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Abstract: Microalgae contain valuable compounds that can be harnessed for industrial 

applications. Lignocellulose biomass is a plant material containing in abundance organic 

substances such as carbohydrates, phenolics, organic acids and other secondary compounds. 

As growth of microalgae on organic substances was confirmed during heterotrophic and 

mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to 

cultivate microalgae and produce target compounds. In this review, different treatment 

methods to hydrolyse lignocellulose into organic substrates are presented first. Secondly, 

the effect of lignocellulosic hydrolysates, organic substances typically present in lignocellulosic 

hydrolysates, as well as minor co-products, on growth and accumulation of target compounds 

in microalgae cultures is described. Finally, the possibilities of using lignocellulose 

hydrolysates as a common feedstock for microalgae cultures are evaluated. 
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1. Microalgae: A Source of Valuable Compounds 

Microalgae include several groups of microorganisms that belong to the Prokaryota or Eukaryota, 

typically found in fresh water or marine systems in single cell forms or in groups. They are capable of 

performing photosynthesis, producing approximately half of the atmospheric oxygen while using the 

greenhouse gas carbon dioxide to grow photoautotrophically [1]. Microalgae contain valuable compounds 

such as lipids, proteins and pigments (Table 1) which have substantial potential for commercial 

applications. Microalgae cells accumulate lipids which include triacylglycerides (TAGs), polyunsaturated 

fatty acids (PUFAs) and sterols [2]. These lipids constitute storage materials or membrane structural 

components in microalgae and can be used for biofuel, food supplement and pharmaceutical production. 

Indeed, fossil fuels are nowadays still the main source of carbon based fuels, the exploitation of which 

causes emission of greenhouse CO2. Biodiesel production from oil crops is seen as currently the best 

alternative, but still presents the main drawback of competing with food production for arable land. 

Therefore, production of biodiesel from TAGs present in microalgae can become an environmentally 

friendly alternative as microalgae produce oil and fix CO2 from atmosphere without the necessity of 

implementing vast arable areas for cultivation [3]. On the other hand, consumption of PUFAs in the 

human diet can help prevent the development of cardiovascular and mental diseases [4]. Fish are a rich 

source of PUFAs, but uncontrolled fishing has led to a substantial decrease in the worldwide fish 

population [5]. Production of PUFAs from microalgae may overcome this problem. On the other hand, 

sterols from microalgae are important part of the diet for juvenile scallops or prawns in aquaculture 

hatcheries [6]. Moreover, the high protein content in microalgae makes them a possible fodder for 

agricultural livestock [7]. In addition, microalgae cells also possess pigments such as chlorophylls and 

carotenoids. Chlorophylls harvest solar light in the process of photosynthesis while carotenoids are 

accessory pigments that increase the range of sun light used for photosynthesis (β-carotene) or protect the 

photosynthetic mechanism against photodamage induced due to environmental stress conditions 

(astaxanthin, lutein) [8]. Those pigments can be used as food colorants and cosmetic additives against UV 

light or as pharmacological agents because of their wound healing and anticancer properties [9,10]. 

In order to make production of value-added compounds from microalgae an economically feasible 

process, it is necessary to produce high amount of microalgae biomass. Microalgae are cultivated in 

open ponds or different types of photobioreactors (see below, Section 5). 

However, high culture densities are not achievable in scaled-up systems due to light limitations [11]. 

Many strains of microalgae are able to consume sugars, alcohols and organic acids as a source of carbon 

during heterotrophic or mixotrophic cultivation [12–14]. During heterotrophic growth, microalgae are 

cultivated in the dark, assimilate organic substances from the medium to cover energy requirements and 

release carbon dioxide. During mixotrophic cultivation, microalgae consume CO2 using light energy as 

well as external organic compounds from environment. High microalgae biomass concentrations can be 

achieved during cultivation in large-volume bioreactors when organic substances are applied [15]. The ability 

of microalgae to grow on organic substrates raises the possibility of cultivating microalgae on lignocellulose 

feedstock and thus reduce cultivation costs and increase productivity. Lignocellulose is the world’s most 

abundantly available raw plant material that can become a promising feedstock for microorganisms 

such as bacteria, yeasts and fungi to produce high value added products and biofuels [16–18].  
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Table 1. Taxonomy classification of microalgae with cellular component content *. 

