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Abstract: This paper presents a novel methodology to detect a set of more suitable attributes 

that may potentially contribute to emerging faults of a wind turbine. The set of attributes 

were selected from one-year historical data for analysis. The methodology uses the k-means 

clustering method to process outlier data and verifies the clustering results by comparing 

quartiles of boxplots, and applies the auto-associative neural networks to implement the 

residual approach that transforms the data to be approximately normally distributed.  

Hotelling T2 multivariate quality control charts are constructed for monitoring the turbine’s 

performance and relative contribution of each attribute is calculated for the data points out 

of upper limits to determine the set of potential attributes. A case using the historical data 

and the alarm log is given and illustrates that our methodology has the advantage of detecting 

a set of susceptible attributes at the same time compared with only one independent attribute 

is monitored. 

Keywords: wind energy; fault detection; auto-associative neural networks; hotelling T2 

control charts 
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1. Introduction 

Wind energy has become one of major sources of renewable energy because of growing 

environmental concerns. A wind turbine extracts energy from the wind and the amount of energy 

extracted depends largely on the wind speed. The power generated by a turbine at various wind speeds 

is described by a power curve that resembles a sigmoid function. Due to the stochastic nature of wind, 

main components of wind turbines like blades and generators are susceptible to various types of faults. 

The frequency and severity of the faults affect operations and maintenance costs, and unscheduled 

shutdowns are costly. Condition and performance monitoring methodologies have been developed to 

detect early faults and reduce unscheduled shutdowns; reviews of the proposed methodologies and 

future research trends are provided [1–3]. 

Condition and performance monitoring based on data mining and statistical methods are developed 

in several studies [2]. More recently, a multivariate outlier detection approach and the use of Hotelling T2 

control charts to monitor the performance of wind turbines was proposed [4]. Integrating the residual 

approach [5] for monitoring the power curves with auto-associative neural networks (AANN) to detect 

the attribute contributing to faults was proposed [6]. Motivated by [4,6], this paper proposes a three-phase 

methodology to detect a set of potential attributes contributing to emerging faults. The first phase 

processes outliers by using the k-means clustering method, and justifies the results by comparing  

both the first and the third quartiles of boxplots before the clustering to those after the clustering.  

The second phase applies the AANN to implement the residual approach that transforms the data to be 

approximately normally distributed. The third phase constructs the Hotelling T2 quality control charts 

using the data from the second phase and calculates relative contribution of each attribute for the data 

points out of upper limits. A case using the historical data collected from the supervisory control and data 

acquisition (SCADA) systems of a wind turbine is given to illustrate the methodology. 

Using the residual approach for performance and condition monitoring of the wind farm and wind 

turbine are presented [6–10]. The AANN is implemented by training artificial neural networks (ANN) to 

perform the mapping by which each output target is approximated to each input attribute [11].  

This one-to-one approximation makes the AANN a useful tool for measuring whether the output target 

has significantly deviated from the input attribute. Applications of AANNs to fault detection are 

presented by [12–16]. 

Our major contributions and comparisons with [4,6] are described as follows: first and foremost, to 

the best of our knowledge, the integration of the AANN and Hotelling T2 method has not been studied in 

the literature. Real contributions of the integration lie in the one-to-one mapping of the AANN to 

produce approximately normally distributed residuals that can be used to construct the Hotelling T2 

control charts for monitoring multivariate simultaneously. Second, the proposed methodology in this 

paper differs from that presented in [4] in three aspects: (1) only bivariate data, which are kurtosis and 

skewness, were considered in [4]; (2) the data were normalized using the Box-Cox transformation in [4]; 

and (3) no significant pattern in the T2 statistic was observed in [4] and thus no subsequent discussions 

on how to identify the attributes contributing to data points out of limits. In addition, compared with [6], 

the proposed methodology improves in three aspects: (1) healthy data are obtained by using the k-means 

clustering method rather by selecting manually in [6]; (2) the multivariate Hotelling T2 statistic is 

computed instead of ranking mean square error (MSE) of the univariate to study only one attribute at a 
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time in [6]; (3) when the faults occur are available from the control charts in this paper, while the power 

curve cannot provide such information in [6]. 

Because the Hotelling T2 control charts consider multivariate simultaneously, answering which of the 

attributes (or which subset of them) is contributing to an out-of-limit data point is not always easy [5].  

