative dvpv
dt ă 0 as reported in Equation (27). Due to the

differential equation governing the capacitor Cin
dvpv

dt “ iCin, the condition dΨ
dt ă 0 also corresponds

to a negative input capacitor current, i.e., iCin ă 0. Those initial conditions are observed at the top of
Figure 8(a). Then, due to the control action implemented for the SMC, the control signal is set to u = 0
and the system enters in the first state of operation:

1. Diverge from the MPP: u = 0, Ψ < 0, dΨ
dt ă 0 (iCin ă 0). In this first stage (block 1 in Figure 8(a))

the reachability conditions are not fulfilled, hence the system diverges from the MPP, which
is observed in Figure 8(b). Such a condition is caused by the negative value of the switching
function derivative, which reduces even more the value of Ψ, hence the desired condition Ψ = 0
is not achievable. However, the control action u = 0 forces the increment of iCin, it driving the
system to iCin “ 0 ( dΨ

dt “ 0) and eventually to iCin ą 0 ( dΨ
dt ą 0), which corresponds to the

second stage of the SMC operation.
2. Converge to the MPP: u = 0, Ψ < 0, dΨ

dt ą 0 (iCin ą 0). In this second stage the reachability
condition Equation (33) is fulfilled, hence the system converges to the MPP, which is also
observed in Figure 8(b). In this case, the positive value of the switching function derivative
increases the value of Ψ, it driving the system towards the desired condition Ψ = 0. However,
when the condition Ψ = 0 is reached the switching function derivative is still positive, i.e.,
dΨ
dt ą 0 (iCin ą 0), hence Ψ becomes positive. Moreover, when Ψ ą 0 the SMC imposes u “ 1,

which corresponds to the third stage of the SMC operation.
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3. Diverge from the MPP: u = 1, Ψ ą 0, dΨ
dt ą 0 (iCin ą 0). In this third stage the reachability

conditions are not fulfilled, hence the system diverges from the MPP. Such a condition is caused
by the positive value of the switching function derivative, which increases even more the value
of Ψ, hence the desired condition Ψ “ 0 is not achievable. However, the control action u “ 1
forces the decrement of iCin, it driving the system to iCin “ 0 ( dΨ

dt “ 0) and eventually to iCin ă 0
( dΨ

dt ă 0), which corresponds to the fourth stage of the SMC operation.
4. Converge to the MPP: u “ 1, Ψ ą 0, dΨ

dt ă 0 iCin ă 0). In this fourth stage the reachability
condition Equation (34) is fulfilled, hence the system converges to the MPP. In this case, the
negative value of the switching function derivative decreases the value of Ψ, it driving the
system towards the desired condition Ψ “ 0. However, when the condition Ψ “ 0 is reached
the switching function derivative is still negative, i.e., dΨ

dt ă 0 (iCin ă 0), hence Ψ becomes
negative. Moreover, when Ψ ă 0 the SMC imposes u = 0, which corresponds to the first stage
of the SMC operation.
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Figure 8. Periodic behavior of the reachability conditions. (a) Convergence and divergence conditions;
(b) Hysteretic behavior.

12375



Energies 2015, 8, 12363–12387

The previous four stages of the system operation are continuously repeated, they form a
limit-cycle [35] that imposes a hysteretic behavior to the SMC switching function around the
surface Ψ “ 0. Moreover, from Figure 8 it is noted that the hysteresis band is defined by the condition
dΨ
dt “ 0, which corresponds to dvpv

dt “ 0 and icin “ 0 as reported in Equation (27). This dependency
is depicted in Figure 7, and confirmed by Figure 9, which presents Ψ, dΨ

dt and u generated by the
same simulation producing the signals presented in Figure 7. In addition, Figure 9 also confirms the
limit-cycle of the switching function. Finally, it is noted that the hysteresis band of the SMC is defined
by the voltage ripple at the input capacitor, which can be modified by changing the input capacitance.
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∆
8
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4.4. Switching Frequency

The switching frequency is an important parameter in the operation of DC/DC converters, hence
it must be calculated in order to provide practical guidelines for the SMC implementation.