Taxonomy Microalgae 
Domain Eucaryota 
Division Chlorophyta 

Class Chlorophyceae Trebouxiophyceae 
Order Sphaeropleales Volvocaes 1 Chlamydomonadales Chlorellales 
Family Scenedesmaceae Haematococcaceae Dunaliellaceae Chlamydomonadaceae Chlorellaceae 
Genus Acutodesmus Haematococcus Dunaliella Chlamydomonas Chlorella 

Species 
Scenedesmus 

obliquus 
Haematococcus 

pluvialis 
Dunaliella  

salina 
Chlamydomonas  

reinhardtii 
Chlorella  

prothotecoides 
Chlorella  

zoofingiensis 
Chlorella  
vulgaris 

Content Proteins 51% Pigments 1.5% Pigments 11% Lipids 65% Lipids 62% Lipids 54% Proteins 46% 
Reference [19] [20] [21] [22] [23] [24] [25] 
Domain Eucaryota 
Division Heterokontophyta Dinophyta 2 Euglenophyta Heterokontophyta Chlorophyta 

Class Bacillarophyceae Dinophyceae Euglenophyceae Eustigmatophyceae Chlorophyceae Chlorophyceae 3 
Order Naviculales Dinotrichales 2 Euglenales Eustigmatales Sphaeropleales Chlorococcales Chlorococcales 3 
Family Phaeodactylaceae Crypthecodiniaceae Euglenaceae Monodopsidaceae Selenastraceae Chlorococcaceae Dictyosphaeriaceae 3 
Genus Phaeodactylum Crypthecodinium Euglena Nannochloropsis Monoraphidium Neochloris Botryococcus 

Species 
Phaeodyctylum  

tricornutum 
Crypthecodinium 

cohnii 
Euglena  
gracilis 

Nannochloropsis  
oculata 

Monoraphidium 
contortum 

Neochloris  
oleoabundans 

Botryococcus  
braunii 

Content Lipids 20% Lipids 20% Lipids 29% Lipids 32% Lipids 30% Lipids 52% Lipids 65% 
Reference [26] [27] [28] [29] [30] [31] [32] 
Domain Procaryota 
Division Cyanobacteria 

Class Cyanophyceae 
Order Nostocales 3 Chroococcales 4 Chroococcales Chroococcales 5 Oscillatoriales 6 
Family Nostocaceae 3 Spirulinaceae 4 Microcystaceae – Oscillatoriaceae 
Genus Anabaena Spirulina Microcystis Thermosynechococcus Oscillatoria 

Species Anabaena azollae Spirulina platensis Microcystis aeruginosa Thermosynechococcus elongates Oscillatoria acuminata 
Content Proteins 40% Proteins 67% Lipids 28% Lipids 20% Lipids 25% 

Reference [33] [34] [35] [36] [35] 
* Cellular content values are expressed as % of dry weight and may vary markedly depending on growth conditions such as light intensity, CO2 concentration, N deprivation, temperature or the 
presence of organic substrates; Source: AlgaeBase, Integrated Taxonomic Information System (ITIS) Report, PATRIC (Pathosystems Resource Integration Center). 1 According to ITIS Report Order: 
Volvocales, according to AlgaeBase Order: Chlamydomonadales; 2 According to ITIS Report Division: Pyrrophycophyta, Order: Gonyaulacales, according to AlgaeBase: Division: Dinophyta, Order: 
Dinotrichales; 3 According to ITIS Report; 4 According to AlgaeBase; 5 According to PATRIC; 6 According to Algae Base Order: Oscillatoriales, according to ITIS Report Order: Nostocales. 
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In this publication, the effect of lignocellulose feedstocks on microalgae growth and production of 

target compounds from microalgae culture is evaluated. 

2. Composition and Treatment of Lignocellulose Materials 

Lignocellulosic materials can be found in a large variety of plants such as coniferous trees (softwood), 

broad leave trees (hardwood), grasses and agricultural residues (Table 2). Lignocellulose is composed of 

three main biopolymers: namely cellulose, hemicelluloses and lignin. Cellulose, is a non-branched polymer 

consisting of D–glucopyranose units (hexoses) connected via β-(1,4)–glycosidic linkages. Hemicellulose is 

a complex carbohydrate polymer containing pentoses (mainly xyloses in the case of xylan—the main 

constituent of hardwood, grasses and agricultural wastes) and hexoses (typically mannoses in the case of 

mannan found principally in softwood), as the main sugars, bonded with β-(1,4)–glycosidic linkages. 

