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Abstract: The clustering of electricity customers might have an effective meaning if, and 

only if, it is verified by domain experts. Most of the previous studies on customer 

clustering, however, do not consider real applications, but only the structure of clusters. 

Therefore, there is no guarantee that the clustering results are applicable to real domains.  

In other words, the results might not coincide with those of domain experts. In this paper, 

we focus on formulating clusters that are applicable to real applications based on domain 

expert knowledge. More specifically, we try to define a distance between customers that 

generates clusters that are applicable to demand response applications. First, the k-sliding 

distance, which is a new distance between two electricity customers, is proposed for 

customer clustering. The effect of k-sliding distance is verified by expert knowledge. 

Second, a genetic programming framework is proposed to automatically determine a more 

improved distance measure. The distance measure generated by our framework can be 

considered as a reflection of the clustering principles of domain experts. The results of the 

genetic programming demonstrate the possibility of deriving clustering principles. 

Keywords: electricity customer clustering; load profile; Genetic programming;  

demand response 
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1. Introduction 

A smart grid, which is the combination of an electricity network and information network, provides 

many new applications in traditional electricity generation, distribution, and consumption areas. There 

can be many potential applications such as adaptive tariff, load prediction, and demand response [1–5]. 

In these applications, the customer clustering in which similar users are grouped together is considered 

to be an essential step. When a lot of customers exist in smart grid, it is certain that there are many 

customers who share similar characteristics and load patterns. This similarity raises the needs for 

clustering. A customer clustering can be considered to be a procedure that makes a few distinct clusters 

from a huge number of users. By using 10 representative user groups instead of 100,000 individual 

users, applications can operate in a more effective and faster way. For example, tariff design requires 

customer clustering because tariffs cannot be targeted to every individual customer [1,2]. Also, in the 

field of demand response, a requests for the load shedding can be targeted not to a customer, but to a 

group of users who will provide similar responses to the load shed request, in order to derive the 

maximum load shed effect with limited resources [3,4]. The prediction of day-ahead energy 

consumption could also be improved utilizing customer clustering before actual prediction stage [5]. 

Furthermore, new applications that need clustering will arise because clustering is considered to be a 

pre-processing stage in many data analysis scenarios [5]. As the data gathered in the smart grid 

increases, the importance of clustering will increase because huge amounts of data will need to be 

reduced in a reasonable way. Decades ago, electricity customer clustering was performed only based 

on pre-assigned contract types such as household, manufacturer, and school. The clustering of 

customers is, however, now possible based on real-time energy consumption patterns because of the 

richness of data in smart grids. Most medium- to high-voltage use customers are already equipped with 

smart meters that measure power consumption every 15 min, 96 times each day. These daily 

consumption data are widely accepted as standard input features in customer clustering because they 

are the most attractive option for characterizing electricity customers. In this study, we also consider 

daily consumption data as basic input features for customer clustering. 

The clustering of electricity customers has been studied by many research groups. Many basic 

clustering methods such as hierarchical algorithms, the k-means method, and follow-the-leader method 

are applicable to this topic. These basic clustering methods have been compared with each other in the 

literature [6,7]. Other clustering methods have also been applied to the clustering of electricity 

customers. For example, Hino et al. [8] proposed use of the Gaussian mixture model (GMM) in 

clustering. In their work, energy consumption graphs were interpreted as a mixture of Gaussian 

distributions, and the distance between load profiles was defined by the K-L divergence of the 

Gaussian mixture distributions. In the literature, other various machine learning techniques such as the 

self-organizing map (SOM), neural network, support vector clustering, dynamic time warping (DTW), 

and latent Dirichlet allocation (LDA) have also been applied to cluster electricity customers [9–16]. 

Furthermore, the transformation of input data to other domains such as frequency domain has been 

proposed in the literature [17]. Other statistical characteristics such as off-peak factor and night impact 

factor are also proposed as features for customer analysis [18]. A combination of one or more 

clustering algorithms was also proposed [19–21]. The combination was usually implemented with 

additional clustering stages before the final clustering process was activated. Each work which is 
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presented above has showed that its proposed clustering method could provide better clustering results 

compared to their previous works in the view of a few general clustering performance indexes. 

