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Abstract: The installation of stationary super-capacitor energy storage system (ESS) in 

metro systems can recycle the vehicle braking energy and improve the pantograph voltage 

profile. This paper aims to optimize the energy management, location, and size of stationary 

super-capacitor ESSes simultaneously and obtain the best economic efficiency and voltage 

profile of metro systems. Firstly, the simulation platform of an urban rail power supply 

system, which includes trains and super-capacitor energy storage systems, is established. 

Then, two evaluation functions from the perspectives of economic efficiency and voltage 

drop compensation are put forward. Ultimately, a novel optimization method that combines 

genetic algorithms and a simulation platform of urban rail power supply system is proposed, 

which can obtain the best energy management strategy, location, and size for ESSes 

simultaneously. With actual parameters of a Chinese metro line applied in the simulation 

comparison, certain optimal scheme of ESSes’ energy management strategy, location, and 

size obtained by a novel optimization method can achieve much better performance of metro 

systems from the perspectives of two evaluation functions. The simulation result shows that 

with the increase of weight coefficient, the optimal energy management strategy, locations 

and size of ESSes appear certain regularities, and the best compromise between economic 

efficiency and voltage drop compensation can be obtained by a novel optimization method, 

which can provide a valuable reference to subway company. 
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1. Introduction 

In recent years, with the rapid development of the Chinese economy, growing environmental 

pollution, and traffic congestion in major cities are becoming serious social issues. For the purpose of 

improving the urban environment and energy efficiency, the development of modern urban rail transit, 

which has the significant advantages of large capacity, punctuality, safety, energy conservation, and 

environmental protection, becomes a social consensus [1,2]. Low running resistance and the reuse of 

braking energy are two main factors that make urban rail transit better than other means of transport in 

energy efficiency. Recent studies have shown that up to 40% of the energy supplied to electrical rail 

guided vehicles could be recovered through regenerative braking [1]. In a metro network system, the 

trains are accelerated and braked frequently. Since most of the rectifiers in the metro network are 

unidirectional, the regenerative braking energy cannot be returned to the supply network, and if there 

are no adjacent accelerating trains or energy storage system to absorb the regenerative energy, the 

surplus braking energy has to be wasted on the mechanical braking or on-board resistors. If different 

trains are close to each other and they start all together, contact lines will become overloaded and the 

pantograph voltages of trains will drop significantly, which results in high lines loss and the opening of 

minimum voltage protective action of trains by limiting the current. Hence, the installation of energy 

storage systems in urban railway transit has become a universal concern, which can recycle the 

regenerative braking energy, prevent regeneration cancellation, shave the peak power of substations, 

and compensate the voltage drops of pantograph quickly. 

Current research activities have presented the application of batteries, flywheels, super-capacitors, 

and hybrid energy storages as energy storage devices [3–8]. Among the different storage systems 

available, super-capacitors seem to be the most appropriate for the application in a metro system for 

the advantages of rapid charging and discharging frequencies, a long cycle life, and high power 

density, which highly match the characteristics of metro system, such as short running time between 

stations, frequent accelerating and braking, booming power within a short time, etc. Super-capacitor 

energy storage systems (ESS) can be either stationary or on-board [8–11]. The allocation on board of 

the storage system increases the train mass and requires additional space for their accommodation. 

Thus, stationary ESSes set inside traction substations (TSSs) are preferred for metro systems, and their 

best energy management, location, and size will be discussed in this paper. 

Several papers have dealt in depth with optimization of energy management strategies of stationary 

ESSes [12–14]. Among them [12] proposes a control strategy based on the maximum kinetic energy 

recovery throughout braking operations of the running vehicles. The strategy stays on the knowledge 

of the state of charge of ESS and the actual vehicle speeds. Reference [13] proposes a optimization 

procedure based on a linearized modeling of the electrical LRV network, the target of the control strategy 

is the optimal tracking of the storage device voltage subject to the minimization of the substations 

supplied power. Optimal location and size of ESSes are also investigated in detail in [15–22]. 
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Reference [15] discusses the configuration of ESSes for voltage drop compensation, which takes 

account of the topology of the line and the movement of the vehicles. Reference [16] proposes an 

optimization method based on a genetic algorithm, which can obtain certain preferable location and 

size for ESSes. 