Unlike cellulose, many compounds such as saccharide residues and organic acids (glucuronic acid GluA), 

organic acid groups (acetyl) or lignin components are attached to the main sugar chain giving 

hemicellulose a branched structure. Finally, lignin is a complex biopolymer that consists of 

phenylpropanoid units such as hydroxyphenyl, guaiacyl and syringyl, which are connected to each other 

via various ether and carbon—carbon bonds. Cellulose chains are arranged in bundles and interlinked with 

hemicellulose. Lignin is cross-linked with hemicellulose and occupies space between cellulose  

bundles [37,38]. Plant materials also contain starch and small amounts of pectins, proteins, minerals, lipids, 

terpenoids, polyphenols and alkaloids. Starch is composed of amylose and amylopectin and serves as a 

storage material. When photosynthesis can not take place, glucose from starch provides energy that is used 

by plants to perform survival functions [39]. Starch constitutes 0.4% of straw [40], but its content in wheat 

bran can be 34% [41]. Pectin is a polysaccharide possessing in structure with D–galacturonic acid (GalA) 

as main units that are connected via α-(1,4)–glycosidic linkages. Additionally, regions composed of 

galacturonic acids are connected together via rhamnose (Rha) to which galactose (Gal) and arabinose (Ara) 

chains are also attached [42]. In plant material, mineral elements: Ca, K, Mg, Na, P, Fe, Mn and Si, are 

combined with organic molecules or are present in a form of inorganic salts [43,44]. Lipids in 

lignocellulose comprise a wide range of different compounds including fatty acids, glycerides, sterols and 

waxes [45]. Terpenoids such as monoterpenes and diterpenes can be found in softwood residues [46,47] 

and triterpenes are constituents of hardwood bark [48]. Polyphenols are found in softwood and hardwood 

and are represented by a wide range of compounds including gallotannins and ellagitannins, 

proanthocyanidins, flavonoids, lignans and stilbenes [49–51]. A variety of alkaloids can also be present in 

grasses [52] or the wood of tropical plants [53]. Lignocellulose sugars constitute a feedstock for bacteria, 

yeast and fungi to produce a variety of target compounds. Xylitol, a sweetener, was produced from xylose 

by Candida guilliermondii [17], while Saccharomyces cerevisae [54] and Clostridium beijerinckii [55] 

convert sugars to ethanol and butanol, respectively—second generation biofuels. Itaconic acid, a building 

block for fibers and rubbers, was produced by Ustilago maydis from xylose or glucose [18] and hydrogen, a 

third generation biofuel, is obtained from sugars with the use of Caldicellulosiruptor saccharolyticus [16]. 

However, the presence of three major polymers and other minor substances in lignocellulose, their rigidity 

and strong structure make the access to valuable carbohydrates very complicated. A number of methods 

have been developed to successfully breakdown this recalcitrant polymer structure and efficiently 

hydrolyse lignocellulosic materials (Figure 1). 
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Table 2. Exemplary composition of different lignocellulosic materials. 

Component * 
Triticum Aestivum 

Bran 
Corn 

Stover 
Cynodon Dactylon 

Grass 
Hordeum Vulgare 

Brewer’s Spent Grain 
Oryza Sativa 

Straw 
Picea Abies 

Softwood 
Saccharum Officinarum 

Bagasse 
Salix 

Hardwood 
Glucan 1 10.5 36.1 30.4 16.7 35.9 40.9 35.8 43.0 

Xylan 18.3 21.4 22.6 19.9 19.0 5.1 21.2 14.9 

Mannan – 1.8 0.0 – – 10.1 0.79 3.2 

Galactan 1.1 2.5 1.8 – – 1.9 0.74 2.0 

Arabinan 10.1 3.5 4.9 8.4 3.1 1.0 1.94 1.2 

Klason lignin 5.0 
17.2 3 

18.8 22.9 13.6 
27.7 3 

16.6 24.2 

AS lignin 2 – 4.4 4.8 3.3 1.6 2.4 

Reference [41] [56] [57] [58] [59] [60] [61] [62] 

* Values are expressed as % of dry material; 1 From cellulose; 2 AS—Acid Soluble; 3 A sum of Acid Soluble and Klason lignin. 
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Figure 1. Lignocellulose structure breakdown: hydrolysis of specific bonds and possible 

pathways for release of lignocellulose derived compounds. 1. Hydrolysis of O–glycosidic 

bond β (C1→C4) between Carbon 1 of Glu and Carbon 4 of another Glu. 2. Hydrolysis of 

O–glycosidic bond β (C1→C4) between Carbon 1 of one Xyl and Carbon 4 of another Xyl. 

3. Hydrolysis of O–glycosidic bond β (C1→C4) between Carbon 1 of Man or Glu and Carbon 

4 of Man or Glu. 4. Hydrolysis of O–glycosidic bond (C1→C2) between Carbon 1 of GluA 

and Carbon 2 of Xyl. 5. Hydrolysis of O–glycosidic bond α (C1→C2) or α (C1→C3) between 

Carbon 1 of Ara and Carbon 2 or 3 of Xyl. 6. Hydrolysis of O–glycosidic bond α (C1→C6) 

between Carbon 1 of Gal and Carbon 6 of Man. 7. Hydrolysis of feruloyl group Fr–O–C on 

Carbon 5 of Ara. 8. Hydrolysis of acetyl group Ac–O–C on Carbon 2 or 3 of Xyl.  