A common limitation of these previous works is that they focused on general purpose clustering 

without any consideration of real applications. For example, if customer clustering is needed for a 

demand response, one of the previous approaches can be utilized. There is, however, no guarantee that 

experts in the demand response domain will agree with the clustering result determined by general 

purpose clustering approaches. Figure 1 shows an example of customer clusters that we performed 

with an agglomerative hierarchical clustering method, which is known to produce outstanding 

clustering results [7]. The resulting clusters of the hierarchical clustering method consist of a single 

dominant cluster and many small ones. Despite a promising general cluster performance index from 

literature [7], this is definitely not the desired result, as a demand response strategy cannot be designed 

with these clusters. With various numbers of clusters, unacceptable clusters are still generated. This 

simple experiment shows the limitation of previous works. Since the previous approaches did not 

consider the requirements of real applications, cluster results might be meaningless groups of scattered 

points in a hyperplane. The data used in this analysis are the energy consumption patterns in southern 

Gyeonggi Province in Korea which are also used in the experiment section. 

(a) Cluster 1 (b) Cluster 2 

(c) Cluster 3 

Figure 1. Hierarchical clustering result with the single linkage method (number of clusters, 

k = 3). Hierarchical clustering provides a dominant cluster and other small clusters.  

(a)–(c) Clusters 1–3. 
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In this paper, we attempt to develop a clustering method that is applicable to real applications 

reflecting expert knowledge. More specifically, we propose a good distance measure between 

customers that fits the customer clustering, especially in demand response applications, based on 

expert knowledge. This new distance measure, which considers the time-shift characteristic of 

customers, will be explained and verified in the following sections. Furthermore, we also propose a 

genetic programming (GP) framework that automatically identifies the clustering principle of the 

experts. Specifically, we try to derive the ideal distance measure between two customers from expert 

knowledge using GP. 

For validation of the clustering results, we do not use traditional performance indexes, such as CDI 

(Clustering Dispersion Indicator) [22], VRC (Variance Ratio Criterion) [23], WCBCR (Ratio of 

Within Cluster sum of squares to Between Cluster variation) [20], SI (Scatter Index) [24], MIA (Mean 

Index Adequacy) [22], or DBI (Davies-Bouldin Index) [25]. Although these indexes are widely 

accepted in clustering, they are not proficient in specific applications such as electricity load profile 

clustering. They do not consider domain knowledge and only focus on the internal structure of nodes. 

For these reasons, we focus on an external validity index such as entropy, which compares the 

clustering answer with pre-assigned, ground-truth clusters. Regarding ground-truth clusters, we set up 

two types of pre-determined clustering answers determined by domain experts and based on the 

assumption of virtual customers, respectively. The concept of virtual customers will be described in 

Section 3.  

The contributions of this paper can be summarized as follows. 

1. We propose the formation of clusters that are similar to those defined by the experts. The 

clustering result preferred by experts can be quite different from that generated by most of the 

clustering methods. To our knowledge, this is the first study to focus on real domain expert knowledge. 

Furthermore, the problem of inapplicable clustering, shown in Figure 1, which was the motivation for 

our study, is presented. 

2. The k-sliding distance, which is a new distance measure, is proposed and validated for electricity 

customer clustering. This distance is designed based on the time-shift characteristic of loads and is 

designed to produce an improved clustering result, especially in demand response applications. 

Furthermore, the k-sliding distance can be utilized with any clustering method because it is a distance 

measure between nodes rather than a clustering method. 

3. We propose a GP framework that is formulated to automatically derive the clustering principle of 

experts. Specifically, we provide an improved distance measure between two customers from expert 

knowledge using GP. The results with extensive input features show strong support for the proposed  

k-sliding distance, at least in a demand response application.  

The rest of this paper is organized as follows. In Section 2, a novel k-sliding distance is proposed. 

We verified the performance of the k-sliding distance with extensive experiments in Section 3.  

