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Abstract: Sulfurized polyacrylonitrile (SPAN) is one of the most important sulfurized 

carbon materials that can potentially be coupled with the carbonaceous anode to fabricate  

a safe and low cost “all carbon” lithium-ion battery. However, its chemical structure  

and electrochemical properties have been poorly understood. In this discussion, we analyze 

the previously published data in combination with our own results to propose a more 

reasonable chemical structure that consists of short –Sx– chains covalently bonded onto 

cyclized, partially dehydrogenated, and ribbon-like polyacrylonitrile backbones. The 

proposed structure fits all previous structural characterizations and explains many unique 

electrochemical phenomena that were observed from the Li/SPAN cells but have not been 

understood clearly. 

Keywords: lithium-sulfur battery; sulfur cathode; sulfurized carbon; sulfurized 

polyacrylonitrile; polysulfide 

 

1. Introduction 

Sulfurized carbons are a class of new cathode materials, which have recently attracted considerable 

interest in developing high energy density rechargeable lithium/sulfur (Li/S) batteries [1]. Among 

numerous potential candidates, sulfurized polyacrylonitrile (SPAN) has been most intensively studied 

due to its excellent electrochemical performance and low process cost. The synthesis of SPAN was 

first reported in 2002 by Wang et al. who heated a 5:1 (wt) S/PAN mixture at 280–300 °C under argon 

for 6 h [2,3], and since intensive investigations have been followed, especially by the groups  
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led by He [4–8], Buchmeiser [9–11], and Chen [12–15]. Most of previous works were focused on the 

structural characterization, the optimization of synthesis conditions in variations of reaction temperature, 

reaction time and S/PAN ratio, as well as the applications with different electrolyte systems [4–20]. 

During heating, PAN polymer chains are cyclized and dehydrogenated by losing small hydrogen 

sulfide (H2S) molecules, the resulting carbon double bonds are instantly sulfurized (vulcanized) by 

small sulfur fragments. Therefore, the original PAN structure no longer remains in the final product, 

the term of SPAN cannot reflect the true chemical structure so that alternative terms such as 

conducting polymer and composite have also been used to describe this type of materials. The reported 

advantages of the SPAN over elemental sulfur include: (1) it offers very stable specific capacity close 

to or even higher than the theoretical value of elemental sulfur; (2) it completely avoids the dissolution 

of long-chain lithium polysulfide (PS) in organic electrolyte, as well as the resulting redox shuttle  

and parasitic reactions with lithium anode; (3) it is chemically compatible with the LiPF6-carbonate 

based electrolytes widely used in the state-of-art Li-ion batteries; (4) it suits for the cathode with high active 

material loading; and (5) the Li/SPAN cell after activation has nearly 100% coulombic efficiency (CE) and 

extremely low self-discharge rate. Moreover, He et al. have successfully demonstrated a proof-of-concept 

“all carbon” Li-ion battery by electrochemically pre-lithiating a graphite anode and then coupling the 

pre-lithiated graphite anode with a SPAN cathode [6]. The dream to fabricate safe and low cost metal-free 

Li-ion batteries will become true once a viable process for the pre-lithiation of either SPAN cathode or 

carbonaceous (or others such as silicon, tin, and their relative alloys) anode can be successfully developed. 

Despite the superior performances stated above, the chemical structure and electrochemical properties 

of the SPAN materials have never been understood clearly. The state of sulfur in the SPAN materials 

is still in debate. Some authors considered the elemental sulfur is embedded in the pyrolyzed PAN 

backbones in the form of nano-sized sulfur particles [2,12]. Other authors believed the sulfur is 

covalently bonded onto the pyrolyzed PAN backbones in the form of short –Sx– chains [9,16].  

In addition, many unusual phenomena, such as the significant voltage hysteresis and unusually high 

irreversible capacity in the first discharge, have been repeatedly reported but have never been 

understood clearly. It is essential to identify the chemical structure and clearly understand these unique 

electrochemical properties of the Li/SPAN batteries for further development of this promising cathode 

material. The purpose of this discussion is to determine a more reasonable chemical structure for  

the SPAN materials by analyzing the previously published data, and to understand the unique 

electrochemical phenomena of the Li/SPAN cells. 