A number of approaches proposed in the literature to diagnosis of an out-of-limit data point are 

discussed ([5], pp. 520–521). On the basis of these discussions, we choose to use the approach that 

decomposes the T2 statistic into components reflecting the contribution of each individual attribute [5]. 

The remainder of this paper is organized as follows: Section 2 describes the dataset, Section 3 introduces 

the proposed methodology, Section 4 presents and discusses the results, and Section 5 concludes the paper. 

2. Dataset Description 

The data used in this paper were collected from the SCADA systems of a 2.0 MW wind turbine 

located on the coast of central western Taiwan. An alarm log was also collected. The SCADA systems 

record more than 120 wind turbine attributes and the alarm log provides status and fault information. 

In this paper, we select a subset of attributes from [6] for analysis. The selection is determined mainly by 

preliminary studies on the alarm log, which reveals that the majority of the turbine faults are related to 

this subset. With such a subset of attributes, one may raise concern about the dataset used for the 

validation of the proposed methodology. Attribute extraction is a critical step in machine learning 

problems, whether classification or regression [17]. In general, important attributes can be selected 

initially with using domain knowledge and finally with data mining algorithms. Previous studies have 

applied data mining algorithms, such as ANN, support vector machines (SVM), and ensemble 

classifiers, to extract important information from the data [18]. However, past studies also used the 

methodology that selects only certain related attributes based on the literature and domain knowledge 

in wind energy [19,20]. In addition, standard technique used nowadays for fault diagnosis in wind 

turbines is to identify critical attributes by an expert and to develop a regression model to predict the 

failure [18]. Zaher et al. [20] mentioned that the methodology developed in their study can be applied 

by wind farm operators. The explanations above can justify our use of the dataset. 

A set of example statistics from January 2009 is provided in Table 1 to illustrate the magnitudes of the 

attributes, where “Components or subsystems” refers to [21]. Examples of a partial alarm log are 

provided in Table 2. As certain faults are relatively rare, the imbalance level between the alarm logs 

and normal performance of the wind turbine state data not only makes early prediction of fault  

difficult but also is considered an open issue in machine learning and data mining applications.  

General techniques to balance the dataset include: (1) oversampling; (2) undersampling; (3) threshold 

moving; (4) ensemble techniques [22]. Techniques to balance the dataset are not implemented in this 

paper and the discussion of the final analysis will be given later. 

The SCADA data in this paper were collected at 10-min intervals from 1 January 2009 to  

31 December 2009, and the most recent data are not available for this study. For the turbine selected, 

the cut-in speed is 4 m/s, the rated speed is 16 m/s, and the cut-out speed is 25 m/s. The average wind 

speeds recorded by the turbine were 7.96 m/s. 
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Table 1. Attributes selected and their basic statistics for January 2009. 

Number 
Components or 

Subsystems 
Name of 

Attributes 
Unit Minimum Maximum Average 

Standard 
Deviation 

1 Meteorology Wind speed m/s 0.3 26.5 12.19 5.97 

2 Rotor system Pitch angle ° −2.3 89.5 69.67 33.53 

3 Gearbox 
Gear bearing 
temperature 

°C 15 89 33.89 19.04 

4 Gearbox 
Gear oil 

temperature 
°C 17 79 32.25 15.43 

5 Converter Power output kW −21.5 2000.8 328.81 695.76 

6 Generator 
Generator bearing 

temperature 
°C 12 78 28.86 20.24 

7 Generator Generator speed rpm 0 1972 427.86 784.43 

8 Rotor system Rotor speed rpm 0 16.3 3.43 6.54 

Table 2. Sample of partial alarm log. 

Description Detected Log Type 

Pause pressed on keyboard 21 January 2009, 02:56:29 Alarm log 
Start auto-outyawing 23 February 2009, 05:02:32 Alarm log 

High wind speed: 25.1 m/s 13 March 2009, 09:41:26 Alarm log 

3. Research Methodology 

The research methodology is shown in Figure 1 and each phase is described in subsequent sections. 

 

Figure 1. Research methodology. 