The clustering principle of the demand response experts is analyzed using the GP framework and is 

validated by experiments in Sections 4 and 5, respectively. The conclusion is presented in Section 6. 
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2. k-Sliding Distance 

The proposal of this new distance is based on the time-series pattern of electricity consumption 

data. Most of the previous studies considered these data as a set of independent variables, which is not 

valid in real applications. Although 96 independent input dimensions in each customer could be a  

basic approach for clustering, this is not sufficient because they are interrelated in the time domain. 

The DTW (Dynamic Time Warping) distance, which is specially designed for time-series data, is an 

attractive candidate and a simple result of electricity customer clustering with the DTW distance is 

presented by Iglesias and Kastner [16]. The result, however, only provided the possibility of applying the 

time-series analysis to electricity customer clustering. 

Real electricity applications, especially the demand response application in this paper, have unique 

viewpoints in defining similarity. Figure 2, for example, shows a few representative samples that must 

be considered. In Figure 2a–c, there are two customers that are assumed to be similar in our demand 

response application. In Figure 2a, a small delay in the time dimension can be ignored. Additionally, in 

Figure 2b, a small difference in usage duration can be accepted. Two customers, who show similar 

severe fluctuations, as shown in Figure 2c, are also expected to be very similar. In contrast, the two 

customers in Figure 2d are not similar. Customer #1 can reduce its electricity usage because a sharp 

drop exists in the pattern. Customer #2 is assumed to be in a different category because it has flat 

energy usage.  

(a) Load patterns 1 (b) Load patterns 2 

(c) Load patterns 3 (d) Load patterns 4 

Figure 2. Representative samples for calculation of similarity. Two customers in (a–c) are 

considered as they are similar. Customers in (d) are not similar. (a)–(d) Load patterns 1–4. 
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It is certain that the Euclidean distance based on the 96 independent dimensions cannot distinguish 

these characteristics because it does not consider time-related features. For example, by definition,  

it provides a long distance in the case shown in Figure 2c. 

The k-sliding distance, which we propose here, is an alternative distance measure between two 

time-series nodes. The definition of the k-sliding distance is presented in Equation (1). 

௜௝ݐݏ݅ܦ ൌ ඨ෍ሾሺݐݏ݅ܦௗ
௜௝ሻଶሿ

ௗ

 (1)

where ݐݏ݅ܦ௜௝  is the proposed distance between nodes i and j. ݐݏ݅ܦ௜௝ is the distance in dimension d 

between nodes i and j. 

The distance between node i and node j is basically the squared sum of the distance in each 

dimension, which is calculated using Equation (2).  

ௗݐݏ݅ܦ
௜௝ ൌ max	ሺ min

௦ୀି௞…௞
ห൫ݑௗ

௜ െ ௗା௦ݑ
௝ ൯ห , min

௦ୀି௞…௞
หݑௗ

௝ െ ௗା௦ݑ
௜ หሻ	 (2)

where k is the sliding limit. ݑௗ
௜  is the energy usage of node i in dimension d. 

The underlying concept of this distance measure is that time can be shifted to some extent, i.e.,  

k time slots. For example, a peak in electricity usage is allowed to float in the k time window without 

any loss of similarity. This is especially important in a demand response application because its focus 

is on the peak time and load reducibility. We first consider customer i as a pivot on which to slide the 

usage pattern of customer j. The distance in dimension d is defined as the minimum distance in the  

k-sliding window. Because there are two possible pivots, we now have two measured distances in each 

dimension. The final k-sliding distance in dimension d is defined as the maximum of the two measured 

distances. The reason why we use the maximum of the two distances can be clearly seen in Figure 2d. 

If we use customer #2 as the pivot in the 10th time slot, the distance can be zero. If we use customer #1 

as the pivot in the 10th time slot, the distance is 1. In the example, we use the larger value as the 

distance because an asymmetric distance at a certain dimension indicates low similarity. 

The difference between the k-sliding distance and the DTW distance is stated here in order to 

understand the concept of the k-sliding distance. The DTW distance only focuses on the well-shaped, 

time-warping scenario, i.e., cases Figure 2a,b. In contrast, the k-sliding distance can handle complex, 

mixed scenarios as well as time-warping scenarios. It only focuses on the nearby similar usage values 

without considering any time-dependent sequences. Simply, the k-sliding distance looks for nearby 

points, while the DTW distance looks for matching time sequences. 