2. Results and Discussion 

2.1. Chemical Structure of Sulfurized Polyacrylonitrile (SPAN) 

Many spectroscopic characterizations have consistently identified that sulfurs in the SPAN are present 

in the form of short –Sx– chains covalently bonded to the cyclized and dehydrogenated PAN backbones 

through C–S bonds [8–10,16,17]. The group peaks at 1600–1200 cm
−1

 and characteristic peak at  

802 cm
−1

 in the Fourier Transform Infrared Spectroscopy (FTIR) spectra are good indications of  

the dehydrogenated six-membered ring structure containing unsaturated carbon double bonds and 

heteroatoms [16]. The most direct evidence for the S–S and C–S covalent bonds are the strong signals 
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of C2S
−
, CNS

−
, C3NS

−
, and S3

−
 fragments (at m/z = 56, 58, 82, 96, respectively) in the Time-of-Flight 

Secondary Ion Mass Spectrometry (ToF-SIMS) [9]. Raman spectra give more evidence for the S–S and 

C–C bonds, as shown in Figure 1. It is indicated that in addition to three common peaks for the S–S 

stretching, the SPANs display three additional peaks at 305, 374, and 927 cm
−1

 in comparison with 

elemental sulfur. These three additional peaks can be reasonably assigned to the C–S bonds [16].  

In addition, the SPANs exhibit two intense absorption bands at around 1325 and 1513 cm
−1

, which are 

respectively attributed to the stretching of G mode sp
2
 carbon-bonds in the graphite plane, and the 

breathing of D mode sp
3
 carbon-bonds in the disordered carbon [21]. The intensity of these 

peaks/bands varies with the reaction temperature and reaction time. In general, the signal intensity 

ratios of the S–C to S–S and of G mode to D mode are increased with the reaction temperature and the 

reaction time, reflecting the fact that the length of –Sx– chains decreases and the degree of 

graphitization increases with the reaction temperature and reaction time. The covalent bonding of 

sulfur to the polymer backbones has been also indirectly verified by two experiments of (1) the solvent 

(toluene) extraction showing that the sulfur in the SPAN is unextractable [9] and (2) the 

thermogravimetric analysis (TGA) showing that the sulfur in the SPAN cannot be completely removed 

even at above 800 °C [10,12]. Based on the results above, two structures as shown by Structure–a and 

Structure–b in Scheme 1 were proposed by Yu et al. [16] and Fanous et al. [9], respectively. In both 

structures, the short –Sx– chains are covalently bonded to the cyclized and dehydrogenated PAN 

backbones through the C–S bonds. However, these two structures do not match the results of elemental 

analyses, which were reported by four independent research groups and are summarized in Table 1. 

The results of elemental analyses consistently reveal that the SPANs contain 0.89%–1.3% H, which 

corresponds to a 2.8–2.9 C/H ratio, no matter how long the reaction time is. This means that every three 

carbons contain at least one hydrogen, which is missed in Structure–a and Structure–b. The significant 

amounts of hydrogen in the SPANs are also verified by the thermogravimetric analysis-mass 

spectrometry (TG-MS) analysis, which shows that large amount of H2S is released in the temperature 

range of 300–400 °C [10]. Although a > NH functional group is proposed in Structure–b, the IR very 

sensitive N–H absorptions do not show up in the FTIR spectra [8,12,16,17]. 

Figure 1. Raman spectra for (a) sulfur, and sulfurized polyacrylonitrile (SPAN) made by 

heating a 4:1 (wt) S/PAN mixture for 8 h at temperature of (b) 250 °C; (c) 300 °C; (d) 450 °C; 

and (e) 800 °C. Reproduced with permission of Elsevier from [16]. 
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Based on the results of the elemental analyses and TG-MS analysis, we consider that the SPANs  

are more likely in the structure as indicated by Structure–c in Scheme 1, which is present in the form 

of two resonance structures. In addition, Table 1 shows that all SPANs have a C/N ratio of slightly 

greater than 3, implying that the mild denitrogenation must occur in the synthesis of SPANs. Therefore, 

Structure–c can be further modified as Structure–d, in which the short –Sx– chains are covalently 

bonded to the cyclized, partially dehydrogenated, and ribbon-like PAN backbones. Structure–d has  

a C/H ratio equal to 3.0, still slightly greater than the measured values (2.8–2.9), namely, the 

determined hydrogens are more than expected for Structure–d. The extra hydrogens are due to the 

incomplete dehydrogenation of the PAN, which is greatly affected by the reaction temperature and 

reaction time. 