9. Hydrolysis of methyl group Met–O–C on Carbon 4 of GluA. 10. Hydrolysis of ether 

bond β–O–C4 between Carbon β in propanoid group of one unit and Carbon 4 in phenyl 

structure of the second unit. 11. Hydrolysis of ether bond α–O–C4 between Carbon α in 

propanoid group of one unit and Carbon 4 in phenyl structure of the second unit.  

12. Hydrolysis of ether bond C4–O–C5 between Carbon 4 in phenyl structure of one unit 

and Carbon 5 in phenyl structure of the second unit. 13. Hydrolysis of carbon bond β–C5 
between Carbon β in propanoid group of one unit and Carbon 5 in phenyl structure of the 

second unit. 14. Hydrolysis of carbon bond β–C1 between Carbon β in propanoid group of 

one unit and Carbon 1 in phenyl structure of the second unit. 15. Hydrolysis of carbon 

bond C5–C5 between Carbon 5 in phenyl structure of one unit and Carbon 5 in phenyl 

structure of the second unit. 16. Hydrolysis of carbon bond β–β between Carbon β in 

propanoid group of one unit and Carbon β in propanoid group of the second unit.  

17. Dehydration of pentose structure with the loss of 3 molecules of water. 18. Dehydration 

of hexose structure with the loss of 3 molecules of water. 19. Hydrolysis of ring in 

hydroxymethylfurfural structure and its conversion to levulinic acid and formic acid.  

20. Hydrolysis of formyl group and its oxidation to formic acid. 21. Hydrolysis of α  

O–glycosidic bond (C1→C4) between Carbon 1 of GalA and Carbon 4 of another GalA.  

22. Hydrolysis of O–glycosidic bond (C1→C2) between Carbon 1 of GalA and Carbon 2 

of Rha. 23. Hydrolysis of O–glycosidic bond (C1→C4) between Carbon 1 of Rha and 

Carbon 4 of GalA. 24. Hydrolysis of O–glycosidic bond (C1→C4) between Carbon 1 of 

Gal and Carbon 4 of Rha. 25. Hydrolysis of O–glycosidic bond (C1→C4) between Carbon 1 

of Gal and Carbon 4 of Gal. 26. Hydrolysis of O–glycosidic bond (C1→C3) between 

Carbon 1 of Ara and Carbon 3 of Gal. 27. Hydrolysis of O–glycosidic bond (C1→C4) 

between Carbon 1 of Ara and Carbon 4 of Rha. 28. Hydrolysis of O–glycosidic bond 

(C1→C5) between Carbon 1 of Ara and Carbon 5 of Ara. 29. Hydrolysis of  

O–glycosidic bond (C1→C3) between Carbon 1 of Ara and Carbon 3 of Ara.  

30. Hydrolysis of O–glycosidic bond (C1→C6) between Carbon 1 of Ara and Carbon 6 of 

Gal. 31. Hydrolysis of O–glycosidic bond (C1→C3) between Carbon 1 of Gal and Carbon 3 

of Gal. 32. Hydrolysis of O–glycosidic bond (C1→C6) between Carbon 1 of Gal and 

Carbon 6 of Gal. 33. Hydrolysis of meta ester bond between hydroxyl group and carboxyl 

group of different gallic acids. 34. Hydrolysis of para ester bond between hydroxyl group 

and carboxyl group of different gallic acids. 35. Hydrolysis of ester bond between carboxyl 
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group of gallic acid and Carbon 1,2,3,4 or 6 of glucose in pentagalloyl glucose unit.  

36. Hydrolysis of ester bond between carboxyl group of gallic acid and Carbon 1 of glucose. 

37. Hydrolysis of two ester bonds between two carboxyl groups of hexahydroxydiphenic 

acid and C2 and C3 or C4 and C6 of glucose. 38. Lactonization of hexahydroxydiphenic 

acid to ellagic acid. 39. Hydrolysis of carbon bond C4–(C8 or C6) between Carbon 4 of one 

flavanol unit and Carbon 8 (or 6) of the second unit. 40. Hydrolysis of ether bond C2–O–C7 

between Carbon 2 of one flavanol unit and Carbon 7 of the second unit. 
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Lignocellulose biomass at first is pretreated with mechanical (mill, screw press) [63] or  

physical (steam explosion, etc.) [56] methods to “open up” the lignocellulose structure and make the 

material more accessible for further chemical hydrolysis. Hot water extraction [57] and dilute acid  

treatment [58,64,65] are implemented to release sugars and organic acids localized in the hemicellulose 

structure. Xylans in hemicellulose can also be selectively extracted by organic solvents [18] such as 

oxalic acid combined with methyltetrahydrofuran (2-MTHF) or hydrolyzed enzymatically by 

