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Abstract: This paper proposes a three-level discrete Fourier transform (DFT) method to 

provide an accurate estimate of power system frequency in real time. The first level 

decomposes a power system signal into two orthogonal cosine- and sine-filtered signals.  

The second and third levels are used to determine the amplitude ratio of the cosine- and  

sine-filtered signals without encountering the zero-crossing problem and with an increase 

in ability to suppress harmonics and inter-harmonics. The performance of the three-level 

DFT method is evaluated using computer-simulated signals with harmonics and  

inter-harmonics. The three-level DFT method is also implemented on a digital signal 

processor (DSP)-based hardware prototype, and its performance in the hardware 

implementation is evaluated using a real-time digital simulator (RTDS). The evaluation 

results show that the three-level DFT method can achieve real-time estimation of power 

system frequency with satisfactory performance. 

Keywords: amplitude ratio; power system frequency; hardware implementation;  

real-time estimation; three-level discrete Fourier transform; zero-crossing problem 

 

1. Introduction 

The frequency is one of the most important quantities in the operation of power systems, and its 

deviation is a good indicator of abnormal operating conditions. Therefore, estimation of the power system 
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frequency is an important task in the monitoring, protection and control of power systems. In particular, 

accurate estimation of the power system frequency in real time is a prerequisite for rapid-response 

applications, including load shedding, generator protection, and renewable energy control [1–3]. 

Although the power system frequency may deviate from the nominal value due to unexpected system 

disturbances, the transient response of rapid-response applications should be no longer than four to five 

power system frequency cycles [1]. 

The zero-crossing method is one of the simplest ways to estimate the power system frequency, and 

involves measuring the time interval between consecutive zero crossings of a power system signal [4]. 

However, measured signals in real power systems typically contain harmonic distortions, which may 

introduce significant errors when using the zero-crossing method. To address with this problem, a 

variety of approaches have been proposed over the past couple of decades, including orthogonal [1,5–13], 

modified zero-crossing [6,14], phase-locked loop [15–17], Kalman filtering [18–21], adaptive  

filtering [22–26], least error square [21,27–32], neural network [33,34], Newton-algorithm [35–38], 

Prony [1,10], and wavelet approaches [39–41]. Orthogonal approaches have attracted widespread 

attention for real-time use, due to their estimation accuracy and ease of implementation. Demodulation 

methods [5–7], finite impulse response (FIR) filter-based methods [1,8–10], and discrete Fourier 

transform (DFT)-based methods [11–13] are orthogonal approaches. Although these methods suppress 

harmonics and inter-harmonics effectively, most of them have certain limitations. In exceptional cases, 

some methods, such as those described in [12,13], can increase their ability to suppress harmonics at 

the cost of ease of implementation. When greater ability to suppress harmonics is required, the 

implementations increase in complexity and it becomes more difficult to complete real-time estimation 

of the power system frequency within the required DSP timer-interrupt interval. Consequently, depending 

on the required ability level, these methods can become impractical for real-time applications. 

In this paper we propose a three-level DFT method for real-time and accurate estimation of the 

power system frequency. Triple use of DFTs allows accurate frequency estimation with a particular 

increase in ability to suppress harmonics and inter-harmonics. Although the three-level DFT method 

leads to an additional two-cycle delay compared with other DFT-based orthogonal approaches, it is 

fast enough for rapid-response applications where the delay should be no more than five cycles in total. 

Evaluation results confirm the efficiency and validity of the three-level DFT method to achieve  

real-time estimation of the power system frequency. 

The remainder of this paper is organized as follows: frequency estimation using the three-level DFT 

method is formulated in Section 2, and the performance is evaluated in Section 3 using both computer 

simulations and a digital signal processor (DSP)-based hardware implementation. Conclusions are 

drawn in Section 4. 

2. Frequency Estimation 

Assuming that a power system signal has a purely sinusoidal waveform with an amplitude A , power 

system frequency f, and phase θ, it can be described in discrete time steps as: 
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where f0 is the nominal frequency and N0 is the number of samples per cycle at f0. The power system 
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signal can be decomposed into two orthogonal signals via DFT, using cosine and sine filters.  