Scheme 1. Proposed chemical structures for SPAN. (a) Structure–a; (b) Structure–b;  

(c) Structure–c; (d) Structure–d. 
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Table 1. Summary of elemental analysis results on sulfurized polyacrylonitriles (SPANs) 

made by different conditions. 

Synthesis Condition 
Result, % Ratio of Element 

Source 
S N C H C/N C/S C/H 

280–300 °C, 6 h 53.41 10.73 30.92 0.89 3.36 1.55 2.92 [2] 

330 °C, 6 h 41 ± 1 18.2 53 1.7 3.4 – 2.62 [9] 

280–300 °C, time 1 46.3 14.4 38.1 1.1 3.09 2.20 2.91 [7] 

time 2 (>time 1) 42 15.6 41.2 1.2 3.08 2.62 2.89 – 

time 3 (>time 2) 33.7 16.5 43.6 1.3 3.08 3.45 2.82 – 

300 °C, 8 h 43.28 13.99 38.12 – 3.17 2.34 – [16] 

450 °C 35.24 15.17 40.80 – 3.13 3.08 – – 

800 °C 15.32 19.05 52.28 – 3.20 8.98 – – 
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The averaged length (x value) of –Sx– chains in Structure–c and Structure–d can be roughly estimated 

by TGA, based on the fact that the C–S bond has much higher standard bond energy than the S–S bond, 

i.e., 740 kJ mol
−1

 for the C–S bond and 418 kJ mol
−1

 for the S–S bond at 298 K [22]. Figure 2 displays 

the TGA traces of elemental sulfur and a SPAN containing 49.1% S. In comparison with elemental 

sulfur that starts subliming at ~200 °C and entirely disappears at around 300 °C, the weight loss of 

SPAN can be distinctly divided into two regions according to the rate of weight loss, i.e., the fast 

weight loss region between 220 and 410 °C, and the slow weight loss region above 410 °C. The fast 

weight loss region is assigned to the breakdown of S–S bonds, and the slow weight loss region to  

that of S–C bonds. This assignment agrees with the TG-MS results, which show that the thermal 

decomposition products below 400 °C are dominated by H2S and those above 400 °C by CS2 [10]. 

From the weight loss below 410 °C and the total sulfur content determined by the elemental analysis  

in the SPAN, it is estimated that ~20% S are present in the form of the S–S bonds and 29.1% S  

(=49.1%–20%) are in the form of C–S bonds, which lead to an averaged n value of 1.37 in Structure–c. 

In other words, the averaged x value in the –Sx– chains for the SPAN containing 49.1% S is 3.37  

(i.e., x = n + 2 in Structure–c and Structure–d of Scheme 1). Thus, the chemical structure of the SPAN  

can be generally described as the short –Sx– chains covalently bonded to the cyclized, partially 

dehydrogenated, and ribbon-like PAN backbones. Judged from the results of Figure 2 and Reference 12, 

it is believed that the maximum x value in SPANs is not greater than 4, otherwise, in discharge the  

–Sx– chains would disproportionation into even longer polysulfide, leading to polysulfide redox shuttle 

and poor cyclability. 

Figure 2. thermogravimetric analysis (TGA) traces of elemental sulfur and SPAN (49.1% S), 

made by heating a 4:1 (wt) S/PAN mixture at 300 °C for 4 h. Plotted from the data of [12]. 

 

2.2. Electrochemical Characteristics of Li/SPAN Cell 

2.2.1. Electrochemical Mechanism 

According to Structure–c, the overall reaction of the Li/SPAN cell can be described as Scheme 2: 
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Scheme 2. Overall reaction of Li/SPAN cell. 
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In discharging, the –Sx– chain is first broken to form –SyLi and –Sx−yLi segments, whose ends are 

covalently bonded to the polymer backbones. With the discharge progressing, the insoluble Li2S is 

formed on the conducting carbon surface and the values of the y and (x − y) in the SPAN are gradually 

decreased until 1, at which further discharging results in the breakdown of the C–S bonds and meanwhile 

forms carbon conjugated bonds. As indicated by Scheme 2, the final discharge products are a mixture 

of the conjugated polymer backbone and Li2S. In the following charging, the conjugated polymer 

backbone first loses electrons to form delocalized radical cations, which immediately trap Li2S to form 

C–SLi seeds, further charging results in the growth of the sulfur chain from the C–SLi seeds. When no 

Li2S is available around the reaction sites, two grown C–SLi segments are electrochemically closed to 

form a ring, a similar structure as the original. In the entire discharging and charging process, the redox 

reaction of the SPAN takes place between the solid SPAN and the solid Li2S. Therefore, the Li/SPAN 

cell is fundamentally different from the conventional Li/S cells, in which the sulfur reduction involves 

multiple phase transitions, including in sequence solid-to-liquid, liquid-to-liquid, liquid-to-solid, and 

solid-to-solid transitions [23]. 