However, there are still some drawbacks on the above research. Firstly, some of the references involve 

only small amounts of substations and vehicles when modeling the urban railway network [12–15] and 

some of them do not take into account the time-variation (network topology change with vehicle 

movement) and nonlinearity (nonlinearity of substation and regenerative braking) of the network 

structure. Secondly, and most importantly, the optimization research of energy management strategy 

and configuration for ESSes will influence each other, and they both affect the performances of urban 

railway network, while the configuration optimization research of ESSes in reference [16–22] is on the 

premise that energy management strategy of ESSes is fixed and invariable. 

In this paper improved energy management strategy of ESSes and novel optimization method are 

proposed. Compared to previous work [16–22], the improved energy management strategy can manage 

and coordinate the energy flow of multiple ESSes, which can achieve smoother changes of voltages 

and currents in the system and improve the energy savings of ESSes effectively, and the new proposed 

optimization algorithm can further improve the performance of ESSes by optimizing energy 

management parameters, location, and size of ESSes simultaneously, which has rarely been studied in 

previous work about the optimization of ESSes, and the evaluation functions of proposed optimization 

algorithm in this paper are more appropriate, which are put forward from the perspectives of economic 

efficiency and voltage drop compensation. 

The organization of this work is as follow: the simulation platform of urban rail power supply 

system, which includes trains and super-capacitor energy storage systems has been established in 

Section 2; additionally, particular data of the researched Chinese metro line is given. Then Section 3 

sets up two evaluation functions from the perspectives of economic efficiency and voltage drop 

compensation. In Section 4, a novel optimization method based on genetic algorithm (GA) is put 

forward, which can optimize energy management strategy, location and size of ESSes simultaneously. 

Finally in Section 5, the result of the simulation comparison is presented and discussed. 

2. Modeling 

2.1. Model of Metro Power Supply Network 

The model of metro system’s DC traction power supply network is shown in Figure 1 [16]. In order to 

show the behavior of the metro power supply network as correctly as possible, all components of the 

metro network, which includes irreversible traction substations (TSS), trains, metro lines, and stationary 

energy storage systems (ESSes), will be modeled appropriately to maintain original characters of the 

network structure’s time-variation and nonlinearity. 
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Figure 1. The model of metro system’s DC traction power supply network. 

2.1.1. Traction Substation (TSS) Model 

As shown in Figure 2, the substation is modeled by an ideal DC voltage source connected in series 

with its equivalent internal resistance RS and the diode D, which to simulate output characteristics. 

When the output current of substation is increased, the voltage of substation decreases correspondingly 

to limit its output power. U0 is the no-load voltage of substations. 
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Figure 2. TSS model. 

2.1.2. Train Model 

As shown in Figure 3, the train model is modeled by a controlled current source which draws 

electric power at the accelerating time and delivers braking power at the regenerative time.  

The impedance of the line connected to the trains is expressed as Z, the value of which is time-varying, 

and it is linear with the line length that is determined by the present position of trains.  

When pantograph voltage exceeds Ub, the braking resistor Rb will consume the braking energy. Rf is 

vehicle filter resistance; Lf is vehicle filter inductance; Cfc is the support capacitor of train; Paux is 

auxiliary power; and P is the electric power of train. 

out
out in out

di
u u Ri L

dt
    (4)
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Figure 3. Train model. 

2.1.3. Energy Storage System (ESS) Model 

The ESS model consists of the super-capacitors, controlled current source, and energy management 

strategy controller, is shown in Figure 4. The ESS model is connected in parallel with the output of the 

substation, and it can deliver or draw the electric power from the metro power supply network through 

the current source which is controlled by the energy management strategy and configuration of 

super-capacitors in real time. 

 

Figure 4. Stationary ESS model. 

The SOC (State of Charge) of super-capacitors is defined as follows, it represents the storage energy 

of ESS, which is proportional to the square of the terminal voltage. 

2 2
sc sc sc

2 2
scmax cmax cmax

0.5
0.25 1

0.5 s s

E CU U
SOC

E CU U
      (7)

In a practical application, the function of controlled current source in the model is generally 

implemented by the unidirectional DC/DC converter. In order to maintain the normal operation of 

DC/DC converter, the terminal voltage of super-capacitors should be set between 50% and 100% the 

maximum voltage, so the range of SOC varies from 0.25 to 1. 
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2.2. Simulation Platform of Metro System for Power Flow Calculation 

As above, the model of a DC metro power supply network (DC-PSN) is set up by a novel approach of 

component segmentation. In order to calculate the power flow of the DC metro power supply network, 

an integrated simulation platform, which includes DC metro power supply network (DC-PSN), train 

performance simulator (TPS), and super-capacitor energy storage system (SCESS) is established in the 

Matlab environment, as shown in Figure 5 [16]. 