The coefficients of the cosine filter in the DFT are:  
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The amplitude and phase response of the cosine filter can be found from the unilateral Z-transform 

of Equation (2): 
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Applying Equations (3) and (4) to )(nx  in Equation (1) yields a cosine-filtered signal of the  

first-level DFT: 
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where AC = A|HC(f)| and )(θθ fHCC  . Note that AC and θC depend on the power system 

frequency. Similarly, the coefficients of the sine filter in the DFT are:  
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The amplitude and phase response of the sine filter can be also found from the unilateral  

Z-transform of Equation (6): 
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Applying Equations (7) and (8) to )(nx  in Equation (1) yields a sine-filtered signal of the  

first-level DFT: 
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where |)(| fHAA SS   and )(θθ fH SS  . The relation between Cθ  and Sθ  can be found from 

Equations (4) and (8) as: 
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and applying this relation to Equation (9) yields the following expression: 
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The amplitude ratio of CA  to 
SA  can be determined from Equations (3) and (7) as follows: 
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From this, the power system frequency can be determined using: 
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As can be seen from Equation (13), the amplitude ratio should be known prior to determining the 

power system frequency. To determine this amplitude ratio, a second-level DFT is applied to the 

output signals of the first-level DFT, as shown in Figure 1. 

 

Figure 1. Amplitude and phase relations of the output signals in the three-level DFT method. 

The second-level DFT provides four output signals, including )(nxCC , which is obtained from 

applying a second cosine filter to Equation (5): 
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where |)(| fHAA CCCC   and )(θθ fHCCCC  . Similarly, )(nxSS
 can be obtained from applying 

a second sine filter to Equation (11): 
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where |)(| fHAA SSSS  . The amplitude ratio can be determined using Equations (14) and (15): 
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Since )(nxSS  has an instantaneous value, the zero-crossing problem introduces considerable errors 

into the calculation of the amplitude ratio. These errors may be magnified when )(nxSS  has an 

instantaneous value near to a zero crossing, due to the resolution of the hardware implementation. 

To overcome this problem, a third-level DFT is applied to the output signals of the second-level 

DFT. The output signals of the third-level DFT, )(nxCCC  and )(nxCCS , are obtained from applying 

cosine and sine filters to )(nxCC , respectively: 
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where |)(||)(| fHfHAA SCCCCS  . Similarly, )(nxSSC  and )(nxSSS  are obtained from applying 

cosine and sine filters to )(nxSS , respectively: 
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where |)(||)(| fHfHAA SCSSSC  , and: 
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where 
2|)(| fHAA SSSSS  . Since )(nxCCS  and )(nxSSC  are equal to )(nxCSC and )(nxCSS , 

respectively, )(nxCS  does not need to be obtained from the second-level DFT. For a similar reason, 

)(nxSC  does not need to be obtained from the second-level DFT. To overcome the zero-crossing 

problem that occurred in Equation (16), the pseudo amplitude of )(nxCC  is estimated using )(nxCCC  

and )(nxCCS : 
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Similarly, the pseudo amplitude of )(nxSS  is estimated using )(nxSSC  and )(nxSSS : 
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Finally, the amplitude ratio can be determined using Equations (21) and (22) as: 

S

C

S

C

SS

CC

SSSSSC

CCSCCC

A

A

A

A

nMfHA

nMfHA

nxnx

nxnx










2

2

4
22

22

)(|)(|

)(|)(|

)()(

)()(
 (23) 

It should be noted that the pseudo amplitude in Equation (22) has a value far from zero, even though 

it may have an instantaneous value that depends on M(n). It follows that we can avoid the  

zero-crossing problem by using the expression in Equation (23). Substituting Equation (23) into 

Equation (13) yields the following estimate of the power system frequency: 
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3. Performance Evaluation 

3.1. Computer Simulations 

To evaluate the performance of the three-level DFT method, the results were compared with those 

obtained using the Prony method [1], which is one of the most commonly used orthogonal approaches 

to estimate the power system frequency. The Prony method estimates the power system frequency by 

applying Prony analysis to a sine-filtered signal: 
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where M is the total number of sine-filtered samples used to calculate the best estimate of the power 

system frequency. Considering that the three-level DFT method requires three cycles, here we also 

used the Prony method with the same amount of samples for the sake of comparison. Since one-cycle 

samples are required for the sine filter in the Prony method, M  was set to the number of samples 

corresponding to two cycles. In the simulations, a moving average filter with a length of two cycles 

was applied at the last step to obtain a stable response. Therefore, both the Prony and three-level DFT 

methods used five cycles as a data window. 

The simulation results described in this section were processed using Matlab, and the sampling 

frequency was set to 1920 Hz (32 samples per cycle in a 60-Hz system). To evaluate the performance of 

the three-level DFT method, three types of frequency variation were considered: a ramp-up  

frequency variation: 
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where )(nu  is the unit-step function, a ramp-down frequency variation:  
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and a sinusoidal frequency variation: 
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A clean signal described by Equation (29) was provided as an input to both the Prony and three-

level DFT methods: 
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where )(nfk  denotes the type of frequency variation. As shown in Figure 2, the two methods have  

an almost identical time response to the ramp-up frequency variation, except that the three-level DFT 

converges to the final reference frequency slightly faster than the Prony method (by 2.75 ms). 