Table 1 shows the distance measured in the above examples. The Euclidean distance is not 

acceptable, because it does not consider any time-related aspects. The DTW distance can produce a 

desirable result only with time-warping scenarios such as those in Figure 2a,b. In more complex 

scenarios, such as that in Figure 2c, DTW generates undesirable results. On the other hand, the  

k-sliding distance provides a small value in the cases of Figure 2a–c and provides a large value in 

Figure 2d, which is the expected result. 

The k-sliding distance is not a clustering method but a distance measure, like the Mahalanobis 

distance. Any existing methods such as k-means and hierarchical clustering can be used with the 

proposed k-sliding distance. Furthermore, the proposed distance can be applied to any consecutive 
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series data, as well as pure power consumption values. For example, the change rate of electricity 

consumption (i.e., slope of graph) extracted from original data can also be considered as input for the 

k-sliding distance. Therefore, the proposed distance measure can be easily applicable to other features 

and can be easily applied to other clustering algorithms. 

Table 1. Measured distances in the example scenarios. 

Distance Type Figure 2a Figure 2b Figure 2c Figure 2d
Euclidean distance 3 1.5 6 1.5 

DTW (Dynamic Time Warping) distance 0 0 3 3 
4-sliding distance 0 0 0.25 1.5 

3. Verification of k-Sliding Distance 

In this section, we experimentally verify the performance of the k-sliding distance. 

3.1. Experimental Setup 

We used electricity consumption data of one month (September 2011) in high- or medium-voltage 

use customers who reside in Gyeonggi Province, Korea. The interval of metering is 15 min, which 

results in 96 samples per day. Weekends and holidays are not included, and load profiles are 

normalized to their peak values. Two data sets from the northern part of Gyeonggi Province and the 

southern part of Gyeonggi Province are available as two independent clustering sets. There are  

121 customers in southern Gyeonggi Province and 114 customers in the northern part of the province. 

The data set contains various kinds of customers such as schools, office buildings, and shopping 

centers. These data are used in the following sections. There are no missing values in the data because 

the meter reading system we used here is a well-managed test-bed system. Outliers are not eliminated 

in the experiment because outlier detection itself is not an easy task. 

There are two scenarios in the experiments. The first scenario, which is the main scenario in the 

experiments, is the clustering of customers based on Representative Load Profile (RLP). In this 

scenario, one month of data for each customer is averaged in order to generate a single RLP composed 

of 96 dimensions. Based on the graph representation of the generated RLP for each customer, two 

demand response experts are asked to create clusters based on their knowledge. Figure 3 presents the 

example clustering result from an expert using the data from southern Gyeonggi Province. 

The first expert proposed 10 clusters, as shown in Figure 3, while the other expert suggested  

8 clusters. The experts consider many characteristics such as overall shape, fluctuations, peak time, 

level of consumption, and possibility of energy reduction. The principle of clustering in these experts, 

however, cannot be clearly stated in the form of mathematic equations because it resides in experts’ 

minds. Furthermore, data themselves affect each expert’s individual clustering decision. In other 

words, the expert clustering principle is highly dependent on the provided data sets. Even when it has 

been decided that two nodes in a certain data set are not similar, we cannot guarantee that they are still 

not considered to be similar after new nodes are added to the data set. However, there are still some 

principles involved in the decision. 
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(a) Cluster 1  (b) Cluster 2 

(c) Cluster 3 (d) Cluster 4 

(e) Cluster 5 (f) Cluster 6 

(g) Cluster 7 (h) Cluster 8 

(i) Cluster 9 (j) Cluster 10 

Figure 3. Clustering result by an expert with the data from southern part of Gyeonggi 