xylanases into oligomers and simple sugars [66]. Alkaline treatment with NaOH or Ca(OH)2 [16]  

and Na2CO3 [59] breaks linkages in the lignin structure and removes phenolic compounds. Biological 

treatment of lignin with fungi was also reported as these microorganisms are able to decompose  

lignin via enzymatic action of ligninases [67]. Lignin can be also “extracted” by dilute acid [68], 

oxidation/alkaline [60], ethanolysis/alkaline [61], acetic/formic acid [69] and ionic liquid [70] 

treatment. Pretreatment methods increase the accessibility of cellulose towards cellulosic enzymes that 

subsequently hydrolyze cellulose into simple sugars as final products [16,57,70,71]. However, during 

chemical treatment of lignocellulose, sugars can undergo degradation to furans: 2-furfural (2-F) and  

5-hydroxymethylfurfural (5-HMF) [72]. Further decomposition of these furans leads to the formation 

of formic acid. Additionally, 5-hydroxymethylfurfural can be cleaved to levulinic acid [72,73]. Final 

selection of hydrolysis methods depends on the material type, expected degree of hydrolysis, targeted 

products, environmental and economic considerations. 

3. Effect of Lignocellulose Components on Microalgae Cultures 

Compounds available in lignocellulosic hydrolysates can be an attractive feedstock for microalgal 

cultivation as positive effects of sugars, acetates and phenolics on microalgae growth have been 

reported. Also the influence of numerous minor co-products such as sugar acids, alcohols, furans and 

their degradation products, fatty acids, terpenoids, polyphenols, alkaloids as well as impurities on 

microalgae cultures has been mentioned in many publications (Summary in Section 4). 

3.1. Sugars 

Growth of Chlorella zofingiensis and astaxanthin synthesis were confirmed during heterotrophic 

cultivation with 50 g/L of glucose, mannose or galactose. However, Chlorella cultivation with 50 g/L 

of galactose gave four times less biomass density and 27% less astaxanthin content when compared to 

growth with glucose or mannose [74]. In another study, heterotrophic growth of Chlorella strains was 

improved on 10 g/L glucose with a growth rate increase of 40%–85% compared to autotrophic cultures. 

However, the lipid content in Chlorella cells cultivated in the dark was decreased by 14%–39% 

compared to photoautotrophic cultivation [75]. Heterotrophic cultivation of Neochloris oleoabundans 

also showed the ability of this strain to grow on 10 g/L glucose or 10 g/L cellobiose with a biomass 

productivity that was 32% higher for glucose if compared to cellobiose. However, no Neochloris growth 

was observed when using xylose or arabinose as carbon sources [31]. When Chlorella sorokiniana was 

cultivated, addition of 8 g/L glucose resulted in a 3-fold and 5-fold increase in growth rate and almost 

2-fold and 4-fold increase in total fatty acid content for Chlorella culture grown on heterotrophic and 

mixotrophic mode, respectively [76]. Also mixotrophic cultivation of Chlorella sorokiniana with  

18 g/L glucose gave a 60% higher biomass density, but the lutein content in Chlorella cells was 30% 
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smaller when compared to autotrophic cultivation [77]. Cultivation of Phaeodactylum tricornutum in 

mixotrophic mode and using 0.5–1 g/L glucose increased the growth rate by 38% and cell lipid content 

by 144%–161% in comparison to autotrophic control [78]. Chlorella strains upon xylose enhancement 

were able to grow on pentose sugars, but only in the presence of light, with Chlorella showing improved 

growth on xylose and no growth changes on arabinose. What is more, addition of glucose improved 

xylose utilization in Chlorella culture [79]. Rhamnose was reported to support Chlorella vulgaris growth 

at 1.64 g/L, with Chlorella culture density at the end of cultivation reaching the same level as in case of 

using 1.5 g/L xylose and being 20% smaller when compared to 1.8 g/L glucose [80]. 

3.2. Acetates 

Acetates in lignocellulosic hydrolysates come from acetyl groups which are localized on the main 

hemicellulose chains. Acetates can constitute 2.9%–4.2% [62], [69] of lignocellulosic materials and are 

easily released together with hemicellulose sugars during hot water or dilute acid treatment [64]. Some 

strains of microalgae are able to use acetate as an organic carbon source. A proper combination of light 

intensity and acetate concentration (2.46 g/L) resulted in enhancement of Haematococcus pluvialis 

growth in mixotrophic cultures. However, overdoses of acetate (above 4.1 g/L) caused cell bleaching 

and had a lethal effect on Haematococcus pluvialis cells [81]. Comparably, in another study acetate 

(2.5 g/L) increased growth of mixotrophically cultivated Haematococcus pluvialis by 24% and cell 

carotenoid content by 80%. Increases in acetate concentration up to 10–20 g/L caused growth inhibition, 

but carotenoid content in Haematococcus cells increased three times when compared to control [82]. 