The switching frequency is calculated from the DC/DC converter differential equations and
ripple magnitudes as reported in [30]. In such a way, in a boost converter the ripple magnitude for
the inductor current and capacitor voltage are given in Equations (35) and (36), respectively, where Ts

represents the switching period, d represents the duty cycle, and Fsw =1/Ts is the switching frequency:

∆iL “
vpv

2L
dTs, d “ 1´

vpv

vb
(35)

∆vpv “
∆iL
8Cin

Ts (36)

Figure 10 presents a simulation of the closed-loop SMC system highlighting the time intervals
in which the MOSFET is turned on (Ton) and turned off (Toff). In such a figure it is observed that
the magnitude of the voltage ripple ∆vpv is mesured from the average PV voltage vpv to the peak
(maximum) voltage vpv´ max as ∆vpv “ vpv´max ´ vpv. Then, approximating the average PV voltage
to the MPP voltage, the voltage ripple magnitude becomes ∆vpv « vpv´max ´ vMPP, where the MPP

voltage is calculated from Equation (20) as vMPP “
LambertWpexpp1qpB`iscqq´1

A using the LambertW
function [36].
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Figure 10. Principle for calculating the switching frequency.

The maximum PV voltage vpv´ max is achieved when dvpv
dt “ 0, which also corresponds to dΨ

dt “ 0
and u = 1 as demonstrated in the previous subsection. Then, replacing those values in Equation (17),
and assuming isc constant, Equation (37) is obtained:

0 “ ´
vpv´max

L

ˆ

ipv ` y vpv´max

Cin

˙

(37)

Finally, replacing expressions Equations (35) and (37) into Equation (36) with vpv « vMPP and
∆vpv « vpv´max ´ vMPP enables to calculate Ton as:

Ton “

g

f

f

f

e

16LCin

ˆ

´
ipv
y

ˇ

ˇ

ˇ

vpv“MPP
´ vMPP

˙

vMPP d
(38)

Similarly, taking into account that the minimum PV voltage vpv´ min is achieved when dvpv
dt “ 0,

dΨ
dt “ 0 and u = 0, the voltage ripple measured from vpv´min to the average PV voltage can be

approximated as ∆vpv « vpv´max´ vMPP. Then, To f f is calculated as in Equation (39), where d1 = 1´d
represents the complementary duty cycle:

To f f “

g

f

f

f

e

16LCin

ˆ

´
ipv
y

ˇ

ˇ

ˇ

vpv“MPP
´ vMPP

˙

vMPP d1
(39)

Finally, the switching frequency imposed by the SMC is given in Equation (40). In such an
expression the duty cycle is evaluated as reported in Equation (35):

Fsw “
1

Ton ` To f f
“

1
d

16LCin

ˆ

´
ipv
y

ˇ

ˇ

ˇ

vpv“MPP
´vMPP

˙

vMPP

´
b

vb
vb´vMPP

`

b

vb
vMPP

¯

(40)

The accuracy of expression is illustrated by calculating the switching frequency of the PV system
simulated in Figure 10: Equation (40) predicts a switching frequency equal to 27.4 kHz, while the
simulation reports a switching frequency equal to 28.41 kHz, which correspond to an acceptable
prediction error of 3.5%.
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Moreover, from expression Equation (40) it is evident that the switching frequency depends
on the inductance and capacitance values, PV module characteristics and system operating point.
Therefore, if Cin or L change due to aging or by other effects such as inductor saturation, the switching
frequency will also change. However, the previous subsections demonstrate the robustness of the
proposed SMC to changes in Cin and L: the system will remain stable for any positive values of Cin
and L. In conclusion, tolerances in the converter parameters due to aging or practical saturations will
not compromise the system stability.

