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Abstract: Various predictive models about the residential energy demand and residential
renewable energy production have been proposed. Recent studies have confirmed that they
are not normally distributed over time. The increase in renewable energy installation has
brought the issue of energy storage charge and discharge control. Thus, storage control
methods that properly address non-normality are required. In this paper, we formulated the
economically optimal storage control problem using Markov decision process (MDP) and
the conditional value at risk (CVaR) measure to deal with the non-normality of predictive
distribution about the household’s net load. The CVaR measure was employed to treat
with the chance constraint on the battery capacitor, in other words, overcharge risk and
over-discharge risk. We conducted a simulation to compare the annual economic saving
performances between two MDPs: one is the MDP with a Gaussian predictive distribution
and the other is the MDP with a normalized frequency distribution (non-normal). We used
the real time series of 35 residential energy consumption and PV generation data in
Japan. The importance of addressing the non-normality of random variables was shown
by our simulation.

Keywords: battery operation; renewable energy; Markov decision process (MDP);
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1. Introduction

Geopolitical and environmental concerns regarding traditional energy resources has increased the
number of renewable energy source installations, such as photovoltaics (PV) and wind energy [1].
A supply-demand imbalance is one of the typical issues related to the stochastic behavior of renewable
energy sources [2]. In order to minimize this supply-demand imbalance, many methods that address
energy storage, such as thermal storage, pumped hydro storage, compressed air storage, flywheels, and
batteries, have been proposed [3].

Energy storage mitigates the stochastic variability of renewables. Because these types of energy
storage are expensive, two primary usage issues arise: the need to determine the economically optimal
storage capacity for a specific usage and the need to determine optimal control policies for direct
operational decisions using evaluation criteria [4]. This paper focuses on the latter issue.

Recently, researchers have begun ensuring their access to real time series data concerning household
energy consumption and proposing various predictive models that address residential energy demand
and residential renewable energy production [5,6]. Studies have confirmed that, in certain areas, PV
power production, wind power production, and residential energy demand for a given period of time are
not normally distributed [7,8]. Furthermore, Moazeni [9] has indicated that real-time prices are also not
normally distributed.

As stochastic models of renewable production and residential energy consumption were developed,
they began to be incorporated in studies concerning optimal storage control [10–12]. Moreover, as
the statistical non-normality of these stochastic processes became better understood, approaches that
introduces the risk measure to evaluate the losses from non-normality were developed [9,13,14].
Risk measure is commonly used to measure and limit the costs came from such stochastic variability.
Conventionally, the α-percentile point of a given probability distribution was employed as a risk
measure. It is also known as the value at risk (VaR), and is represented by VaRα(X) with the random
variable X [15]. Because VaR is convex measure as long as X belongs to Gaussian subspace, it
has played important role in the typical optimization problem: mina,b VaR(aX + b). However VaR
is basically not a convex measure if X belongs to non-normal subspace. It is for this reason that
other convex risk measures for non-normal random variables have been recently applied, such as the
conditional value at risk (CVaR) [15–17].

Multiple optimal control methods that consider the stochasticity of related variables and their risk
measure have been proposed. For example, Moazeni et al. [9] introduced economically optimal methods
that consider the real-time market price spiking risk using a CVaR measure. Tajeddini et al. [13]
considered not only the real-time market price spiking risk but also the spot-order risk in order to address
the supply-demand imbalance in the real-time market. They also employed the CVaR as the risk measure
and described the optimal storage control problem as a scenario-based optimization problem, solving it
numerically. Qin et al. [14] also employed a risk measure similar to the CVaR in order to consider
the spot-order risk and solve the supply-demand imbalance in the real-time market. They described the
problem as a convex optimization problem and solved and analyzed it using a dynamic programming
method. The relationship between their measure and the CVaR is explained in this paper (Section 2.1).
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In this paper, we propose the economically optimal storage control problem and a solution that
uses the CVaR measure for the battery overcharge and over-discharge risks. Furthermore, with this
method, we demonstrate the importance of addressing the non-normality of the random variables, such
as demand and renewable production. In other words, in order to avoid economic inefficiency, we
should not use the normal distribution approximation. The relationship between our approach and past
approaches are as follows. As was mentioned, the authors of [13,14] also introduced spot-order risk for
solving the supply-demand imbalance in the real-time market. In [14], consideration is limited to the
over-discharging risk. They employed a hinge loss function to evaluate this risk. In [13], not only is
the over-discharging risk addressed but also the over-charging risk. If a user cannot effectively consume
the reserved energy in the day-ahead market, additional renewable energy production must be sold in
the spot market. This situation is known as over-charging risk. Although both of the over-charging and
over-discharging risks help us to avoid the opportunity loss, the authors of [13] applied scenario-based
modeling and optimization in order to derive the cost optimal storage operation. Our model is based on
the transition probability and is not scenario based. There are many analytical studies and approximations
based on dynamic programming [12,14]. Problem formulation based on transition probability could
pave the way for the future research. Thus, our cost function considers both the over-charging and
over-discharging risks, and we apply a transition probability method in order to model the problem.
Especially, we not only employ CVaR as the risk measure but also account for the association between
the CVaR and the hinge loss function used in [14]. Explanation about these association would be useful
for the unified designing methodology for the storage control problems explained in [18].