Addition of acetate (up to 3.28 g/L) for mixotrophic cultivation of Chlorella sorokiniana gave 20% more 

biomass and cell lutein content increased. An increase in acetate concentration (4.1–4.9 g/L) caused that 

biomass density remained at the same level as in case of 3.28 g/L acetate, but cell lutein content decreased, 

when compared to control or acetate concentrations up to 3.28 g/L [77]. Chlamydomonas reinhardtii can 

use acetate in the dark as the only carbon and energy source, thereby leading to high microalgae 

densities [83]. Chlamydomonas reinhardtii can also grow in the presence of acetate under mixotrophic 

conditions. Chlamydomonas cultivation in 1 g/L acetate (TAP) medium gave almost 2-fold increase in 

growth rate, when compared to photoautotrophic cultivation without acetate. Additionally, acetate 

cultivation resulted in larger cell size as well as higher chlorophyll cell content and oxygen production (by 

31% and 52%, respectively). On the other hand, although Chlamydomonas cultivation on acetate showed a 

34% higher growth rate, chlorophyll cell content was smaller by 24% and oxygen production was 2.2-fold 

smaller when compared to photoautotrophic cultivation, with an additional 5% CO2 supply [84]. 

3.3. Methanol 

Methanol is generated in lignocellulose hydrolysates as a result of proton attack on methyl groups 

attached to glucuronic acid in hemicellulosic structures [64]. Methanol at a concentration of 7.9 g/L 

increased Chlorella biomass culture by 90% and lipid accumulation by 40%, under mixotrophic 

cultivation with additional 5% CO2 supply. Mixotrophic Chlorella cultivation with 7.9 g/L methanol, 

but without 5% CO2 decreased biomass culture by 65% and lipids accumulation by 61%, in comparison 

to photoautotrophic cultivation with 5% CO2 [85]. In another study, mixotrophic cultivation of 

Scenedesmus obliquus with 3.9 g/L methanol resulted in an increase in biomass by 340%, when 
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compared to photoautotrophic control. However no Scenedesmus growth enhancement, with respect to 

control, was detected during heterotrophic cultivation on methanol [86]. Methanol concentrations such 

as those mentioned above cannot be obtained directly from lignocellulose, but external addition of 

methanol could greatly improve mixotrophic growth of microalgae on lignocellulosic hydrolysates. 

3.4. Sugar Acids 

Glucuronic acid—a constituent of hemicellulose—and galacturonic acid—a constituent of pectin—can 

also be released from plant materials due to chemical treatment. Acid treatment of Eucalyptus wood gave 

a hydrolysate containing 1.5 g/L of glucuronic acid and 1 g/L of galacturonic acid [87]. In animals, 

glucuronic acid is an intermediate in the L-ascorbic acid biosynthesis pathway. In plants, galacturonic 

instead of glucuronic acid participates in the biosynthesis of L-ascorbic acid [88]. Addition of 2.5 g/L 

galacturonic acid to the microalga Ochromonas danica cultivated on 1 g/L glucose in the presence of 

light resulted in 3.3 fold increase in ascorbic acid production when compared to experiments, where 

Ochromonas was cultivated mixotrophically on glucose. Addition of 2.5 g/L glucuronic acid failed to 

enhance ascorbic acid synthesis [89]. However, mixotrophic cultivation of microalga Euglena gracilis 

caused 2-fold and 4-fold increase in ascorbic acid production with 2.5 g/L glucuronic and galacturonic 

acid, respectively, as a comparison to the control grown in the presence of light, but without any added 

sugars or sugar acids. Euglena was thus shown to possess both “animal–like” and “plant–like” 

pathways for ascorbic acid synthesis [90]. 

3.5. Phenolics 

Phenolic compounds are known to exert inhibitory activity against microorganisms. Growth  

and ethanol production were inhibited in Candida shehatae by 33% and 53% and in Pichia stipitis by  

88% and 91%, respectively, when 0.5 g/L vanillin was used [91]. Microalgae show various growth 

responses when exposed to phenolic compounds. Strains of microalgae such as Chlorella saccharophila 

and Scenedesmus quadricauda showed full resistance against catechol but Chlorella zofingiensis, 

Coelastrum microporum and Mesotaenium caldarorium were completely inhibited in the presence of 

catechol. Additionally, the green microalga Scenedesmus quadricauda was able to metabolize 0.4 g/L 

phenolic compounds of different structure with 95% removal of catechol, p-hydroxybenzoic acid,  

p-coumaric acid and caffeic acid and 85% removal of ferulic acid [92]. In another study, the effect of 

three isomers of hydroxybenzoic acid (13.8 mg/L) on the growth of Chlorella vulgaris was tested.  