4.5. Sliding-Mode Dynamics

The sliding-mode dynamics provide information concerning the averaged voltage and current
behavior, which is useful to predict important time-based performance criteria such as settling
time. The sliding-mode dynamics consider the system within the sliding surface, hence expressions
Equation (7) hold, which leads to Equation (41):

dvpv

dt
“ ´

vpv

ipv
.

dipv

dt
(41)

Similarly, from the second differential equation of the DC/DC converter, i.e., Equation (2), the
relation ipv “ Cin

dvpv
dt ` iL is obtained, which derivative is given in Equation (42):

dipv

dt
“ Cin

d2vpv

d2t
`

diL
dt

(42)

Then, substituting Equations (1) and (41) into Equation (42), and naming the instantaneous PV
module impedance Rpv “

vpv
ipv

, the relation Equation (43) is obtained:

Rpv Cin L
d2vpv

d2t
` L

dvpv

dt
` Rpvvpv “ Rpv vb d1 (43)

Expressing Equation (43) in Laplace domain leads to the model reported in Equation (44):

v psq
d1 psq

“
Rpv vb

Rpv Cin L s2 ` L s` Rpv
(44)

Such a second-order model describes the closed-loop system behavior around a given operation
condition, in which the natural frequency is wn “

a

1{ pCin Lq and the damping ratio is
ξ “ 1{p2Rpv C

a

1{ pCin Lqq. From the classical second order system analysis [37], the settling time of
the PV voltage is, approximately, ts “ 6.4Rpv Cin. To test such an estimation, the PV system controlled
by the SMC, considering the parameters previously described in Section 4.1, was simulated in both
step-up and step-down irradiance transients. The first test considers a step change in the irradiance
from 600 W/m2 to 1000 W/m2, which corresponds to a change in isc from 3 A to 5 A, obtaining
the results presented in Figure 11(a): in such conditions the average PV module impedance is 5.1 Ω,
which leads to ts = 1.4 ms. To provide a more clear calculation of the settling time from the DC/DC
converter waveforms, the PV voltage is also filtered to remove the switching ripple, which enables to
verify the accuracy of the proposed approximation. Similarly, the second test considers a step change
in the irradiance from 1000 W/m2 to 600 W/m2, obtaining the results presented in Figure 11b, where
the settling time estimation is the same, i.e., ts = 1.4 ms. Both simulations confirm the validity of the
approximation. It must be noted that the settling time will change if Cin or L change, e.g., due to
aging or practical saturations.
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5. Numerical Results and Performance Evaluation

The proposed SMC was implemented in the power electronics simulator PSIM using C language.
This procedure enables to tests, realistically, the performance of the SMC by emulating the
implementation of the controller in a Digital Signal Processor (DSP). In addition, the ANSI C code
used in the PSIM simulation (within a C block) can be directly executed in any DSP without
major modifications.

Figure 12 presents the simulation scheme and SMC implementation, which uses four devices to
implement the controller: a C block emulating the DSP, two classical comparators and a S-R flip-flop
to store the u signal. Such a structure is widely adopted in literature to implement the switching
function due to its simplicity and reliability [32]. However, since in this work the SMC performs
both MPPT and voltage regulation actions, there is no need of cascade (or any other) controllers or
modulators. Figure 12 also presents the ANSI C code used to calculate the switching function, which
is provided by using an emulated Digital-to-Analog Converter (DAC) to the switching circuit driving
the MOSFET. To test the SMC in the same conditions used to illustrate the mathematical analysis, this
simulation scheme considers a DC-link voltage near to 30 V imposed by the standard voltage source
model representing the inverter. An additional simulation scheme will be used afterwards to test the
SMC, under high boosting conditions, and interacting with a detailed grid-connected inverter.

Figure 13 shows two tests performed in the first simulation scheme: Figure 13(a) presents the
dynamic response of the system for a change in the irradiance from 600 W/m2 to 1000 W/m2,
while Figure 13(b) presents the dynamic response of the system for a change in the irradiance from
1000 W/m2 to 600 W/m2. In both cases the SMC drives the PV system to the optimal operation
condition within the estimated settling time. Moreover, such simulations also show the points in the
I-V curve in which the PV system operates: (1) corresponds to the initial steady-state condition; then
condition (2) is triggered by an irradiance perturbation; and (3) is the new MPP detected by the SMC.
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(b) Transient from 1000 W/m2 to 600 W/m2.