3.1. Processing Outliers 

Outliers are largely due to stochastic nature of wind or sensor errors and affect the prediction 

accuracy of the model if they are not well processed. To delete outliers for constructing a normal 

behavior, a multivariate detection approach using Mahalanobis distance was proposed in [4]. Let Dij 

denote Mahalanobis distance between instances xi and xj, then Dij is calculated as the following: 

Dij = )()( 1
ji

T
ji xxSxx   , i ≠ j (1)

where S−1 is the inverse of covariance matrix. Simply calculating Mahalanobis distance can be 

misleading in the sense that data points close to cut-in wind speed, or/and near rated wind speed are 

considered as outliers but in fact they are not [4]. Therefore, data are grouped into smaller clusters to 

improve the detection of outliers. In this paper we follow the approach presented by [4] that applies the 

k-means clustering algorithm to group each attribute into smaller clusters, but we additionally use the 

first and the third quartiles of boxplots to verify whether the clustering results are improved after 

deleting outliers. 
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3.2. Auto-Associative Neural Networks (AANN) Model 

A typical AANN model consists of five layers: an input layer, a mapping layer, a bottleneck layer,  

a de-mapping layer, and an output layer (Figure 2). In the context of the ANN model, the mapping 

layer, bottleneck layer, and de-mapping layer are classified as hidden layers. The AANN operates by 

training a feed-forward ANN to perform the mapping, where the input data are approximated at the 

output layer. If the number of nodes in the mapping and de-mapping layers are both k and the number of 

nodes in the bottleneck layer is p, the network is referred to as n-k-p-k-n, as shown in Figure 2, and we 

will use this representation below. The number of nodes in the mapping and de-mapping layers are equal 

and, in general, greater than the number of nodes in the input and output layers. 

 

Figure 2. Structure of an auto-associative neural networks (AANN). 

The bottleneck layer plays a central role in forcing the network to develop a reduced representation 

for the input data. The AANN uses a nonlinear function to map from the higher-dimension input space 

to the lower-dimension bottleneck space, followed by an inverse mapping from the bottleneck space 

back to the space represented by the output layer [11]. Due to the mapping from higher to 

lower-dimensions, the bottleneck layer contains fewer nodes than the input and output layers and 

extracts important attributes by eliminating redundant and insignificant data. After the network is 

trained to map the input data onto itself through the bottleneck layer, the network should be able to 

map new data that was unused for training. As long as the new data and the training data are from the 

same source, failure to map the new data suggests that the attributes may have changed and thus 

increases the magnitude of the residuals between the new data and the trained data. 

The selection of the number of nodes in the bottleneck layer determines the order of reduction.  

To select the number of nodes in the bottleneck layer, the fraction of explained variance (FEV) was 

proposed in [23] as follows: 

FEV = 
])([

])(ˆ[
2

2

txE

txE
 (2)

where x(t) is the input vector and )(ˆ tx  is the reduced vector. 

The FEV indicator is analogous to the eigenvalues of the covariance matrix that explain the 

percentage captured by the principal component analysis. To attain a prescribed FEV, the number of 

nodes in the bottleneck layer is gradually increased during the training process until the prescribed FEV 

is achieved [23]. 

1x̂

nx̂



Energies 2015, 8 12105 

 

 

To measure the residuals between the input vector (x1, …, xn) and the output vector ( nxx ˆ ., . . ,1̂ ),  

as shown in the example in Figure 2, we compute their MSE according to the following expression: 

MSE =  



n

i
ii xx

n 1

2ˆ
1

 (3)

In general, there exists an inverse relationship between the MSE and the FEV, such that the larger FEV, 

the smaller MSE, and vice versa. The relationship simply describes that more nodes in the bottleneck 

layer correspond to a smaller error between (x1, …, xn) and ( nxx ˆ ., . . ,1̂ ). In theory, if p equals to n, then the 

MSE is approximately zero and the FEV is approximately one.  

3.3. Hotelling T2 Control Charts 

Simultaneous monitoring more than one quality attribute in practice is common, which means that 

monitoring attributes independently could be misleading. In this paper, we consider multivariate 

process monitoring using the Hotelling’s control chart. For the subgroup size n = 1, the Hotelling T2 

statistic is calculated as [5]: 

T2 =  Txx  S−1  xx   (4)

where x is the observation vector, x  is the sample mean vector, and S−1 is the inverse of  

covariance matrix. 

The upper control limit (UCL) is calculated as the following [5]: 

UCL =
  

pmpF
mpm

mmp
   ,  , 2

11



  (5)

where m is the number of samples, p is the number of attributes, and Fα, p, m − p is obtained from F distribution. 