o-Hydroxybenzoic acid was shown to possess stimulatory effect on Chlorella growth together with an 

increased amount of protein, sugar, pigment and nucleic acid content in microalgae cells.  

p-Hydroxybenzoic acid also showed a growth-enhancing effect but to a smaller extent than  

o-hydroxybenzoic acid. m-Hydroxybenzoic acid exerted an inhibitory effect on growth of  

Chlorella vulgaris [93]. The stimulating activity of p-hydroxybenzoic acid was mentioned in a few 

reports. p-Hydroxybenzoic as well as vanillic acid and syringic acid had stimulating effect towards 

Chlorella pyrenoidosa growth. Particularly, there was a shift from inhibition to stimulation for  

p-hydroxybenzoic acid at 41–55 mg/L and vanillic acid at 50–67 mg/L [94]. p–Hydroxybenzoic acid 

had stimulatory effects at lower concentration (up to 138 mg/L) and inhibitory effects at high 

concentration (1.36 g/L) on the growth of Pseudokirchneriella subcapitata. o–Hydroxybenzoic acid 
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was toxic (13.8–138 mg/L) to Pseudokirchneriella, but the presence of p-hydroxybenzoic  

acid decreased the negative effect of o–hydroxybenzoic acid [95]. 

A few mechanisms can be proposed to explain the effect of phenolic compounds on microalgae 

growth. Phenolic compounds are known to have regulatory effects on enzyme activity, structure of 

cellular membranes and synthesis of macromolecules [93,94]. On the other hand, phenolic compounds 

under aerobic conditions are biodegraded to basic organic molecules and inorganic carbon dioxide which 

can be consumed by algae [96]. Metabolism of phenols was also reported for Coniochaeta ligniaria,  

a fungus strain which was able to purify dilute acid hydrolysate of cornstover from phenolic 

compounds [97]. Such phenolic compounds were found in lignocellulose hydrolysates obtained  

after spruce, willow or brewer´s spent grain treatment [68,98,99] (Table 3). 

Table 3. Phenolic compounds in hydrolysates from lignocellulosic materials. 

Phenolic 
Compound 

Concentration in 
Hydrolysate (mg/L) 

Treatment Method Material References

Vanillin 36, 430 
Dilute acid treatment  Spruce 

[68,98] Steam explotion + SO2 
impregnation 

Willow 

Vanilic acid 3, 33 
Alkaline hydrolysis  

Dilute acid treatment 
Brewer’s spent grain 

Spruce 
[68,99] 

Catechol 440 
Steam explotion + SO2 

impregnation 
Willow [98] 

Ferulic acid 145 Alkaline hydrolysis Brewer’s spent grain [99] 

p-Hydroxybenzoic 
acid 

27, 81 
Alkaline hydrolysis  

Dilute acid treatment 
Brewer’s spent grain 

Spruce 
[68,99] 

p-Coumaric acid 139 Alkaline hydrolysis Brewer’s spent grain [99] 

Syringic acid 8 Alkaline hydrolysis Brewer’s spent grain [99] 

3.6. Furans 

Furfural and hydroxymethylfurfural (5-HMF) are furans which are formed from sugars during 

dilute acid treatment of lignocellulose [100]. The concentration of furans in lignocellulosic 

hydrolysates was reported to range between 0.26 and 5.7 g/L for furfural and from 0.49 to 7.3 g/L for 

HMF [68,101]. So far, information about the effect of furans on microalgae growth has been rather 

scarce. Furfural up to 2 g/L and HMF up to 5 g/L were reported to cause strong inhibition of growth 

and ethanol production in Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipites and  

Candida shehatae cultures [91]. Furfural and hydroxymethylfurfural were examined for their effect on  

Spirulina maxima growth. Both types of furans exerted an inhibitory effect on Spirulina growth with 

full inhibition for furfural at 0.67 g/L and for HMF at 1.13 g/L. Inhibition of photosynthesis was 

detected and shown by the decrease in oxygen production. Additionally, it was concluded that furans 

could interfere in metabolic processes and cause lysis of Spirulina cells [102]. Recently, it has been 

reported that furfural up to 0.6 g/L can cause 30% biomass reduction during mixotrophic acetate-based 

cultivation of Chlamydomonas reinhardtii [103]. 
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3.7. Levulinic Acid 

Levulinic acid is generated upon cleavage of HMF [73] and its effect on microalgae was presented 

in a few reports. It was stated that levulinic acid at concentrations above 1.16 g/L inhibited growth and 

chlorophyll synthesis in photoautotrophically cultivated Sceletonema costatum, Chlorella vulgaris and 
Agmenellum quadruplicatum cells [104–106]. Inhibition of growth and chlorophyll synthesis was 

accompanied by accumulation of aminolevulinic acid—an intermediate for chlorophyll synthesis, as 

levulinic acid inhibits enzymatic conversion of 5-aminolevulinic acid in chlorophyll synthesis pathway. 