 

Figure 5. Simulation platform of metro system for power flow calculation. 

2.2.1. DC Metro Power Supply Network (DC-PSN) 

In the previous section, the paper has presented the structure and model of a DC-PSN. In the power 

flow calculation of the DC metro power supply network, because of its time-variation (network topology 

changes with train movement) and nonlinearity (nonlinearity of substation and regenerative braking) of 

the network structure, a new power flow calculation method by component segmentation is presented. 

The simulation result shows excellent rapidity and astringency can be obtained by this method. 

Moreover, the structure and model of the DC-PSN can be extended easily. 

2.2.2. Train Performance Simulator (TPS) 

As shown in Figure 5, the output of TPS is not only associated with line condition, vehicle data, and 

timetable, but is also constrained by real-time train pantograph voltage. From the TPS we can get 

positions of up-line and down-line trains and their corresponding electric power, which offer essential 

data for subsequent power flow calculation of the DC supply network. 
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2.2.3. Super-Capacitor Energy Storage System (SCESS)  

SCESS set certain energy management strategy, location, and size of ESSes on different substations, 

which determine the power direction and value of ESSes in real time. The installation of ESSes will 

change the power flow of the DC metro power supply network and the system performances can be 

improved significantly by setting the most appropriate energy management strategy, location, and size. 

2.3. Case Data 

A particular case of Beijing Subway line is studied in this paper. The total length of the line is about 

11.3 km along with 12 stations, of which seven are traction substations and their distribution is shown in 

Table 1. The vehicle data and metro DC network parameters are shown as Table 2. These parameters are 

provided by the Beijing Subway Company. 

Table 1. TSS spacing distances. 

Traction substation 1–2 2–3 3–4 4–5 5–6 6–7 

Substation spacing (km) 1.1 1.9 2.2 2.3 2.1 2.7 

Table 2. Vehicle data. 

Parameter Value Parameter Value 

Formation 3M3T Inverter efficiency 0.97 
Load condition 312.9t (AW3) Motor efficiency 0.915 
Rated voltage 750 Volt Gearing efficiency 0.93 
AC motor/M 180 kW × 4 Max speed 80 km/h 
SIV power 160 kVA × 2 Max acceleration 1 m/s2 

SIV power factor 0.85 Min deceleration −1 m/s2 
Floating voltage Us 836 Volt Equivalent internal resistance Rs 0.07 Ω 

Contract line impendence 0.007 Ω/km Rail impendence 0.009 Ω/km 
Pantograph impendence  0.015 Ω – – 

2.4. Simulation Output 

Under simulation conditions, super-capacitor ESSes of 14 kWh are configured in every other 

substation and controlled with a traditional double-loops control strategy [16]. The simulation output 

waveforms is shown in Figure 6, which include speed and electric power of an up-line train, voltage and 

current of the train pantograph, voltage and current of a substation, charging energy, and SOC of the ESS 

in the substation. SOC of ESS varies between 0.25 and 1. 
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Figure 6. The output waveforms of simulation platform. 

3. Objective Function 

3.1. Objective Function 

In order to evaluate the system performances in terms of energy saving, voltage drop compensation, 

and installation cost for different energy management strategy and configuration of ESSes, the paper 

puts forward two evaluation functions and one objective function. 

3.1.1. Economic Efficiency, %e  

Economic efficiency %e  is put forward from the viewpoint of considering energy savings and 

installation cost in a unified way to evaluate the economic return rates of ESSes for Subway Company. 

Economic efficiency %e  is a percentage calculated by dividing the total electricity price of the 

substations by economic savings (returns minus costs). 

As shown in Figure 7, one super-capacitor ESS, which includes the connection unit, DC/DC 

converter, and super-capacitor strings, is installed on the traction substation. The circuit structure of 

super-capacitor ESS is shown in Figure 8. The installation cost of ESSes is determined by various 

factors, which include the capacity, equipment, control circuit, maintenance cost, etc. The cost of 

DC/DC converters and super-capacitor strings are determined mainly by the maximum power of the 

ESS. In order to ease the DC/DC converter design, maximum voltage of super-capacitor strings should 

be lower than network voltage (836 V at no load). Hence, six super-capacitor modules 

(BMOD0063P125) are put in series to form a super-capacitor string, which has terminal voltage of  

750 V and maximum continuous power of 180 kW, and the configuration of super-capacitors installed in 

every substation could be adjusted by changing the number of paralleled super-capacitor strings.  

The Parameters of super-capacitor modules (BMOD0063P125) are shown as Table 3. 
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Figure 7. Super-capacitor ESS installed in traction substation. 