2.2.2. Cycling Characteristics of Li/SPAN Cell 

Typical cycling characteristics of the Li/SPAN cells are displayed in Figure 3. In the first discharge, 

the Li/SPAN cell suffers from significant voltage hysteresis (polarization) and produces large amount 

of irreversible capacity, as indicated by Figure 3a. The similar voltage hysteresis also has been frequently 

observed from the initial discharge of other conversion electrode materials [24]. We contribute such  

a voltage hysteresis to the poor electrical contact of the initial grain boundaries between the SPAN and 

conducting carbon particles. This judgment can be indirectly supported by the very erratic differential 

capacity-potential response, as indicated by Figure 3b. Due to the uneven and poor electrical contact of 

the initial grain boundaries, the dQ/dE–E chart in the first discharge is very erratic but becomes much 

more stable in the following charge and very smooth in the 5th cycle. 

The large amount of irreversible capacity in the first discharge is mainly due to the irreversible 

reduction of the short (low delocalized) conjugated carbon bonds in the small SPAN fragments, rather 

than the catalytic (irreversible) reduction of the electrolyte solvents on the surfaces of conducting 

carbon or electrode material particles as occurred in the conversion electrode materials [24]. Ascribed 

to the difference in the synthesis conditions and PAN sources that have proven to greatly affect the size 

and distribution of the SPAN fragments, a wide range CE from 62% to 87% has been reported for the 

first cycle of the Li/SPAN cells [7,8]. As shown by Table 2, the initial CE and reversible capacities  

in the 2nd cycle of the SPANs vary greatly even if the SPANs have the same sulfur content. This is 
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attributed to the influence of the size and distribution of the SPAN fragments on the delocalization 

degree (and further reversibility) of the conjugated carbon bonds. In particular, the specific capacity  

of sulfur in a SPAN reaches 1930 mAh g
−1

 [8], exceeding the theoretical value (1675 mAh g
−1

) of 

elemental sulfur, when the 1st CE is promoted to 86% by employing PAN precursor with high 

molecular weight and narrow molecular weight distribution [5]. In this case, parts of the capacities by 

the delocalized conjugated carbon bonds become reversible and contribute to the overall capacity. 

Figure 3. Electrochemical characteristics of a Li/SPAN cell (37% S in SPAN) and a 

Li/carbon black (CB) cell, respectively. (a) voltage profile of Li/SPAN cell; (b) differential 

capacity-potential plot of Li/SPAN cell; (c) irreversible capacity of carbon black; and  

(d) cycling performance of Li/SPAN cell. 

 

Table 2. Correlation of reversible capacity in 2nd cycle and initial coulombic efficiency (CE). 

Synthesis Condition S in SPAN wt% CE % 
Capacity at 2nd Cycle, mAh g

−1
 

Source 
vs. SPAN vs. S 

350 °C, 5 h 
42 81 726 1727 [7] 

42 86 811 1930 [8] 

300 °C, 3 h, 4:1 S/PAN 
48 75 477 993 [13] 

48 79 681 1419 – 

In support of our judgment, we assembled and cycled a Li/carbon cell using the same carbon black 

(CB) and electrolyte solution, as shown by Figure 3c. From the open-circuit voltage to 1.0 V, the CB 

only produces a 21 mAh g
−1

 (vs. CB) of irreversible capacity, which equals to 3.9 mAh g
−1

 (vs. SPAN) 

if normalized by the weight percentage of SPAN in the electrode composition. Therefore, the contribution 

of the irreversible reduction of the electrolyte solvents to the initial irreversible capacity of the 
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Li/SPAN cell can be negligible. In addition, the dQ/dE–E chart shows that the irreversible reduction of 

the short conjugated carbon bonds mainly occurs in the voltage range from 1.2 to 1.0 V, as indicated 

by the shaded area in Figure 3b. This voltage range is slightly lower than those of the single carbon 

double bonds in the small organic solvents, such as vinylene carbonate (1.40 V vs. Li/Li
+
) [25] and 

vinyl ethylene sulfite (1.48 V vs. Li/Li
+
) [26]. 