Province. (a)–(j) Clusters 1–10. 
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The second scenario is the clustering of virtual customers. In this scenario, every daily load profile 

of customers is considered to be a virtual customer. For example, 10 customers with 18 working days 

yield 180 virtual customers. After making clusters with these 180 virtual customers, it will be verified 

whether virtual customers who are generated from the same real customer are grouped together in one 

cluster or not. Although it is not a normal scenario in smart grid, we can validate that the proposed 

distance considers not only experts’ viewpoint but also real characteristics of energy consumption 

pattern because it is certain that virtual customers (daily load profiles) from a customer share common 

consumption characteristics. Therefore, a correct clustering with virtual customers can be meaningful 

for a real scenario. The daily load profiles of the 10 randomly selected customers are presented in 

Figure 4. We chose 10 customers because it is a reasonable number of clusters to show the different 

patterns of load profiles. Highly coordinated daily load profiles in Figure 4 indicate that it is valid to 

utilize a single-day profile as a virtual customer.  

(a) Customer 1 (b) Customer 2 

  

(c) Customer 3 (d) Customer 4 

(e) Customer 5 (f) Customer 6 

Figure 4. Cont.
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(g) Customer 7 (h) Customer 8 

(i) Customer 9 (j) Customer 10 

Figure 4. Daily profiles of 10 randomly selected customers. Each line is considered to be a 

virtual customer. There are a total of 180 virtual customers. (a)–(j) Customers 1–10. 

The index of focus in this paper is the entropy of clustering [26]. An external clustering validity 

index, entropy, is defined in Equation (3). 

ݕ݌݋ݎݐ݊ܧ ൌ෍
|௜ܥ|
ܰ

෍ െ
หܮ௝ ݅݊ ௜หܥ
௜|௝௜ܥ|

݃݋݈
หܮ௝ ݅݊ ௜หܥ
|௜ܥ|

	 (3)

where Ci is the ith resulting cluster, N is the number of total nodes, Lj is the load profile of expected 

cluster j, and |X| is the size of set X. 

Entropy represents the similarity of two clustering results: the clustering result and expected result. 

Entropy is small when the clustering result is similar to the expected result. The smaller is the entropy, 

the more similar are the clusters. Other external indexes such as purity and Rand index are also 

available [26]. We only provided an entropy index in this paper because the result does not show a 

remarkable difference compared to the entropy in our experiments. The expected cluster is the experts’ 

clustering result in the first scenario. In the second scenario, each expected cluster is composed of a 

single customer’s daily profiles, as shown in Figure 4.  

The CDI [22], which is a commonly used clustering performance index defined in Equation (4), is 

also considered for the purpose of comparison. It prefers long inter-cluster distance and short  

intra-cluster distance. The smaller is the index value, the better is the result of clustering. We ignored 

the other indexes mentioned in Section 1 because the focus is not on these indexes. Furthermore, the 

results of other internal validity indexes are, to some extent, similar to that of the CDI index in our 

simulation and in the literature [7]. 
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ሺ݇ሻܫܦܥ ൌ
1

݀ሺܥሻ
ඨ
1
݇
෍ ݀ଶሺܥ௞ሻ

௞
 (4)

where d(C) is the average distance between cluster centers, ݀ଶሺܥ௞ሻ is the squared average distance 

between nodes in cluster k. 

The experimental result, which has randomness (i.e., k-means clustering), is the average of  

100 executions. The clustering methods that we used are hierarchical clustering with average linkage 

and k-means clustering. The reason why we analyze k-means clustering and hierarchical clustering is 

that k-means is the most common algorithm in clustering methods and hierarchical method seems to be 

one of the most promising methods on electricity customer clustering in the literature [7]. Other 

various clustering algorithms are not presented here because we are focusing on the distance between 

nodes, not the clustering algorithm. We included the GMM distance [8] as a baseline because it defines 

the distance between nodes. Ward’s linkage [27] is used with the result of the GMM, as proposed in [8].  

3.2. Experimental Result 

The scenario involving the RLP (Representative Load Profile) of each customer is conducted first. 

The CDI indexes of the southern and northern regions are presented in Figures 5 and 6, respectively. 

The entropy index is presented in Figures 7–10. As the entropy index is based on the experts’ results, 

the experiment is conducted for two regions (the southern and northern parts of Gyeonggi Province) 

and for two experts, resulting in the production of four graphs. We changed the number of clusters 

from 3 to 11 in all of the experiments.  