 

Figure 8. The circuit structure of super-capacitor ESS. 

Table 3. Parameters of super-capacitor module (BMOD0063P125). 

Parameter Value Parameter Value 

Rated voltage 125 V Capacitance 63 F 

Maximum continuous current 240 A Maximum continuous power 30 kW 

Maximum ESRDC, initial 0.018 Ω Energy 0.137 kWh

Price 5,333 $   

The cost of investment for a super-capacitor ESS on substation k during their life time of l years,  

can be calculated by: 

   
0, 0

1 ,0 18

k

k l

k k

n
Cost

C n p m r n

 
      

 (8)

where nk is the number of paralleled super-capacitor strings on substation k; p is the maximum power of 

one super-capacitor string; and m is dollar per power constant for super-capacitors and DC/DC 

converter. If nk equals 0, a super-capacitor ESS would not be installed on substation k. If nk is more 
than 0, the cost of investment for super-capacitor ESS Costk includes two parts. kn p m   is the cost 

of DC/DC converters and super-capacitor strings that are determined by the maximum power of the 

ESS; C is other part of installation cost from protective device, breaker, maintenance cost, etc., which 

has a small relationship to power of the ESS. r is the rate of return constant. Considering the limited free 

space of each metro substation, the number of paralleled super-capacitor strings nk on each substation is 

no bigger than 18 in this paper. 

By taking the sum of output energy consumption of all TSSes along the metro line, the total energy 

consumption of the substations in kWh during one year can be calculated from the following formula: 
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sub sub0
1

sub ( )
365

3600000

k T

I U dtE   
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where k is the number of traction substations; T is the running time in one day. Usub, Isub are, 

respectively, the voltage and current of substation. 

The application of ESSes in a metro system can reduce the total energy consumption of the 

substations because of the recycle of trains’ regenerative braking energy, but the installation cost should 

also be considered as well. The total profit obtained by ESSes in l years should be the difference 

between the saved electricity price and the installation cost of ESSes. 

  nosc nosc
sub sub

2 2

2

l l i
P E

 
   (10)

where nosc
subE  is one year energy consumption of the substations in absence of ESSes;   is electricity 

price in dollar per kWh, nosc
subP  is l years’ electricity price of the substations in absence of ESSes, and i is 

the yearly inflation of electricity price. 

  sc sc
sub sub

1

2 2

2

k

k

l l i
P E Cost

 
    (11)

where sc
subE  is one year’ energy consumption of the substations in presence of ESSes, kCost  is 

installation cost of ESS on substation k, and sc
subP  is l years’ expenditure of the substations in presence of 

ESSes, which includes the electricity price and installation cost of ESSes. 

In this paper, economic efficiency %e  is defined as the following formula: 

nosc sc
sub sub

nosc
sub

% 100%
P P

e
P


   (12)

when economic efficiency %e  equals 0, it means the saved electricity price is the same as the 

installation cost of ESSes. Necessary parameters for calculating the economic efficiency %e  of ESSes 

are given in Table 4. 

Table 4. Necessary parameters for calculating economic efficiency. 

Parameter Value Parameter Value 

p 180 kW   0.16 $/kWh

m 0.244 $/W r 5% 

C 0.16 M$ i 5% 

l 10 years   

3.1.2. Voltage Drop Compensation, %v  

If different trains are close to each other and they start all together, contact lines will become 

overloaded and the pantograph voltages of trains will drop significantly, which results in high line loss 

and the opening of minimum voltage protective action of trains by limiting the current. The installation 

of ESSes in the metro system can shave the peak power of substations, improve the load capacity of the 

system, and compensate the pantograph drops quickly. Voltage drop compensation %v , in this paper, 



Energies 2015, 8 11628 

 

 

evaluates in percent the voltage drop compensation at the pantograph, giving the rate about how much 

the voltage drops improvement is when the ESSes are installed. 
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1 1
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% 100%p r p r
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j jnosc sc
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  
 

 (13)

where, Up is the pantograph voltage of trains; Ur is the rated voltage of trains’ pantograph; j is the 

amount of up-line and down-line trains. From the Equation (14), voltage drop compensation %v  is 

calculated based on the integral of voltage drops improvement when Up is less than Ur, which is more 

appropriate and comprehensive than the maximum voltage drop compensation just in a moment in [15]. 