Unlike the conventional Li/S batteries, the Li/SPAN cell only shows a slightly sloped voltage plateau 

in the discharging and charging voltage profile (see Figure 1a). This can be attributed to the solid-to-solid 

single-phase reaction of the SPAN as discussed in the electrochemical mechanism, and is in good 

agreement with those observed from the solid-state electrolyte Li/S batteries [27,28]. In the dQ/dE–E 

chart (Figure 3b), there are two pairs of distinct differential capacity peaks at 2.03/2.45 V and 1.78/2.26 V, 

respectively, which agrees with the previous report [4]. According to Structure–c, these two pairs of 

differential capacity peaks can be assigned to the redox reaction of the S–S bonds and S–C bonds, 

respectively. The excellent cyclability (770 mAh g
−1

 at 1st cycle and stabilized at 500 mAh g
−1

) of the 

Li/SPAN cell, as shown in Figure 3d, can be again attributed to the solid-to-solid single-phase reaction 

of the SPAN, in which the dissolution of long-chain PS into organic electrolyte is entirely avoided. For 

the same reason, the fully charged Li/SPAN cell was reported to have no visible self-discharge over  

a month shelf storage [2], whereas the analogous Li/S cell suffered as high as 11% self-discharge after 

only one day of storage [29]. 

2.2.3. Chemical Compatibility of Electrolyte 

It is well-known that the LiPF6-carbonate based electrolytes currently used in the state-of-art Li-ion 

batteries are chemically incompatible with the Li/S batteries because of the strong nucleophilic reaction 

between the PS anion and carbonate solvents as well as the exchange reaction between the PS anion 

and fluorine in LiPF6 [23,30,31]. It seems that the ether based electrolytes have been established as the 

standard for the conventional Li/S batteries [23]. However, Figure 4a shows that the Li/SPAN cell has 

much more stable capacity retention in the carbonate based electrolyte than in the ether based electrolyte. 

This can be attributed to two facts of: (1) entirely different reaction mechanism between the Li/SPAN 

and the conventional Li/S cells; and (2) significantly higher solubility of the long-chain PS in the ether 

based electrolytes than in the carbonate based electrolytes. As discussed in the electrochemical 

mechanism, the discharge and charge of the Li/SPAN cells undergo through a solid-to-solid single-phase 

reaction, in which all the SPAN, reduction intermediates (C–SLi), and final product (Li2S) are insoluble 

in the organic solvents. The substantial insolubility greatly reduces the reactivity of sulfur species toward 

the carbonate solvents, which allows the use of carbonate based electrolytes in the Li/SPAN cells. 

On the other hand, due to the high solubility of PS in the ether solvents, the ether based electrolyte 

promotes the rearrangement of –Sx– chains in the SPAN to form soluble PS (a similar process as the 

disproportion). This phenomenon has been verified by the short voltage plateau at ~2.1 V in the  

first discharge of the Li/SPAN cell (Figure 4b). In the charging process, the ether based electrolyte 

promotes the Li2S to be oxidized directly on the carbon surface to form PS and the resulting PS 

dissolves into the electrolyte. Therefore, the same problems as found in the conventional Li/S cells still 

exist in the Li/SPAN cell, resulting in fast capacity fading (Figure 4a). The above analyses suggest that 

the PS-insoluble carbonate based electrolytes are favorable for the Li/SPAN cells. 
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Figure 4. Effect of electrolyte solvents on the cycling performance of Li/SPAN cell  

(42% S in both SPANs). (a) capacity retention; and (b) voltage profile of the first cycle. 

Figure 4a was plotted from the data of [9] and Figure 4b is reproduced with permission of 

Elsevier from [7]. 

 

2.2.4. Over-Discharging and Over-Charging Characteristics 

Asymmetric over-discharge and over-charge phenomena, as shown in Figure 5, have been reported 

for the Li/SPAN cells [4]. In particular, the Li/SPAN cell produced significant amounts of extra 

reversible capacities without causing visible degradation in the capacity and capacity retention  

when over-discharged to 0 V (see Figure 5a). However, the Li/SPAN cell did not produce any extra 

reversible capacities, and instead failed, when over-charged to above 3.8 V (see Figure 5b). These 

asymmetric phenomena can be reasonably explained by Scheme 2 and Structure–c. As suggested by 

Scheme 2, the carbons in the discharged SPAN are in conjugated state. In this case, the SPAN polymer 

backbones can act as the conducting polymer to provide extra capacities when over-discharged.  