  

(a) (b) 

Figure 2. Estimation of a ramp-up frequency variation. (a) Estimated frequency;  

(b) Close-up of the convergence. 

With the sinusoidal frequency variation, the two methods also had an almost identical time 

response, as shown in Figure 3. The Prony and three-level DFT methods estimated the peak frequency 

to be smaller than the reference frequency by 0.008 and 0.006 Hz, respectively, due to the smoothing 

effect of the moving average filter. 

  

(a) (b) 

Figure 3. Estimation of a sinusoidal frequency variation. (a) Estimated frequency;  

(b) Close-up of the convergence. 
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To investigate the influence of harmonics, the following signal with a total harmonic distortion of 

30% was considered: 
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Figures 4 and 5 demonstrate the ability of the three-level DFT method clearly. When the reference 

frequency was close to the nominal frequency in the presence of harmonics, the simulation results 

show a good response of both methods; however, when the reference frequency deviated from the 

nominal frequency, the Prony method resulted in considerable errors. In contrast, the time responses of 

the three-level DFT method were almost identical to those for the clean signal. This is because triple 

use of DFTs allows accurate frequency estimation that is insensitive to harmonics. 

  

(a) (b) 

Figure 4. Estimation of a ramp-down frequency variation in the presence of harmonics.  

(a) Estimated frequency; (b) Close-up of the convergence. 

  

(a) (b) 

Figure 5. Estimation of ramp-up and sinusoidal frequency variations in the presence of 

harmonics. (a) Ramp-up frequency variation; (b) Sinusoidal frequency variation. 
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The effect of inter-harmonics in the signals was evaluated using the following signal: 
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Figures 6 and 7 demonstrate the ability of the three-level DFT method in the presence of  

inter-harmonics in addition to harmonics. A comparison of Figures 5a and 6 shows that  

inter-harmonics have an adverse effect on both methods in the case of the ramp-up frequency 

variation. Although the effect of inter-harmonics resulted in some errors, the three-level DFT method 

exhibit improved frequency estimation compared with the Prony method. This is because triple use of 

DFTs allows accurate frequency estimation that is insensitive to harmonics and inter-harmonics. 

Similar results can be confirmed by comparing Figure 4 with Figure 7a, which shows the response of 

the two methods to the ramp-down frequency variation. 

  

(a) (b) 

Figure 6. Estimation of a ramp-up frequency variation in the presence of harmonics and 

inter-harmonics. (a) Estimated frequency; (b) Close-up of the convergence. 

  

(a) (b) 

Figure 7. Estimation of ramp-down and sinusoidal frequency variations in the presence of 

harmonics and inter-harmonics. (a) Ramp-down frequency variation; (b) Sinusoidal 

frequency variation. 
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3.2. Hardware Implementation 

The three-level DFT method was implemented on a 50-MHz TMS320C31 DSP-based hardware 

prototype. Its performance in the hardware implementation was evaluated through the testing 

procedure shown in Figure 8. 

 

Figure 8. Hardware implementation. 

PSCAD/EMTDC was used to simulate the voltage and rotor-speed waveforms of the modified 

IEEE 5-bus system shown in Figure 9. The simulated voltage waveform was imported to the real-time 

digital simulator (RTDS) and Playback library in the RTDS generated a 16-bit analog voltage 

waveform in the range ±10 V. This voltage waveform was passed through a first-order low-pass RC 

filter to a 12-bit analog-to-digital (A/D) converter on the hardware prototype. The −3-dB cutoff 

frequency of the low-pass RC filter was 132 Hz, and the sampling rate of the A/D converter was  

1920 Hz. The three-level DFT method completed real-time estimation of the power system frequency 

within each timer-interrupt interval of the DSP (520.83 µs), which corresponds to the sampling rate of 

the A/D converter. 

In the modified IEEE 5-bus system, two 200-MVA generators supplied electric power to the load, 

which was initially set to 170 MVA (0.97 lag). Two types of dynamic conditions were considered:  

a load increase and single phase-to-ground faults. 