The first observation is that the hierarchical clustering methods consistently produce promising 

results in terms of CDI index (Figures 5 and 6) and consistently produce poor results in terms of 

entropy index (Figures 7–10), regardless of the number of clusters. Based on the experiments, we 

conclude that hierarchical clustering cannot be applied to electricity customer clustering in a demand 

response because of the extremely poor entropy index, which is more important than the internal 

validity index in the real world.  

  

Figure 5. CDI (Clustering Dispersion Index) result for the southern part of Gyeonggi Province. 

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 6 7 8 9 10 11

C
D
I

Number of clusters

k‐means Euclidean

hier Euclidean

k‐means GMM

hier GMM

k‐means DTW

k‐means 9‐sliding



Energies 2015, 8 12253 

 

 

 

Figure 6. CDI result for the northern part of Gyeonggi Province. 

The second observation is that the proposed k-sliding distance with k-means clustering provides 

remarkably improved entropy compared to the Euclidean distance or GMM distance in all cases. When 

we compare it to the DTW distance, the proposed distance is superior in most of the cases. The DTW 

distance provides slightly lower entropy than the k-sliding distance in a few exceptional cases,  

as shown in Figure 8. In the other three cases, i.e., those in Figures 7, 9 and 10, the proposed distance 

always outperforms the DTW distance. The experimental results imply that the experts actually 

consider the k-sliding distance to be an important clustering principle even though they do not mention it 

explicitly. They think that the energy usage time associated with this measure might drift. It is obvious 

that the time series characteristic of data must be considered because k-sliding and DTW measures 

show an improved index compared to the Euclidean distance measure. On average, the overall entropy 

improvement of the proposed k-sliding distance is 9.2% and 2.6% compared to the Euclidean distance 

and DTW distance, respectively. The improvement is quite meaningful when we consider that entropy 

is calculated based on the log function. We set parameter k in the k-sliding distance to 9 in the above 

experiments, and the selection of k is based on the experiment presented in Figure 11.  

 

Figure 7. Entropy results for the southern part of Gyeonggi Province according to expert #1. 
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Figure 8. Entropy results for the southern part of Gyeonggi Province according to expert #2. 

 

Figure 9. Entropy results for the northern part of Gyeonggi Province according to expert #1. 

 

Figure 10. Entropy results for the northern part of Gyeonggi Province according to expert #2. 
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In Figure 11, we tested the effect of k in the k-sliding distance using the data from the southern part 

of Gyeonggi Province. The results show the best performance in most cases when we set k to 9 or 11. 

In the other three cases, the best performance was achieved with a k value of 7, 9 or 11. If we change 

the k value according to the data set, we can further improve the result because the optimal value is 

somewhat dependent on the data set and the number of clusters. We, however, fixed k to 9 in the 

experiments for simplicity, and the result still shows a much-improved result in most of the scenarios. 

Nine slots can be interpreted to represent 2 h and 15 min because each slot represents 15 min. In other 

words, we can assume that the experts consider two and half hours to be an acceptable time drifting limit. 

 

Figure 11. k-sliding distance with various values of k. 

The CDI and entropy results of the second scenario, which is composed of virtual customers, are 

presented in Figures 12 and 13. The second scenario is another important experiment because an 

expert might be biased in his or her decision. Virtual customers have an inherent clustering answer 

because they are daily profiles from real customers, i.e., they are independent of experts.  

 

Figure 12. CDI results of virtual customers. 

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Euclidean 1‐sliding 3‐sliding 5‐sliding 7‐sliding 9‐sliding 11‐sliding 13‐sliding 15‐sliding

En
tr
o
p
y

distance measure

number of clusters = 7

number of clusters = 8

number of clusters = 9

number of clusters = 10

number of clusters = 11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3 4 5 6 7 8 9 10 11

C
D
I

Number of clusters

k‐means Euclidean

hier Euclidean

k‐means GMM

hier GMM

k‐means DTW

k‐means 9‐sliding



Energies 2015, 8 12256 

 

 

 

Figure 13. Entropy results of virtual customers. 