The redox potential and reversibility of the organic solvents, conducting polymers and carbonaceous 

materials are varied with the delocalization degree of electrons, i.e., the degree of carbon conjugation, 

for example, 1.4–1.5 V (irreversible) for single carbon double bonds [25,26], ~1.3 V (reversible) for 

linear n-doped polyacetylene [32], 1.0–1.2 V (irreversible) for the short conjugated carbon bonds  

in the SPAN as shown in Figure 3b, and 0.1–0.3 V (highly reversible) for plane graphite [33]. 

Therefore, it is reasonable to conclude that the extra capacities of the Li/SPAN cell below 1 V are due 

to the reversible redox of the highly delocalized conjugated carbon bonds in the desulfurized SPAN. 

On contrary, the conjugation carbon structure in the main backbone of the charged SPAN is repeatedly 
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broken by the C–S bonds (but still exists between C and N, as shown by Structure–c), which makes the 

SPAN electrochemically inactive. Therefore, no extra capacity can be released when the Li/SPAN cell 

is over-charged. The failure of the Li/SPAN cell at ~3.8 V is due to the anodic corrosion of the nickel 

current collector (foam) used in the SPAN cathode [4]. 

Figure 5. Over-discharging and over-charging characteristics of Li/SPAN cell (41.8% S in 

SPAN), in which the cathode active material was pressed onto a nickel foam and a current 

density of 0.25 mA cm
−2

 was used. (a) over-discharging to 0 V; and (b) over-charging 

toward 4 V. Reproduced with permission of Elsevier from [4]. 

 

3. Experimental Section 

As supplement for the previous literature, SPAN was synthesized by heating a 3:1 (wt) S/PAN 

mixture at 350 °C under nitrogen for 3 h. Resulting SPAN, having a sulfur content of 37 wt%, was 

coated onto a carbon-coated aluminum foil at a weight ratio of 80% SPAN, 15% carbon black (CB),  

and 5% poly(acrylonitrile-methyl methacrylate) (ANMMA, AN/MMA = 94:6, MW = 100,000, 

Polysciences, Inc., Warrington, PA, USA) by using N-methyl pyrrolidinone solvent. On average, the 

cathode had a SPAN loading of 3.2–3.5 mg cm
−2

. Using the same procedure and current collector, a 

carbon electrode consisting of 85 wt% CB and 15 wt% ANMMA was made. The electrode was punched 

into 1.27 cm
2
 circular disks and dried at 100 °C under vacuum for 8 h prior to use. The electrolyte used 

was a 1.0 M LiPF6 solution dissolved in a 3:7 (wt) mixture of ethylene carbonate (EC) and ethyl 

methyl carbonate (EMC) with water content less than 50 ppm. Using the above materials and a 

Celgard 3401 separator, the Li/SPAN and Li/CB coin cells, respectively, were assembled and cycled at 
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0.1 mA cm
−2

 between 1.0 and 3.0 V on a Maccor Series 4000 cycler (Maccor Inc., Tulsa, OK, USA). 

The specific capacity was referred as to the mass of SPAN, and those from previous publications were 

converted to the same specific capacity if not thus described. 

4. Conclusions 

Based on the analyses of this work, the chemical structure of the SPAN cathode materials can be 

generally described as the short –Sx– chains covalently bonded to the cyclized, partially dehydrogenated, 

and ribbon-like PAN backbones. The significant voltage hysteresis and the large irreversible capacity 

in the first discharge are due to the poor electrical contact of the initial grain boundaries between the 

SPAN and conducting carbon particles and to the irreversible reduction of the short conjugated carbon 

bonds, respectively. The excellent cyclability of the Li/SPAN cells is attributed to the solid-to-solid 

single-phase redox reaction of the SPAN cathode materials, which entirely eliminates the redox shuttle 

of lithium polysulfide. The substantial insolubility of all the SPAN, reduction intermediates and final 

product in the carbonate based electrolytes greatly reduces the reactivity of sulfur species. Therefore, 

the Li/SPAN cells are chemically compatible with the LiPF6–carbonate based electrolytes. The  

solid-to-solid single-phase reaction and the substantial insolubility of sulfur species in the carbonate 

solvents make the carbonate based electrolyte favorable for the Li/SPAN batteries. In addition, the highly 

delocalized conjugated carbon bonds can offer extra reversible capacities without causing visible 

performance degradation when the Li/SPAN cell is over-discharged. 
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