The rest of the paper is organized as follows. In Section 2, we formulate the economically optimal
storage control problem. We employ MDP to deal with non-normality of the transition probability.
We introduce risk measures to implement the constraint condition on the storage capacity. In Section 3,
we prepare two transition probability models for MDP. One is normal distribution model and the other is
frequency distribution as a non-normal distribution. Finally, we evaluated the capability of the proposed
MDP to deal with non-normality of transition probability in Section 4.

2. Problem Formulation

At first, we define the term “net load” which represents the difference of power generation and
electricity consumption in a single household. In what follows, net load is treated as a random variable.
In Section 2.2, an optimal storage management problem for a single household is formulated using a
MDP to deal with the non-normality of the net load quantitatively [19]. Additionally, we consider the
over-charging risk and the over-discharging risk caused by this non-normality. While we employed
a discrete time MDP, these risks occur regardless whether we use a continuous time MDP or not.
This problem is applicable to all non-normal transition probability models.

It is important to note that the considered market in this study is the traditional one where we can
purchase the electricity at any given time with deterministic price. This situation currently applies in
Japan and in several other jurisdictions. We formulate the model to purchase the electricity at a regular
interval and resolve the urgent shortage of electricity during this interval at the same market. This urgent
shortage is, in other words, the occurrence of risk event.
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Let us begin by introducing a risk measure for the MDP formulation.

2.1. Risk Measures

First of all, we review the risk measures which are widely used in the recent storage management
researches. Then using the introduced risk measure, we explain the undesirable case in which
unnecessary costs are incurred if we approximate a non-Gaussian distribution using a Gaussian
distribution. It is important to recognize the applicable limit of Gaussian approximation before
formulating the problem which can deal with any non-Gaussian distribution.

Let us introduce the risk measures VaR and CVaR. Risk measures are commonly used to measure and
limit the stochastic variability of losses [15]. As we explained before, θ = VaRα(X) is just the infimum
of α-percentile point of X [16]. The risk measure CVaRα(X) of random variable X is defined as the
conditional expectation within the domain greater than α-percentile:

CVaRα(X) = EX [X|X > θ] (1)

=

∑
x>θ x · Pr(X = x)

Pr(X > θ)
(2)

=

∑
x>θ x · Pr(X = x)

1− α
(3)

In the recent storage management research field, researchers begin to introduce the well-studied risk
measure, such as the VaR or CVaR [9,13]. Moazeni et al. [9] and Tajeddini et al. [13] defined the
cost function for an optimal storage operation problem. Let us introduce deterministic decision variable
x ∈ X and cost function C(x). Because their cost function C(x) was the random variable, they defined
the objective function not only based on the expectation value but also on the CVaR. The objective
function they defined was in the form of Equation (4) with constants κ and λ:

J(x) = E[C(x)] + λ (CVaRα (C (x))− κ) (4)

We can understand λ is the Lagrange multiplier for the constraint optimization problem:

min
x∈X

E[C(x)] (5)

s.t. CVaRα (C (x)) < κ (6)

This is a fairly typical usage of the risk measure [20]. Qin et al. [14] proposed the cost function
which doesn’t have apparent connection with CVaR; there exists a close relationship between them.
They introduced a market-recourse-cost function to prepare for anticipated requisite to purchase at the
balancing market in the future. We represent the anticipated net load by a random variable Y , and the
power price at the balancing market by a constant value c. The market-recourse-cost function is a kind
of expected cost such that:

U = c EY [max(0, Y )] (7)

Note that Equation (7) is a type of CVaR, because Equation (7) is equivalent to:U = c · (1− β) · CVaRβ(Y )