Taking into account that grid-connected PV systems exhibit perturbations at the DC-link, the
SMC must be also tested in presence of sinusoidal voltage oscillations at Cb. Such a test is presented
in Figure 14, where a large 20 V peak-to-peak voltage oscillation has been superimposed to a 29 V DC
component, this corresponding to a 69% perturbation. The simulation also considers an irradiance
perturbation from 1000 W/m2 to 600 W/m2 at t = 0.03 s, and even under the perturbation in the load
voltage the SMC is able to impose the expected behavior to reach the new MPP.
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As anticipated before, a second simulation scheme is used to test the SMC under high boosting
conditions and interacting with a detailed grid-connected inverter. Such a scheme is presented in
Figure 15 [24], which includes a closed-loop inverter with two control objectives: provide a given
power factor and regulate the DC-link voltage. The inverter is designed to operate at 110 VAC@60 Hz
with an average DC-link voltage equal to 220 V. The DC-link is formed by Cb “ 14 µF, which
at 1000 W/m2 experiment a large 120 V peak-to-peak voltage oscillation superimposed to the DC
component, this corresponding to a 55% perturbation. Moreover, the input capacitor was changed to
Cin “ 150 µF to avoid large PV voltage oscillations due to the high voltage conversion ratio imposed
to the DC/DC converter. Therefore, the SMC switching frequency, calculated from Equation (40), is
approximately 100 kHz. In addition, the simulation also considers an irradiance perturbation from
1000 W/m2 to 300 W/m2 at t = 0.65 s to illustrate the MPPT operation of the SMC. The results are
presented in Figure 16, which confirms that even under high DC-link perturbations the SMC is able
to reach the new MPP. It must be point out that the inverter also imposes a transitory behavior in the
DC-link voltage due to the change in PV power at t = 0.65 s, which is also mitigated by the SMC.
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With the aim of further evaluate the proposed SMC, the performance of this controller is also
contrasted with two classical solutions based on the P & O algorithm. The P & O method is
based on perturb the input variable of the system, e.g., the duty cycle of the converter, observe the
variation in the output power, and increase or decrease the perturbed variable to increase the power.
The flowchart of the P & O algorithm is shown in Figure 17.
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The structure of the two classical solutions based on the P & O algorithm are presented in
Figure 18: (a) a P & O algorithm defining the duty cycle of a PWM (P & O + PWM) driving the
MOSFET; and (b) a P & O algorithm defining the voltage reference of a PID controller, which in turns
defines the duty cycle of a PWM (P & O + PID + PWM). Such a figure put in evidence the advantages
of the proposed solution: the SMC only requires a single control block, instead the classical solutions
require two and three control blocks.
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The P & O algorithms were designed following the guidelines given in [3,38], which are aimed to
guarantee a perturbation period larger than the PV voltage settling time. Concerning the stand-alone
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P & O controller (a), the parameters are: perturbation period Ta = 0.5 ms and perturbation amplitude
∆d = 0.2.

The design of the PID controller for the cascade P & O solution (b) was based on the system
Equations (1)–(3) linearized at the lower irradiance condition (100 W/m2) as suggested in [3]. Then,
the transfer function between the PV voltage and the duty cycle vpv

d is calculated as in Equation
(45). It is important to remark that Rpv changes with the solar irradiance and temperature, hence the
settling time ts of the PV voltage constantly changes [39]:

vpv psq
d psq

“ ´
Rpv vb

L Cin Rpv s2 ` L s` Rpv
(45)

Therefore, conventional linear controllers for PV systems must be designed at the longest settling
time value, which is obtained for the larger value of Rpv (lower irradiance, 100 W/m2 in this example).
Then, using the root-locus placement technique, the controller in Equation (46) was designed.
The perturbation period of the P & O algorithm is designed for the worst case scenario (longest
ts) following the guidelines given in [3], it leading to Ta = 0.5 ms and ∆vref = 0.25 V (perturbation
amplitude applied to the PID reference):

Gc psq “ ´
10.1302 ps` 2.25e4q ps` 1423q

s ps` 8.453e5q
(46)

Finally, to provide a fair comparison, both P & O + PWM and P & O + PID + PWM were
implemented with a switching frequency equal to 100 kHz, which is the same switching frequency
exhibited by the SMC.