In Figures 12 and 13, the performance of the second scenario is not different from that of the first 

scenario. The CDI result of the proposed distance, shown in Figure 12, delivers relatively poor 

performance compared to the hierarchical method with Euclidean distance similar to Figures 5 and 6. 

It seems that the hierarchical clustering method may generate a few large clusters and many small 

ones, which can score highly with CDI index even though it cannot be applicable to real applications 

as we mentioned in Section 1. The proposed k-sliding distance, however, showed the best performance 

in terms of entropy index regardless of the number of customers (Figure 13). Considering the results of 

the first and second scenarios, we conclude that the k-sliding measure is meaningful for real 

applications, at least for the demand side management. 

4. Finding Clustering Principle Using Genetic Programming  

In Sections 2 and 3, we proposed and verified a new distance measure that is suitable for demand 

response applications. Next, we want to know the clustering principles of experts based on the 

collected data. The principles of clustering can be translated to the definition of the distance measure 

between two nodes because experts utilize their own combined distance measure. This distance must 

include many characteristics such as average usage, peak time, and fluctuations. If we know the way to 

formulate these clustering principles, we can utilize the framework for any application in a smart grid.  

More specifically, in this section, we design a GP framework that derives a distance measure from 

an expert or a group of experts in a demand response application. Although we focus on demand 

response in this study, this framework can also be applied to other applications. The goal of GP is to 

produce the distance measure between two nodes that optimizes entropy. The GP technique looks for a 

tree that represents a distance equation. The tree will automatically evolve to determine the best 

entropy value with the help of crossover and mutation. 

The example tree that is used in this paper is provided in Figure 14. A leaf node consists of distance 

options and weights. Examples of distances are the proposed k-sliding distance and the Euclidean 

distance. A non-leaf node consists of a binary operator such as summation, subtraction, maximum, and 

minimum. The generated distance measure shown in Figure 14 is the sum of the k-sliding distance in 
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the frequency domain with a weight of 0.3 and the Euclidean distance in the time domain with a 

weight of 0.8. A total population of 100 and 50 generations are considered in the GP. The depth of the 

tree was limited to three in order to avoid over-fitting and in order to easily analyze the results. 

Tournament selection is used as the selection method, and the parameters related to crossover and 

mutation are applied in an empirical manner. The k-means algorithm is used for clustering. 

 

Figure 14. Example tree of genetic programming. The presented distance measure is the 

sum of the k-sliding distance in the frequency domain with a weight of 0.3 and the 

Euclidean distance in the time domain with a weight of 0.8. 

The design of the GP framework is based on the idea that the optimal distance does not consist of a 

single component. The distance considered by the experts might be the combination of many distances. 

In order to include various possible distances, we considered input domains such as time, frequency, and 

slope, as well as distance options such as Euclidean, Pearson correlation, and k-sliding. Weights and a 

few additional factors are also included. The parameters of each node in GP are described in Table 2. 

Table 2. Parameters of nodes in genetic programming. 

Node Type Parameters 

Leaf (Distance between 
two customers) 

Distance Option 

Distance between statistical values,  
(average, standard deviation), Euclidean distance,  

DTW distance, Pearson correlation coefficient distance,  
k-sliding distance 

Input Domain Time domain, Frequency domain, Slope domain 
Weight 0~1 

Additional Factors 
Unity operator: sin, cos, square, 1/x, square root,  

Peak parameter: peak-weight, peak-penalty 
Non-Leaf Summation, Subtraction, Maximum, Minimum, Average, Multiplication 

Peak-weight: additional weight included if energy usage is close to its maximum; peak-penalty: additional 

weight included if energy usage is close to its minimum. 

5. Assessment of Distance According to Genetic Programming  

Unlike ordinary clustering, both training and test data are needed because the result of the GP must 

be verified by another test set. This is because GP inherently uses the result in the training phase.  

We used two scenarios for verification of the GP framework. The first one is determination of the 

principle of each expert. In this scenario, both test and training data are generated by the same expert. 

In other words, the answers of expert #1 for the southern region are input into the GP as training data, 
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and the resulting tree is used as the distance in the k-means clustering for the northern region.  