β = Pr(Y ≤ 0)
(8)
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It is easily proved using EY [max(0, Y )] =
∑

y>0{y · Pr(Y = y)}.
A few years ago, many researches approximated residential energy demand and residential renewable

energy production using a Gaussian distribution [5]. However, as Munkhammar et al. [21] suggests,
residential electricity consumption effectively follows the Weibull distribution. It is ofen the case that
underestimate or overestimate of the risk occurs, if we incorrectly approximate the skewed real data
using a Gaussian distribution. Figure 1 compares Gaussian distribution and Weibull distribution which
have same mean value and same standard deviation. Despite there are not a cause for concern to occur the
gray area, we are required to purchase the electricity to avoid the risk in case we employ the Gaussian
approximation. In the storage management problem, underestimation and overestimation of the risk
correspond to the over-discharging and over-charging risks, respectively. They would result in additional
costs such as purchases at balancing market, opportunity loss, battery degradation and so on.
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Figure 1. Gaussian and Weibull distributions with equal mean values and standard deviations.

We employ the CVaR measure for the storage management problem to deal with non-normal
predictive models on energy demand and productions. Our model is based on direct specification of θ for
calculating CVaR EX [X|X > θ] unlike in past researches [9,13] which employ the empirical percentage
parameter α for CVaR such as 95%. Moreover, based on a CVaR measure, we can systematically design
cost functions including the previous cost function Equation (7) [14].

2.2. Storage Management Problem

Let lh be a random variable of the net load per hour from time h. Let sh ∈ S ⊂ R be a variable of the
state of charge (SOC) at time h. S is a closed set that S = [0, Smax] where Smax is the battery capacity.
Let ah ∈ A ⊂ R be a forward contract of the power purchase from time h to h + 1 at the day-ahead
market. A is a closed set that A = [0,Amax] where Amax is the upper limit of the power purchase per
unit of time. Let ph be a constant value of power price from time h to h + 1 at the day-ahead market.
Contract ah at the day-ahead market requires us to pay:

C0,h = phah (9)
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To define the transition probability Pr(sh+1|sh, ah), we define the event set under which over
discharging occurs:

L1 = {L | sh + ah + L ≤ 0, L ∈ R} (10)

We also define the event set under which over charging occurs:

L2 = {L | Smax ≤ sh + ah + L, L ∈ R} (11)

The sets L1 and L2 are determined under a given value of ah and sh.
We define transition probability toward sh+1 = 0 as:

Pr(sh+1 = 0|sh, ah, lh−1) =

∫
L1

dL Pr(lh = L|lh−1) (12)

We also define transition probability toward sh+1 = Smax as:

Pr(sh+1 = Smax|sh, ah, lh−1) =

∫
L2

dL Pr(lh = L|lh−1) (13)

If 0 < zh+1 = sh + ah + L < Smax is met, transition probability toward sh+1 = zh+1 is defined as:

Pr(sh+1 = zh+1|sh, ah, lh−1) = Pr(lh = L|lh−1) (14)

By marginalization, we get:

Pr(sh+1|sh, ah) =

∫
dl0...dlh−1Pr(sh+1|sh, ah, lh−1)

h−1∏
i=1

Pr(li|li−1) (15)

We are exposed to the over discharging risk and the over charging risk in conjunction with contract
ah. We employ CVaR measure to evaluate these risk from time h to h + 1. In other words, we employ
the conditional expectation as we showed in Equations (1)–(3). Over discharging risk is calculated as:

C1(sh,ah, lh−1) = −ph

∫
L1

dL (sh + ah + L)Pr(lh = L|lh−1)∫
L1

dL Pr(lh = L|lh−1)
(16)

The over charging risk is similarly calculated as:

C2(sh,ah, lh−1) = ph

∫
L2

dL (sh + ah + L)Pr(lh = L|lh−1)∫
L2

dL Pr(lh = L|lh−1)
(17)

By marginalization, we get:

Ck(sh,ah) =

∫
dl0...dlh−1Ck(sh, ah, lh−1)

h−1∏
i=1

Pr(li|li−1) (18)

where k = 1, 2.
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Finally, we define the state value function V π(sh) for a time horizon H . π is a deterministic policy
set π = {πh,πh+1, ...,πh+H} where πh : S → A. With the weight coefficients w1, w2 ∈ R, we define a
loss function Lπ(sh, ah) as:Lπ(sh) = phah + w1C1(sh, ah) + w2C2(sh, ah)

ah = πh(sh)
(19)

Then, the state value function becomes:

V π(sh) = Lπ(sh) + Esh+1,...,sh+H

[
h+H∑
t=h+1

Lπ(st)

]
(20)

= Lπ(sh) +

∫
S
dsh+1 Pr(sh+1|sh, ah)V π(sh+1)

The storage management problem is the minimization of the state value function V π(sh) described in
Equation (20). The optimal power contracts at the each SOC are obtained by minimizing Equation (20):

π∗h(sh) ∈ arg min
ah

V π(sh) (21)

2.3. Discretized Storage Management Problem

In this study, the payments from two different predictive models are compared: one is a normal
distribution and the other is a normalized frequency distribution. As the simple case, we employ the
predictive models which have independence between adjacent net loads, such as lh and lh+1. In what
follows, we discretize the state space and action space of previous optimization problem.

2.3.1. State and Action Spaces

We described time of day using H = {0, 1, ...,H}. Battery capacity is divided into N ∈ N level.
The battery level is represented by the elements of S = {0,∆, ...,N∆}with ∆ = Smax/N Wh. We define
sh ∈ S as a random variable corresponding to the remaining battery level at time h. We also discretize
the admissible action space about the power purchases using set A = {0,∆, ...,A∆}, where A ∈ N.
Here, A∆ is the upper limit of the power purchase per unit of time. Furthermore, we define ah ∈ A be
the amount of power purchase at time h.

2.3.2. Transition Probability

Given time h ∈ H, the net load during time slot [h, h + 1) is defined by discrete random variable
lh. The probability measure of net load lh is modeled from the past d-days in time slot [h, h + 1)

(e.g., Figure 2). The class interval of the distribution Pr(lh) is adjusted to ∆.
Transition probability is calculated as follows:

Pr(sh+1 = 0|sh, ah) =
∑
L∈L1

Pr(lh = L) (22)
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where L1 = { k | 0 ≥ k + sh + ah}, and:

Pr(sh+1 = Smax|sh, ah) =
∑
L∈L2

Pr(lh = L) (23)

where L2 = { k | Smax ≤ k + sh + ah} :

Pr(sh+1 = sh + ah + L |sh, ah) = Pr(lh = L) (24)

otherwise.

Figure 2. Histogram of the energy consumption from 7:30 a.m. to 8:00 a.m. for a
representative household.

2.3.3. Loss Function and Bellman Equation

We let ph (yen/Wh) represent the power price during [h, h + 1), h ∈ H. We define the loss function
l(sh, ah) as:

l(sh, ah) = phah − phw1

∑
L∈L1

(sh + ah + L)Pr(lh = L)∑
L∈L1

Pr(lh = L)

+ phw2

∑
L∈L2

(sh + ah + L)Pr(lh = L)∑
L∈L2

Pr(lh = L)

(25)

Here, w1,w2 ∈ R are the weight coefficients for the constraint regulation cost. Using these weight
coefficients, we can represent the cost as:

• the incurred maintenance cost due to the deteriorating effect of battery overcharge and
over-discharge or
• the incurred recourse cost due to the additional requirement of an intraday trading payment from

the previous day’s trading payment.

The purpose of this MDP is to develop a power purchase program that minimizes the daily electric
bill. The optimal state value function, V ∗(sh), is determined by solving the following Bellman equation:

V ∗(sh) = min
ah
{Q(sh, ah)} (26)
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in which Q(sh, ah) is defined as:

Q(sh, ah) = l(sh, ah) +
∑

sh+1∈S

Pr(sh+1|sh, ah)V ∗(sh+1) (27)

The optimal amount of power purchase at the state sh can be derived:

π∗(sh) = min

{
arg min

ah

{Q(sh, ah)}
}

(28)

Solution Equation (28) enable us to minimize the electricity bill payment.

3. Numerical Experiments

We compare the annual electricity bill payments result from daily storage operation based on two
predictive probability distributions: the frequency distribution and the Gaussian distribution.

At first, we explain about data. Next, we show that the data is not normally distributed. At last, we
present results of annual electricity bill payments.

3.1. Data

In this study, we use the Japanese residential time course dates for photovoltaic generation
and electricity consumption, which were monitored from October 2010 to September 2011, for
35 households in Shiga, Japan [22]. The households were sampled every 30 min.

3.2. Normality Tests and Results

As mentioned in Section 2.3, we modeled the predictive distribution for the net load as an
independent and identically distributed (IID) process. In other words, the predictive distribution are
determined for each hour independently. For the numerical experiments, we prepared 24 histograms
or 24 gaussian distributions as a daily predictive distribution from past 30 days data. A total of
24 (h) × 320 (days) = 7680 distributions were prepared for each household.