3.1.3. Objective Function, ObjV 

Given economic efficiency %e  and voltage drop compensation %v , the objective function for 

optimal energy management strategy and configuration of ESSes is shown as below: 

ω ω% (1 ) %ObjV ve     (14)

where ω  is the weight coefficient of economic efficiency %e , it represents the emphasis degrees of 

economic efficiency %e . When ω  is set to 1, it means that economic efficiency is the only evaluation 

index considered in the optimization. 

4. Novel Optimization Method Based on a Genetic Algorithm 

The traditional optimization method based on a genetic algorithm proposed in [16] can optimize the 

location and size of ESSes significantly, but the adopted energy management strategy is constant.  

The energy management is also important for the performance improvement of a metro supply network, 

and the optimization of energy management and configuration for ESSes will influence each other. 

Thus, the proposed novel optimization method in this paper, which combines a genetic algorithm and a 

simulation platform of urban rail power supply system, is meant to optimize energy management, 

location, and size of ESSes simultaneously. 

4.1. Improved Energy Management Strategy 

In order to improve economic efficiency %e  and voltage drop compensation %v  of ESSes, an 

improved energy management strategy is put forward, which decides the charging and discharging current 

of the ESS by detecting the voltage of substation, ESS and train pantographs, as shown in Figure 9. 

The improved energy management strategy can be divided into three parts: SOC constraint, current 

loop, and energy management. Due to the function of the SOC constraint, the working range of the SOC 

is 0.25–1, and the terminal voltage of ESSes is limited between 375 V and 750 V. Energy management 

can switch four work states to produce appropriate reference Psc* for the ESS according to the substation 

voltage and pantograph voltage of the trains. The current loop can control the charging and discharging 

current of the super-capacitor ESS according to the reference Isc*. 
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Figure 9. The improved energy management strategy of stationary ESSes. 

The charging and discharging current reference Isc* of the super-capacitor ESS can be calculated by 

Equation (15). And work states of super-capacitor ESS are shown in Figure 10. 
*

* k c sc
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n k P
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U
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  (15)
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Figure 10. Work states of super-capacitor ESS. 

State 1: When the voltage of substation is higher than charging threshold value Uchar*, the magnitude 

of the charging current reference Psc* is determined by the PI controller according to the difference value 

between the present substation voltage and the threshold value Uchar*. From Equation (16), if the electric 

braking power of train is small, the super-capacitor ESS will absorb all the regenerative braking energy 

and maintain the substation voltage at Uchar*. Then, if the electric braking power of train is excessive, the 

super-capacitor ESS will absorb the braking energy with maximum charging current. The value of Uchar* 

will increase with the increase of ESSes’ terminal voltage, which enlarges the charging current of ESSes 

with smaller terminal voltage of ESSes significantly, as shown in Figure 11. The value of Uscmin is set to  

375 V in this paper. 

   

 

* * *
1 1

0

*
1 1 min

*
1 1 _ 1 max min0, 0, , 0,

t

sc p sub char i sub char

char ref sc sc

p i char no load sc sc sc

U U

U U

U

P K U K U dt

k U U

K K U k U U U

 




   


   


     



 (16)



Energies 2015, 8 11630 

 

 

0 Uscmin Uscmax

Uref1

Uno_load

U
ch

ar
*

Terminal voltage of ESS[V]

The gradient is k1

 

Figure 11. The values of Uchar
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When the train is braking in one substation, by traditional energy management, the ESS installed in 

the substation will draw high power of regenerative energy and take no account of its terminal voltage 

and stored energy [16]. When the ESS is charged up to 100% with the regenerative energy, its terminal 

voltage would be 750 V and its charging current will be interrupted instantaneously, which leads to the 

drastic changes of substation current and line current, then all the regenerative energy of trains flows to 

the ESSes in the near substations as shown in Figure 12. ESSes are charged in turn and both with large 

current. On the contrary, by the improved energy management strategy, the ESS can adjust the threshold 

value Uchar* according to its terminal voltage and achieve smoother changes of terminal voltage and 

charging current. Consequently, the regenerative energy is distributed to ESSes more evenly. It is worth 

mentioning that the improved energy management strategy reduces the line loss greatly and it also 

contributes to balance the terminal voltage for all different strings of ESS on a substation. 
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Figure 12. Terminal voltage and charging current of ESSes. 

State 2: When the voltage of substation fluctuates between the charging threshold value Uchar* and the 

discharging threshold value Udis*, super-capacitor ESS maintain the standby state. 