To interpret out-of-control observations, one can decompose the T2 statistic into components that 

reflect the contribution of each independent attribute [5]. Let T2 be the value of the overall statistic,  

and 2
)(iT  be the value of the statistic for all attributes excluding the i-th one. Then: 

di = T2 − 2
)(iT  (6)

is the relative contribution of the i-th attribute to the overall statistic. When an out-of-control data  

point occurs, computing di and focusing on those relatively large attributes can be useful for the 

detection of anomaly. 

4. Results and Discussion 

This section discusses the results of processing outliers, training the AANN model, and constructing 

the Hotelling T2 control charts for detecting the potential attributes. 

4.1. Clustering for Processing Outliers 

Before clustering, data with missing values or out-of-range values, such as negative power output,  

are deleted and then normalized. As described earlier, to improve the detection of outliers, we use the 

k-means clustering algorithm to group each attribute with respect to wind speed into small clusters.  
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In this context, the subscripts i and j of Dij in Equation (1) represent each attribute and wind speed, 

respectively. To determine the number of k for the k-means clustering algorithm, we measure the 

difference of distances between consecutive clusters. Using the rotor speed for an example, consider 

Figure 3, where two “elbow” points are circled in red. The two points suggest that the number k may be 

9 or 18. After investigating in more details for the two cases, we found that more normal data are 

deleted when k is 9 and thus k is determined to be 18. Figure 4 shows the 18 clusters of rotor speed 

obtained in different colors. Clusters of other attributes are obtained in a similar way. For brevity, we do 

not show boxplots here but instead provide Figure 5, where both first quartile (Q1) and third quartile (Q3) 

are smaller after outliers are deleted. Smaller Q1 and Q3 mean that data belonging to the same cluster are 

more alike. After processing outliers with respect to each independent attribute, we intersect common 

records and obtain a total of 10,903 for constructing the AANN model. 

 
Figure 3. Relationship between the number of clusters and the distance. 

 
Figure 4. Rotor speed distributions in 18 clusters. 
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Figure 5. First quartile (Q1) and third quartile (Q3) in 18 clusters of rotor speed. 

4.2. Training AANN 

It is well known that too many nodes in the hidden layers will produce an over-fitted network, and  

a specific number of hidden neurons above which the performance of the network begins to  

degrade [23]. In general, determining the best size of the network is not straightforward and may be 

found only through a process of trial and error [24]. The process can be performed by generating 

different types of structures with a different number of nodes and then selects the structure that appears 

to be more optimal [24]. As a rule of thumb, the number of nodes in the bottleneck layer should be less 

than that of input layer so that the network does not memorize the input data. To prevent over-fitting and 

to achieve the desired performance, our methodology for selecting the number of bottleneck nodes is to 

start the bottleneck layer with one node and the mapping and de-mapping layers are started with  

a number of nodes greater than the input layer. Various metrics can be considered for measuring the 

prediction accuracy of the model. The MSE is used for selecting the AANN structure [24,25]. Increasing 

the number of nodes in the bottleneck layer both improves the network performance (MSE decreases) 

and increases the FEV [26]. In this paper, we consider both the MSE and FEV simultaneously to 

determine the best structure of the AANN [6]. 

Several types of the AANN structures are generated based on the rule just described above and their 

FEVs and MSEs are shown in Table 3. To determine the best structure, we consider the number of nodes 

in the bottleneck layer first. To gain insights into the relationship between the FEV and MSE with 

respect to the number of nodes in the bottleneck layer, we calculate average FEV and MSE of each 

structure with the same number of bottleneck nodes and provide them in Figure 6. The stopping criteria 

used for selecting the number of nodes in the bottleneck layer is to observe whether error percentages of 

the FEV and MSE change marginally. The error percentages of both FEV and MSE are provided in 

Table 4 and shown in Figure 6 in which the error percentages appear to change marginally when the 

number of nodes in the bottleneck layer is two, in the sense that two is a reasonable choice for the 
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for selecting the number of nodes in the mapping layer is explained as follows. Recall that the mapping 

layers are started with a number of nodes greater than the input layer. Consider 8-9-2-9-8, 8-10-2-10-8, 

and 8-11-2-11-8 in Table 3 as examples. The MSEs of the three structures are 0.0139, 0.0167, and 

0.0183, respectively, which show a trend of gradual increase as the number of nodes in the mapping 

layer increases. This degrading performance indicates that selecting 9 for the mapping layer would avoid 

over-fitting. On the basis of the explanations just given above and considering MSE and FEV together in 

Table 3, we select 8-9-2-9-8 as the AANN structure. 