We tested the normality of the 7680 histograms using the Shapiro-Wilk test. This test checks the null
hypothesis that samples are generated from normal distribution. We set significance level α = 0.05.
The test is applicable to approximately 30 sample sizes [23].

Figure 3a,c shows the results of the Shapiro-Wilk normality test. We applied this test not only
for net load but also for electricity consumption and PV generation. Figure 3a is the result about
electricity consumption. Y-axis shows the number of null hypothesis rejection and X-axis shows the
household number. An average of 6528 histograms are rejected. Figure 3b is about PV power generation.
An average of 7437 histograms are rejected. Figure 3c is about net load. An average of 5196 histograms
are rejected. The binomial two-sided test with significance level α = 0.05 confirmed that all these results
are significant.

In summary, we can say that the 30-day histogram of net load is not normal.
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Figure 3. The results of normality test for (a) electricity consumption; (b) photovoltaics
(PV) generation; and (c) net load. Y-axis shows the number of non-normal histograms.
Dotted lines show the total number of histograms that were tested.
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3.3. Conditions

The predictive probability distribution of net loads was calculated from the most recent 30 days for
each house and for each day. As we have discussed, one of the predictive distributions employed here
is the normalized frequency distribution. As a control group for this predictive distribution, we prepared
the normal distributions with mean and variance calculated from the most recent 30 days (Figure 4a).
Corresponding normalized frequency distribution is illustrated in Figure 4b.
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Figure 4. Prediction probability distributions of the efficient load over time using the
normal distribution.

We set a power prices based on the time-of-use plan provided by Kansai Electric Power Co., Inc.,
Japan (Figure 5).

To consider the storage capacity, we prepared the following six cases: Smax ∈ {2000, 4000, 6000,
8000, 10,000, 15,000} Wh. For each case, we fix ∆ = 10 Wh. The predictive probability distribution
for the first day is determined using the data between 1 and 31 October.
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Figure 5. Price of electricity provided by power plant.

Furthermore, we consider the following two parameter cases: (w1, w2) = (1.0, 0.0) and
(w1, w2) = (10.0, 0.0). These parameters adjust the constraint regulation cost. The first setting
corresponds to the case in which additional cost is not required. Electricity is available at the same
cost if over-discharging occurs. The second setting corresponds to the case in which additional cost is
required if over-discharging occurs. In these computational example, we ignored the over-charging cost:
w2 = 0.

The annual electricity bill payments are calculated for 35 households.

3.4. Algorithms

We apply a backward induction method (Algorithm 1) to solve the MDP defined in Section 2.3.
In Algorithm 1, lines 1 through 3 initialize the state value function. Subsequently, lines 4–8 update

the state value for each state, and line 9 determines the optimal amount of power purchase.

Algorithm 1 Backward induction
1: for h = 0 to H do
2: for sh ∈ S do
3: V(sh)=0
4: end for
5: end for
6: for h =H−1 to 0 do
7: for sh ∈ S do
8: V ∗(sh) = minah{Q(sh, ah)}
9: π∗(sh) = min

{
arg minah

{Q(sh, ah)}
}

10: end for
11: end for

Proposed problem is solved by the model-predictive manner. We are required to alternate updating
predictive models and solving the planning problem. Predictive distribution of the net load must be
updated using the previous d-days at the end of each day. Then we determine the optimal power purchase
actions of the next day.
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The realized net load and the charge state on the day are not discretized. Therefore, we employ the
projection on the discretized state space s̃∗h = arg minsh∈Sh |sh − s̃h| where s̃h represents the realized
SOC. Then power purchase corresponds to s̃h is determined based on prior planning. If realized net load
causes over-discharge or over-charge, a charge control is employed to maintain 0 ≤ s̃h ≤ Smax.

4. Results

Figure 6 provides an example of the results. This figure shows the annual histogram of the daily
payments calculated for a single house with Smax = 6000 Wh and w1 = 1.0. Histogram (a) is
calculated using the Gaussian predictive distributions. Histogram (b) is calculated using the normalized
frequency distributions. As shown in the histograms, the mean value of the daily payments is improved
by controlling the risk from non-normality.
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Figure 6. The household’s daily payments for one year calculated using (a) the gaussian
predictive distributions and (b) the normalized frequency distributions. Bold vertical line
shows the mean value of each histogram.
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To test the statistically significant improvement in the average of payment histograms, we checked the
normality of each histograms. We apply the Shapiro-Wilk test to every payment histograms. The null
hypothesis is that the distribution is normal. Table 1 shows the number of households in which the null
hypothesis was rejected.