The load switch shown in Figure 9 was closed at time t = 5.00 s, thus loading the generators with  

an additional 34 MVA. This caused the terminal voltage of generator A to decrease instantaneously 

from 16.89 kV to 16.39 kV, as shown in Figure 10a. The estimated frequency using the three-level 

DFT method implemented on the DSP-based hardware prototype is shown in Figure 10b together with 

the reference frequency, which corresponds to the rotor speed obtained from the PSCAD/EMTDC 

simulation. The instantaneous variation in the terminal voltage was responsible for a −0.11-Hz spike at 

5.05 s in the estimated frequency. There is, of course, no corresponding instantaneous variation in the 

rotor speed, and so the power system frequency did not vary in the same manner. Disregarding this 

artifact, Figure 10b clearly shows that the estimated frequency of the three-level DFT method closely 

followed the reference frequency with an estimation delay of approximately 0.04 s. 

PSCAD/EMTDC Output Data
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Real Time Digital Simulator

16-bit Analog Output Card

Playback Library
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12-bit A/D Converter (ADS7804)

1st-order Low-Pass RC Filter

50-MHz TMS320C31 DSP
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Figure 9. Modified IEEE 5-bus system. 

  

(a) (b) 

Figure 10. Estimation of the power system frequency when the total load increased by 

20%. (a) Terminal voltage of generator A; (b) Estimated frequency. 

The fault switch shown in Figure 9 was closed at t = 5.00 s and then opened at t = 5.10 s, creating 

an “a” phase-to-ground (a-g) 90° fault with a duration of 0.10 s. As shown in Figure 11a, the a-g 90° 

fault caused the amplitude of the generator terminal voltage to decrease instantaneously from 16.89 kV 

to 9.31 kV. This instantaneous decrease in the terminal voltage caused a −1.54-Hz spike at 5.06 s in 

the estimated frequency of the three-level DFT method. After removing the fault at 5.10 s, the 

generator terminal voltage increased to 18.33 kV and then settled to the initial value. Due to the 

instantaneous increase in the terminal voltage, the estimated frequency had a 2.45-Hz spike at 5.16 s. 
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(a) (b) 

Figure 11. Estimation of the power system frequency when a single line-to-ground 90° 

fault occurred. (a) Terminal voltage of generator A; (b) Estimated frequency. 

Similar to the a-g 90° fault, the fault switch was closed at t = 5.00 s and then opened at t = 5.10 s, 

creating an a-g 0° fault. As shown in Figure 12b, the instantaneous decrease in the terminal voltage 

caused a −1.51-Hz spike at 5.05 s in the estimated frequency of the three-level DFT method.  

After removing the fault at 5.10 s, the estimated frequency had a 2.37-Hz spike at 5.15 s. 

With the exception of the spikes during the a-g faults, the estimated frequency using the three-level 

DFT method followed the reference frequency closely. These results show that the hardware prototype 

can accurately estimate the power system frequency in real time. 

  

(a) (b) 

Figure 12. Estimation of the power system frequency when a single line-to-ground 0° fault 

occurred. (a) Terminal voltage of generator A; (b) Estimated frequency. 

4. Conclusions 

We have proposed a three-level DFT method for real-time estimation of power system frequency. 

The method is based on the fact that the amplitude gains of cosine and sine filters differ when the 

power system frequency deviates from the nominal frequency. Since the amplitude ratio of the  

cosine- and sine-filtered signals should be known prior to estimating the power system frequency, a 

second-level DFT was applied to these cosine- and sine-filtered signals. Although the amplitude ratio 

can be determined using the output signals of the second-level DFT, the errors in the amplitude ratio 

may be large when the output signals of the second-level DFT are near to a zero crossing.  
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To overcome this problem, a third-level DFT was applied to the output signals of the second-level DFT. 

After the amplitude ratio was accurately determined using the output signals of the third-level DFT, 

the power system frequency was estimated. This triple use of DFTs allows accurate frequency 

estimation that is insensitive to harmonics and inter-harmonics. Although the three-level DFT method 

may lead to an additional two-cycle delay compared with other DFT-based orthogonal approaches, it is 

fast enough to be used in rapid-response applications where the transient response should be no longer 

than five cycles. 

The performance of the three-level DFT method was evaluated using computer-simulated signals 

with harmonics and inter-harmonics. The simulation results confirmed that the method was able to 

estimate the power system frequency accurately, even in the presence of harmonics and  

inter-harmonics. The method was then implemented on a TMS320C31 DSP-based hardware prototype. 

The RTDS was used to evaluate its performance under dynamic conditions, including a load increase 

and single phase-to-ground faults on the modified IEEE 5-bus system. The results of this 

implementation showed that the hardware prototype was able to accurately estimate the power system 

frequency in real time. 
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