A first test was performed considering a much larger DC-link capacitance Cb “ 200 µF to reduce
the voltage oscillations generated by the inverter. This test also includes the start-up of the PV
system and an irradiance perturbation at t = 0.65 s. The simulation results are presented in Figure 19,
where the fast tracking of the MPP provided by the proposed SMC is observed. The simulation also
reports the small voltage oscillations exhibited due to the large value of Cb by the three systems,
which enables the correct operation of the P & O + PWM solution. Finally, the fast response of the
SMC is translated into a higher energy harvested from the PV array, which eventually increases the
system profitability.
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time ts of the PV voltage constantly changes [39]: 

(45)

Therefore, conventional linear controllers for PV systems must be designed at the longest settling 
time value, which is obtained for the larger value of  (lower irradiance, 100 W/m2 in this example). 

Then, using the root-locus placement technique, the controller in Equation (46) was designed.  

The perturbation period of the P & O algorithm is designed for the worst case scenario (longest ) 

following the guidelines given in [3], it leading to Ta = 0.5 ms and Δvref = 0.25 V (perturbation 

amplitude applied to the PID reference): 

10.1302 2.25 4 1423
8.453 5

 (46)

Finally, to provide a fair comparison, both P & O + PWM and P & O + PID + PWM were implemented 

with a switching frequency equal to 100 kHz, which is the same switching frequency exhibited by the SMC. 

A first test was performed considering a much larger DC-link capacitance 200	 F to reduce 

the voltage oscillations generated by the inverter. This test also includes the start-up of the PV system 

and an irradiance perturbation at t = 0.65 s. The simulation results are presented in Figure 19, where 

the fast tracking of the MPP provided by the proposed SMC is observed. The simulation also reports 

the small voltage oscillations exhibited due to the large value of  by the three systems, which enables 

the correct operation of the P & O + PWM solution. Finally, the fast response of the SMC is translated into 

a higher energy harvested from the PV array, which eventually increases the system profitability. 

 

Figure 19. Performance comparison between the SMC and conventional P & O-based 

solutions considering small DC-link voltage oscillations. 
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Figure 19. Performance comparison between the SMC and conventional P & O-based solutions
considering small DC-link voltage oscillations.
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A second test was performed accounting for large voltage oscillations at the DC-link, i.e., using
a smaller Cb “ 14 µF. The simulation results are reported in Figure 20, where again the SMC
exhibits a faster MPPT procedure with higher energy production. Moreover, the simplest P & O
solution (P & O + PWM) is unstable since the DC-link voltage oscillations are transferred to the PV
array terminals, which confuses the P & O algorithm. In contrast, the more complex P & O solution
(P & O + PID + PWM) is stable, but it requires a long time to reach the MPP in comparison with
the SMC.
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Figure 20. Performance comparison between the SMC and conventional P & O-based solutions
considering large DC-link voltage oscillations.

6. Conclusions

A detailed analysis and design of a MPPT solution based on sliding-mode control theory has
been introduced in this paper. This solution is aimed at performing a fast MPPT action on PV systems
using a single control stage. Moreover, since it is based on a non-linear model, no linearization process
is needed. Therefore, this approach avoids the circular dependency among cascade controllers,
reduces the number of control devices and provides global stability in all the operation range.
Such characteristics are major improvements over classical MPPT solutions based on cascade and
linear controllers.

The performance of the proposed solution was tested using realistic simulations accounting for
perturbations in both the irradiance and the load voltage, obtaining satisfactory results. Moreover, the
sliding-mode controller was contrasted with classical MPPT solutions based on the P & O algorithm,
where the SMC provides a much faster tracking of the MPP, it increasing the produced energy.
Therefore, the proposed SMC enables to increment the profitability of PV installations; hence the
return-of-investment time is reduced.

Finally, a further improvement to the SMC could be performed in a future work—a different, but
more complex, switching circuit could be designed to avoid the sign change of the transversality—to
remove the divergence stages in the SMC operation. This new development will enable to constraint
the hysteresis band of the SMC, which will eventually enable to reduce, even more, the settling time
of the PV power to achieve a faster MPPT procedure.
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