As a result, the entropy for the northern region is analyzed. There are four training data sets available, 

those of two provinces and two experts.  

The second scenario is designed to find a common principle of both experts. In this scenario,  

the answers from both experts #1 and #2 for the southern region are input into the GP as a training set. 

The resulting tree is used as the distance in the northern region. A scenario using the northern region as 

a training set is also possible. 

From Figures 15 to 18, each tree resulting from the first scenario is presented. The first common 

observation is that none of the trees include the Euclidean distance. This result indicates that people do 

not see the load pattern in the hyper dimension as does a computer.  

 

Figure 15. Proposed tree for the southern region using the data of expert #1. 

 

Figure 16. Proposed tree for the southern region using the data of expert #2. 
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Figure 17. Proposed tree for the northern region using the data of expert #1. 

 

Figure 18. Proposed tree for the northern region using the data of expert #2. 
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Figure 19. Proposed tree for the southern region using the data of experts #1 and #2. 

 

Figure 20. Proposed tree for the northern region using the data of experts #1 and #2. 
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those of the k-sliding distance. In Figure 23, the distance trained with the same expert clearly provides 

an improved entropy performance, demonstrating 16.1% and 4.7% improvement compared to the 

Euclidean distance and k-sliding distance, respectively. The distances with the other expert and both 

experts, however, provided slightly degraded performances compared to those of the k-sliding distance.  

In Figure 24, for the northern region using the data of expert #2, all three distances determined by 

GP provided a degraded performance compared to that of k-sliding. Even the distance trained by the 

same expert’s answer does not show an improved performance. This exceptional case stems from the 

fact that the generated distance consists of only DTW distances, according to the tree presented in 

Figure 16. The result could be considered to be over-fitting for a special case. This could also happen 

if the expert’s clustering principle drifts according to the input data set. Either way, from this result,  

we conjecture that expert #2 has a relatively fluctuating principle compared to expert #1. 

 

Figure 21. Entropy results for the southern region using the data of expert #1. 

 

Figure 22. Entropy results for the southern region using the data of expert #2. 
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Figure 23. Entropy result for northern region using the data of expert #1. 

 

Figure 24. Entropy results for the northern region using the data of expert #2. 
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k-sliding distance. The second reason is that the two experts have slightly different clustering 

principles according to their individual knowledge. This is verified by the fact that the distance trained 

with the other expert’s answer usually does not provide decreased entropy (Figures 22–24). 

From the results, we conclude that the clustering principle can be derived from a single expert. This, 

however, does not imply that the clustering principle of a group of experts cannot be derived. Actually, 

the results show that a clustering principle actually exists for a certain expert. We expect that a more 

sophisticated derivation of the clustering principle can be determined for a group of experts, even 

though the result was not improved compared to that of the proposed k-sliding distance in our 

experiment due to a small number of experts. 

In summary, in all cases involving two provinces and two experts, the principle found with the GP 

was mainly composed of the k-sliding distance and DTW distance in the time domain and slope 

domain. The result of the GP showed the possibility of finding clustering principles because it showed 

an improved result compared to the Euclidean distance in all of the cases and compared to the 

proposed k-sliding distance in most of the cases.  

6. Conclusions 

Although the clustering of electricity customers is essential to various applications, the definition of 

good clustering is ambiguous in real scenarios. This ambiguity was the motivation for this research. 

This study can be considered a turning point in customer clustering for real applications. 

In this paper, we moved our focus from clustering itself to real applications. A novel k-sliding 

distance was proposed for clustering and was verified through experiments. The results strongly 

suggest that the k-sliding distance is a good distance measure for electricity customer clustering,  

at least in the field of demand response. 

A genetic programming framework was also proposed to derive clustering principles. Although the 

design of an optimal genetic programming framework itself is an important topic for another 

independent research project, we hereby verified that the derivation of clustering principles is possible 

with the proposed simple genetic programming framework for real applications such as demand response. 

From the result we described in this paper, it would be interesting to apply the clustering to 

application scenarios. We are planning to verify the effect of the proposed clustering in a real demand 

response system in the near future. 
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