* 0S CP   (17)

State 3: When the voltage of substation is less than the discharging threshold value Udis* and 

pantograph voltage of trains within one substation spacing range of ESS is higher than the low voltage 
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threshold Ulow, discharging power reference Psc* of ESS is determined by the substation voltage Usub and 

ESS terminal voltage Usc simultaneously as follow: 
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(18)

The value of Udis* will increase with the increase of ESSes’ terminal voltage as shown in Figure 13, 

which enlarges the discharging current of ESSes with larger terminal voltage and balances SOC of 

ESSes significantly. When the accelerated train draws the energy in one substation, all ESSes nearby can 

deliver energy to shave the power of substations and compensate the voltage drops of the pantograph. As 

shown in Figure 14, by traditional energy management, the ESS installed in the substation will deliver 

highest power of energy and take no account of its terminal voltage and stored energy. When terminal 

voltage of one ESS decreases to Uscmin, its discharging current will be interrupted instantaneously, which 

also leads to drastic changes of substation current and line current. On the contrary, the improved energy 

management strategy can achieve smoother changes of voltages and currents in the system, and ESSes 

with higher SOC tend to deliver more energy to the supply network. Thus, by the improved energy 

management strategy, the flow of energy can be managed more steadily and effectively, and the line loss 

can be reduced greatly. 

State 4: When the voltage of substation is less than discharging threshold value Udis* and the 

pantograph voltages of trains within one substation spacing range of ESS are less than the low voltage 

threshold Ulow, super-capacitor ESS will deliver the energy with maximum discharging power. 

According to appropriate setting of Kp2, Ki2, k2, Uref2, Ulow, ESS will retain proper energy when the 

pantograph voltage of a nearby train is acceptable, and when the pantograph voltage of a nearby train is 

very low, ESS delivers maximum discharging power to shave the peak power of the substation and 

compensate the pantograph voltage drop. 

0 Uscmin Uscmax

Uref2

Uno_load

U
di

s*

Terminal voltage of ESS[V]

The gradient is k2

 

Figure 13. The values of Udis
*. 
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Figure 14. Terminal voltage and discharging current of ESSes. 

In improved energy management strategy, Kp1, Ki1, k1, Kp2, Ki2, k2, Ulow, Uref1, Uref2 are nine 

undetermined parameters. In order to obtain best performance of system based on economic efficiency 

%e  and voltage drop compensation %v , the most appropriate parameters of improved energy 

management strategy and ESS configuration on each substation will be obtained simultaneously by the 

optimization method based on a genetic algorithm. 

4.2. Novel Optimization Method 

4.2.1. Genetic Algorithm 

The genetic algorithm (GA) is a global optimal searching algorithm based on Darwin’s nature 

evolution theory and Mendel’s genetics and mutation theory. It consists of three parts: encoding, fitness 

evaluation, and genetic manipulation [23–25]. Combined with paper demands, the basic procedures of 

the genetic algorithm are shown as follows. 

Encoding 

The energy management strategy and configuration of ESSes installed in seven TSSs can be encoded 

by 16 numbers as shown in Figure 15, where each X chromosomere presents a population individual.  

The first nine numbers represent nine pending parameters of improved energy management strategy, u1, 

u2, u3 represent Ulow, Uref1, Uref2; the last seven numbers represent seven pending numbers of 

super-capacitor strings installed in seven different traction substations. 

 

1 1 1 2 2 2 1 2 3 1 2 3 4 5 6 7[ ] p i p iX k k k k k k u u u x x x x x x x
7TSS

 

Figure 15. Set of X chromosomere. 
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Objective Function ObjV 

In this paper, the optimization of energy management strategy and configuration of ESSes is to obtain 

the maximum objective function ObjV, the reciprocal of ObjV is the value of fitness. They are calculated 

as follows: 

[ ] ω %[ ] [ ]

[ ]

(1 ω) %

1
[ ]

ObjV X e X X

ObjV X

v

Fitness X

    

 

 (19)

where ω  is the weight coefficient of economic efficiency %e . ObjV[X] is the objective function when 

the energy management strategy, allocation, and size of ESSes are set by X. 

Genetic Manipulation 

Genetic manipulation includes three basic steps—selection, crossover, and mutation. From the view 

of operators, the genetic algorithm is well-suited to solve combination optimization problems. 

Compared with other intelligence algorithms, a genetic algorithm has a higher rate of convergence, more 

efficient calculation, and higher robustness for combination optimization and discrete optimization. 