Table 3. Training results of the auto-associative neural networks (AANN) structures. 

Structure Mean Square Error (MSE) Fraction of Explained Variance (FEV) 

8-9-1-9-8 0.3211 0.6805 
8-10-1-10-8 0.2704 0.7292 
8-11-1-11-8 0.1911 0.8015 
8-12-1-12-8 0.3285 0.6713 

8-9-2-9-8 0.0139 0.9843 
8-10-2-10-8 0.0167 0.9809 
8-11-2-11-8 0.0183 0.9764 
8-12-2-12-8 0.0205 0.9783 

8-9-3-9-8 0.0063 0.9938 
8-10-3-10-8 0.0062 0.9915 
8-11-3-11-8 0.0060 0.9926 
8-12-3-12-8 0.0050 0.9946 

8-9-4-9-8 0.0050 0.9960 
8-10-4-10-8 0.0052 0.9943 
8-11-4-11-8 0.0022 0.9974 
8-12-4-12-8 0.0035 0.9965 

Table 4. Error percentages of average MSE and FEV. 

Number of Nodes in the Bottleneck Layer Average MSE Average FEV 

1 0.2778 0.7206 
2 0.0173 0.9800 
3 0.0059 0.9931 
4 0.0040 0.9961 

 
Figure 6. Number of nodes in the bottleneck layer versus prediction error percentage. 
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4.3. Constructing Hotelling T2 Control Charts 

The Hotelling T2 statistic requires the data to be normally distributed. To deal with the requirement, 

we follow the residual approach presented in [6,9,10]. In addition, histogram of the residuals is provided 

to check whether the residuals follow a normal distribution [27]. Take generator bearing temperature for 

example. Figure 7 shows the standardized residuals of the generator bearing temperature where the 

normality assumption appears to be justified. Once the residual data calculated from the AANN are 

available, we use Equation (5) to calculate the UCL, where the value of α is set to 0.001 [4]. Data points 

larger than T2 statistic are deleted and the training process is repeated until all data points meet the 

control limits, which produces the UCL of 24.3691 as shown in Figure 8. The number of data points 

meeting the control limits is 10,135. 

 
Figure 7. Standardized residuals of the generator bearing temperature. 

 
Figure 8. Control limits for residual data points of the generator bearing temperature. 
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various types of anomalies that are determined by the fact that original values of some attributes such as 

rotor speed change marginally while others considerably. These susceptible data points may reveal 

important information of attributes contributing to the fault later. We need to point out that susceptible 

data are not limited to those circled in red. Recall UCL is 24.3691. Due to the scale of vertical axis 

required to reflect large T2 values of several data points, the data with smaller T2 values are not circled 

even they are greater than the UCL. In fact, those data points with large T2 values in Figure 10 are mostly 

the same data points circled in red in Figure 9. Some form of relationship between abnormal power 

output and large T2 value appears to exist in Figure 11, which leads to an interesting question as to 

whether simply monitoring the Hotelling T2 statistic can detect faults earlier. 

 
Figure 9. Power output from 1 January 2009 to 20 January 2009. 

 
Figure 10. Control limits for residual data points from 1 January 2009 to 7 January 2009. 

 
Figure 11. Power output versus Hotelling T2 statistic from 1 January 2009 to 7 January 2009. 
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Data points between 727 and 811 circled in red in Figure 12 are susceptible. Recall that the Hotelling T2 

control charts consider multivariate simultaneously and thus identifying which of the attributes  

(or which subset of them) contributing to an out-of-control data point is challenging. To cope with the 

challenge, [5] introduces the method that decomposes the T2 statistic into components reflecting the 

contribution of each attribute. Therefore, we use Equation (6) to compute relative contribution of each 

attribute to the overall T2 statistic. 

 
Figure 12. Control limits for residual data points from 5 January 2009 to 7 January 2009. 
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For example, it can be observed that the 730-th data point in Figure 13 is greater than the UCL, 
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Other susceptible attribute at the 730-th data point includes gear oil temperature. Montgomery [5] (p. 511) 

illustrates a case where the data point would be inside the control limits on both of the univariate charts, 

yet when the two variables are examined simultaneously, the unusual behavior of the point is fairly 

obvious. The illustration suggests that both pitch angle and gear oil temperature are attributes more 

likely than others contributing to the fault later. 