Table 1. Fraction of the 35 households in which the null hypothesis was rejected.

Storage
Weight = 1.0 Weight = 10.0

Gauss Nonparametric Gauss Nonparametric

2000 Wh 23/35 23/35 32/35 33/35
4000 Wh 21/35 20/35 31/35 34/35
6000 Wh 21/35 23/35 33/35 32/35
8000 Wh 19/35 19/35 31/35 32/35

10,000 Wh 19/35 19/35 33/35 31/35
15,000 Wh 19/35 19/35 30/35 30/35

For instance, if we operate the storage management using Gaussian predictive distribution with
2000 Wh storage capacitor under risk weight w1 = 1.0, the annual payment histogram of 23 households
out of 35 households are non-normal. In summary, only about 30% of the data were normal (Table 1).

We applied a nonparametric test, called the one-sided Wilcoxon signed-rank test, to test the
statistically significant improvement in the payment histograms. Null hypothesis is that there is no
difference between the medians of the given two distributions. Alternative hypothesis is that the median
of the normalized frequency distribution is less than that of the normal distribution. We set the level of
significance to α = 0.05.

Table 2 shows the results of the one-sided Wilcoxon signed-rank test. First row shows the calculation
conditions about storage capacitor. Second row shows the number of households that improved the
payments by using the frequency distribution. Third row shows the cost-saving improvement rate which
is calculated from the median values. For instance, if we operate the storage management using the
frequency distribution with 15,000 Wh storage capacitor under risk weight w1 = 1.0, we can save the
annual payment in 34 households out of 35 households with average 0.98 times. We added asterisk in
the second row when the number of improved households were statistically significant. The two-sided
binomial test was used to check this significance. When storage capacitor is greater than or equal to
6000 Wh, statistically-significant superiority of considering non-normality appears. As can be observed
in the third row, the effectiveness of the frequency distribution increases with an increase in the storage
amount. The rate of improvement was from 1% to 10%.
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Table 2. Comparison of annual payments.

Storage
Weight = 1.0 Weight = 10.0

Number of Performance Number of Performance
improved houses (35-house average) improved houses (35-house average)

2000 Wh 21/35 1.00 23/35 * 1.04
4000 Wh 19/35 1.01 19/35 1.07
6000 Wh 24/35 * 0.99 21/35 1.03
8000 Wh 30/35 * 0.98 23/35 * 0.97

10,000 Wh 33/35 * 0.98 27/35 * 0.93
15,000 Wh 34/35 * 0.98 29/35 * 0.90

"*" means there were a significant number of improved houses with significance level α = 0.05.

5. Conclusions

In this paper, we formulated the economically optimal storage control problem using Markov decision
process (MDP) and the CVaR measure to deal with the non-normality of predictive distribution about the
household’s net load. Non-normality of the net load has the possibility to cause the battery overcharge
risk and over-discharge risk in a characteristic fashion. CVaR measure was employed to treat with
these risks.

We checked the superiority of the proposed MDP to deal with non-normality of transition probability
distribution. We compared the economic saving performances between two MDPs: one is the MDP with
a Gaussian predictive distribution and the other is the MDP with a normalized frequency distribution.
Our calculations indicate the annual savings among the households increase up to 10% when we employ
the proposed MDP using the normalized frequency distribution rather than the normal distribution.
Although we observed few case that MDP using the normalized frequency worsen the annual saving,
there are at least two things to note here. One is about the predictive distribution: we have enough options
other than normalized frequency distribution. The normalized frequency distribution was employed just
as an example to show the capability of proposed MDP to deal with non-normality in this paper. It would
be fruitful to explore the other predictive distributions effective for the annual savings of payments.
The other is about a chance to choice the appropriate predictive model. If residents simulate their annual
payments using the previous year data, it is easy to choose the appropriate predictive distributions, the
storage capacitor and so on, for the following year.

At the end of this paper, we pick up an issue in the future. The considered market in the proposed
MDP was the one where we can purchase the electricity at any given time with deterministic price.
The proposed MDP is inapplicable to the market where the electricity is provided with the stochastic
price such as the balancing market. A number of research dealing with this stochasticity are already
existing. Introducing the stochasticity of the power price into the loss function and policy would be
required in the future.
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