4.2.2. Process of Novel Optimization Method 

The schematic diagram of the novel optimization method, which combines a genetic algorithm and 

simulation platform of urban rail power supply system, is shown as Figure 16. A genetic algorithm can 

constantly optimize the chromosomere of the population individuals, which means the energy 

management strategy and configuration of ESSes are optimized constantly. The newfound energy 

management strategy and configuration of ESSes would be entered into the simulation platform, and 

obtain their ObjV, e%, v% through the simulation. According to the ObjV, e%, v%, the genetic algorithm 

can continue the further and cyclic optimization. According to the optimization results by a large number 

of simulation calculations, the genetic algorithm converges to the global optimum with the increase of 

evolution generation. 

For every different objective function, the genetic algorithm will take 5.5 days to obtain the 

corresponding optimal solution. Of course, if several workstations work simultaneously, the total 

simulation time can be effectively decreased. The simulation platform of urban rail power supply 

system is established by software Matlab 7.10.0(2010a). The hardware performance of our 

workstations that implement the simulation platform is shown as Table 5. It is worth mentioning that 

increasing the population size or improving the genetic algorithm by means of a hybrid algorithm can 

improve the convergence speed and decrease the evolution generation. 

The relevant parameters of the genetic algorithm are given by Table 6; NIND is population size, 

PRECI is the length of individual, MAXGEN is maximum evolution generation, Pc is the crossover rate, 

Pm is the mutation rate, and GGAP is generational gap. 
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Figure 16. The schematic diagram of novel optimization method. 

Table 5. The parameters of hardware platform. 

Hardware Parameter 

CPU Intel(R) Xeon(R) CPU E5649 @ 2.53GHz × 2 
RAM 64 GB 
GPU NVIDIA Quadro 4000 

Table 6. The parameters of improved genetic algorithm. 

NIND PRECI MAXGEN Pc Pm GGAP 

40 20 100 0.7 0.015 0.95 

4.3. Optimization Result Analysis 

As shown in Figure 17, the simulation comparison result between two different optimization methods 

with corresponding optimum ObjV are obtained separately under different values of weight coefficient 

 . Based on a genetic algorithm, both optimization methods can obtain optimal ObjV with an increase 

of evolution generation, but the novel optimization method can obtain much higher ObjV. The values of 

maximum ObjV as well as corresponding economic efficiency %e  and voltage drop compensation, %v  

based on two optimization methods and different values of weight coefficient   are shown in Table 7. 

The values of parameters to determine energy management strategy and configuration of ESSes on every 

substation can be obtained separately based on two optimization methods and different values of weight 

coefficient  , as shown in Tables 8 and 9. 
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Figure 17. Simulation comparisons of two optimization methods. 

Table 7. Maximum ObjV obtained by different optimization method. 

Optimization Method ω Maximum ObjV Economic Efficiency e% Voltage Compensation Rate v% 

Traditional optimization 0.5 14.29% 14.65% 13.93% 

Traditional optimization 0.75 14.50% 14.72% 13.84% 

Traditional optimization 1 14.76% 14.76% 13.70% 

Novel optimization 0.5 19.06% 15.06% 23.05% 

Novel optimization 0.75 17.11% 15.79% 21.06% 

Novel optimization 1 16.56% 16.56% 17.20% 

Table 8. The parameters of optimal energy management strategies. 

Optimization Method ω 
Energy Management Strategy of ESSes 

kp1 ki1 k1 kp2 ki2 k2 Ulow Uref1 Uref2 

Traditional optimization - 50 50 - 50 50 - - 850.0 800.0 

Novel optimization 0.5 298 90 0.011 0.158 44.39 0.075 771.0 836.1 802.0 

Novel optimization 0.75 193 83 0.006 1.20 40.34 0.037 772.0 836.2 806.4 

Novel optimization 1 18 76 0.002 19.33 39.85 0.008 779.1 836.5 811.8 

Table 9. Optimized location and size of ESSes. 

Optimization Method ω 
TSS No. and Set Numbers of ESSes 

1 2 3 4 5 6 7 

Traditional optimization 0.5 0 16 15 0 10 0 13 

Traditional optimization 0.75 0 14 15 0 10 0 14 

Traditional optimization 1 0 14 15 0 10 0 13 

Novel optimization 0.5 0 18 11 0 17 0 17 

Novel optimization 0.75 0 18 10 0 10 0 17 

Novel optimization 1 0 14 16 0 8 0 7 
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From Figure 17 and Table 7, whatever the value of ω , novel optimization method can obtain much 

higher ObjV, e% and v% compared to traditional optimization method. With the increase of ω  from 0.5 

to 0.75 to 1, the maximum ObjV of ESSes obtained by traditional optimization is 14.29%, 14.50%, and 

14.76%, which can be increased to 19.06%, 17.11%, and 16.56%, respectively, by the novel 

optimization method. And both economic efficiency e% and voltage drop compensation v% can be 

improved effectively by the novel optimization compared to traditional optimization. By the novel 

optimization method, economic efficiency %e  can be improved because of more appropriate energy 

management, less line loss, and voltage drop compensation %v  can be improved effectively because of the 

function of Ulow. 