 
Figure 13. Relative contribution of pitch angle to overall T2 between 727 and 811 data points. 
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4.5. Advantages of Obtained Results Using the Proposed Methodology 

On the basis of the preceding study on a short period, we investigate entire year and summarize the 

results in Table 5. The second column in Table 5 represents the set of attributes in order of occurrence 

frequency from left to right. For example, ABF represents that pitch angle (A) occurs the most frequent 

over 1–7 January 2009, followed by gearbox bearing temperature (B) and by power output (F). The third 

column in Table 5 is determined by the alarm log and includes two types of categories: Either 

“undetermined” or exact turbine’s component. The undetermined category indicates that the alarm log 

does not provide sufficient information to identify which component is anomalous. According to Table 5, 

pitch angle, gear bearing temperature, generator bearing temperature, and generator speed are almost 

included in each period. This suggests that our methodology has the advantage of detecting a set of 

susceptible attributes at the same time compared with only one independent attribute is monitored. 

Since Table 5 is summarized based on the data of an entire year, Figure 14 shows the graph of the T2 

statistic for residual data points ranging only from 1 January 2009 to 30 June 2009 to provide better 

visual illustration that follows. For example, three red circles in Figure 14 correspond to the first three 

short periods in Table 5. One can observe that most of the points in Figure 14 have large T2 values that 

correspond to abnormal power outputs as we mentioned earlier. Although the summary in Table 5 is 

helpful for early detection, one could wonder whether some false alarms were generated based on the T2 

statistical threshold. Due to the imbalance level of the dataset and lack of using the techniques to 

balance the dataset in this study, identifying true false alarms generated is a difficult task.  

The difficulty disables us to provide a receiver operating characteristic (ROC) curve that would help 

summarize the detection accuracy versus false alarm rate. 

Table 5. Potential attributes and identified components in 2009. 

Period Potential Attributes Identified Component 

1–7 January 2009 ABF Undetermined 
22–27 May 2009 ABCD Generator 
1–4 June 2009 ABDC Generator 

29 June–8 July 2009 ABDC Generator 
18–20 July 2009 ABCD Generator 
26–30 July 2009 BCD Undetermined 

2–10 August 2009 ABCD Generator 
31 August–4 September 2009 ABCD Generator 

10–14 September 2009 BCDA Generator 
28–29 September 2009 BCAD Blade pitch 

15–24 October 2009 ABCD Undetermined 
10–13 November 2009 ABDC Blade pitch 
28–30 November 2009 ABDC Undetermined 

A: pitch angle; B: gear bearing temp.; C: generator bearing temp.; D: generator speed; F: rotor speed. 
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Figure 14. T2 statistic for residual data points from 1 January 2009 to 30 June 2009. 

5. Conclusions 

This study proposes a three-phase methodology for detecting a set of attributes of the wind turbine 

using the SCADA data. We process outlier data by using the k-means clustering method and justify the 

results by comparing quartiles of boxplots in the first phase. After processing the outliers, we apply the 

AANN to implement the residual approach in the second phase. We construct the Hotelling T2 quality 

control charts and detect the set of attributes for data points out of control limits in the third phase.  

The detection relies on calculating relative contribution of each attribute to the overall Hotelling T2 

statistic. Observing power output and T2 statistic simultaneously reveals an interesting question as to 

whether monitoring the Hotelling T2 statistic can help detect faults earlier. 

The study contains several limitations for future work. First, better techniques for attribute selection 

remain worthwhile to improve research contributions and domain knowledge regarding to the 

operational ranges of the attributes may be incorporated to improve the detection of outliers. Next, 

accurately identifying which subset of the attributes contributing to an out-of-control data point remains 

a challenging issue. Instead of computing relative contribution of each attribute to the overall T2 

statistic as used in the paper, alternative approaches to dealing with the challenge is needed. One may 

consider developing a diagnosis method that uses the contribution values as inputs. Moreover, how to 

update the model or baseline over time deserves study. Finally, pitch angle is in most cases identified as 

an attribute contributing to the fault, which may be in large due to turbine’s inability to adjust its pitch 

angle in time to wind speed. One may consider using moving average windows so that pitch angle can be 

monitored more closely. 
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