From Table 8, the adopted energy management strategy of the traditional optimization method is 

constant, and it is only determined by six parameters. By contrast, the energy management strategy 

obtained by the novel optimization method is determined by nine parameters. The novel optimization 

method can optimize the energy management, location, and size of ESSes simultaneously. Under 

different values of weight coefficient  , the best energy management strategy is different and among 

the nine relevant parameters appear some regularities. kp1, k1, kp2, k2 are more important factors that 

affect the performance of the metro system, and ki1, ki2, Ulow, Uref1, Uref2 have smaller changes. Without 

regard to the integral term, the best energy management strategy of ESSes for different value of weight 

coefficient   is shown in Figure 18. For charging energy management strategy, the value of kp1  

(the slope of charging current vs. Usub) and k1 (the slope of charging current vs. Usc) decrease with the 

increase of weight coefficient  . For discharging energy management strategy, the value of kp2  

(the slope of discharging current vs. Usub) increases and k2 (the slope of discharging current vs. Usc) 

decrease with the increase of weight coefficient  . 

Table 9 shows the optimal location and size of ESSes obtained by two different optimization 

methods. By contrast, two optimization methods ultimately configure super-capacitor ESSes in same 

location of substations, and the size of ESSes tend to be smaller with the increase of weight coefficient 

 . Configuring ESSes in fewer substations with one or two substation spacing and decreasing the size of 

ESS installed in one substation can reduce the installation cost, but the distance between the train and 

ESS will also increase, which causes higher line loss and less energy recovered and voltage drop 

compensation %v  will also decrease. The best compromise between economic efficiency %e  and 

voltage drop compensation %v  under different value of weight coefficient   can be obtained by two 

optimization methods. Compared to the traditional optimization method, the best configuration of ESSes 

obtained by the novel optimization method changes are more intense and it can achieve much higher 

ObjV under different values of weight coefficient  . 

The maximum ObjV with corresponding economic efficiency %e  and voltage drop compensation 

%v  for different value of weight coefficient   can be obtained by novel optimization method as 

shown in Table 10 and Figure 19. From Figure 19, when   increases from 0.3 to 1, Economic 

efficiency %e  increases from 0.1465 to 0.1656, and voltage drop compensation %v  decreases from 

0.2335 to 0.1720. According to its own optimization requirement and the concrete result obtained by the 

novel optimization method in Figure 19, Subway Company could choose the best value of weight 

coefficient   for itself. 
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Figure 18. Best energy management strategy of ESSes. (a) Charging energy management 

strategy; and (b) discharging energy management strategy. 

Table 10. Optimal ObjV, e% and v% obtained by novel optimization method. 

  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
ObjV 0.2074 0.1989 0.1906 0.1826 0.1747 0.1685 0.1663 0.1656 
e% 0.1465 0.1485 0.1506 0.1509 0.1525 0.1631 0.1654 0.1656 
v% 0.2335 0.2325 0.2305 0.2301 0.2265 0.1902 0.1744 0.1720 
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Figure 19. Optimal ObjV, e% and v% obtained by the novel optimization method. 
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5. Conclusions 

Firstly, this paper establishes the proper simulation platform of a metro system that contains seven 

substations to simulate the electrical power flow by Matlab/Simulink. Then, two evaluation functions 

are set up from the perspectives of economic efficiency and voltage drop compensation. Ultimately,  

a novel optimization method is put forward, which can optimize the energy management strategy, 

location, and size of ESSes simultaneously by the combination of a genetic algorithm and simulation 

platform of a metro system. With actual parameters of a Chinese metro line applied in the simulation 

comparison, the proposed novel optimization method can achieve much better performance of a metro 

system from the perspectives of ObjV and two evaluation functions. The simulation result obtained by 

the novel optimization method shows that with the increase of weight coefficient  , the optimal energy 

management strategy is different and the nine relevant parameters appear with some regularities, among 

them kp1, k1, kp2, and k2 are more important factors that affect the performance of the metro system. 

Additionally, novel optimization methods can also optimize the configuration of ESSes, which can 

achieve the best compromise between economic efficiency %e  and voltage drop compensation %v . 

The novel optimization method and its optimized result can provide valuable reference to Subway Company. 
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