3.8. Fatty Acids 

Lipids constitute the extractable fraction of lignocellulose and their overall content in wood of 

oleaginous trees such as Eucalyptus is up to 0.2% [45,107]. Fatty acids content in Eucalyptus wood is 

about around 0.03%–0.04%, with palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2) as 

the most common representatives [107]. These fatty acids can be found in effluents released during 

pulping and bleaching treatment of wood and were tested in terms of their effect on Selenastrum 
capricornutum growth [108]. Oleic acid (C18:1) was the strongest inhibitor, as this fatty acid 

decreased Selenastrum growth by 50% at a concentration of 0.47 mg/L. Palmitic acid (C16:0) and 

linoleic acid (C18:2) also caused 50% inhibition, but at higher concentrations, 3.87 mg/L and 1.55 mg/L, 

respectively. On the other hand, a triglyceride of oleic acid had almost no inhibitory effect on 

Selenastrum growth, even at a concentration of 5 mg/L. In another study [109], growth of 

Monoraphidium contortum and Chlorella vulgaris was also inhibited by 50% in the presence of the fatty 

acids mentioned above, but inhibitory concentrations differed considerably. For Monoraphidium growth, 

linoleic acid (8 mg/L) was a stronger inhibitor than palmitic acid (9.2 mg/L) or oleic acid (12.1 mg/L). 

For Chlorella growth, linoleic acid (9.4 mg/L) also exerted stronger inhibitory effects than oleic acid 

(12.4 mg/L), but palmitic acid (59.1 mg/L) was shown to be a very poor inhibitor. Additionally, a 

leakage of K+ ions from Monoraphidium and Chlorella cells was detected upon exposure to the tested 

fatty acids and it was suggested that fatty acids caused damages to the membranes of microalgae cells. 

3.9. Terpenoids 

Terpenoids are a large class of hydrocarbons based on the isoprene structure and include 

monoterpenoids, diterpenoids and triterpenoids (Table 4).  

Monoterpenoids such as α–pinene, β–pinene and limonene can be obtained from fir (Abies) residues 

by steam distillation [46]. Diterpenoids such as abietic acid or palustric acid were extracted from Scots 

pine (Pinus sylvestris) or Norway spruce (Picea abies) residues with the use of acetone [47]. 

Triterpenoids such as betulin can be found in an extract from White Birch (Betula papyrifera) upon 

mixed organic solvent—water extraction [48]. (+)-Limonene, (−)-α–pinene and (−)-β–pinene were 

tested in terms of their effect on Chlorella pyrenoidosa growth, but no inhibition was observed [110]. 

However, α–pinene was reported to be an efficient bio-solvent used, instead of n-hexane, for lipid 

extraction from Chlorella vulgaris [111]. 
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Table 4. Extraction of terpenoids, polyphenols and alkaloids from natural sources. 

Name Group Source Extraction Solvent Content Ref. 

α–Pinene (1) Monoterpenoids 
Abies alba wood  

Abies alba knots 
Water 

0.2% A  

26.4% A 
[46] 

β-Pinene Monoterpenoids 
Abies balsamea knots  

Abies alba knots 
Water 

0.4% A  

2.3% A 
[46] 

Limonene Monoterpenoids Abies alba knots Water 2.1% A [46] 

Abietic acid Diterpenoids 

Pinus sylvestris wood  

Pinus sylvestris knots  

Picea abies wood  

Picea abies knots 

Acetone 

0.65%–1.43% A 

2.1%–3.9% A 

0.017% A  

0% A 

[47] 

Palustric acid Diterpenoids 

Pinus sylvestris wood  

Pinus sylvestris knots  

Picea abies wood  

Picea abies knots 

Acetone 

0.25%–0.67% A 

0.43%–1.7% A 

0.045% A  

0.014% A 

[47] 

Betulin Triterpenoids Betula papyrifera bark 
EtOAC—  

Ethanol-Water 
15.4% A [48] 

Gallic acid (2) Gallotannins Terminalia paniculata bark Water-Chloroform 0.068% B [112] 

Ellagic acid (3) Ellagitannins Terminalia paniculata bark Water-Chloroform 0.061% B [112] 

Catechin (4) Proanthocyanidins Acacia catechu wood Water 4.5% A [113] 

Quercetin (5) Flavonoids Terminalia paniculata bark Water-Chloroform 0.019% B [112] 

Rutin (6) Flavonoids Terminalia paniculata bark Water-Chloroform 0.049% B [112] 

Pinosylvin Stilbenes 
Pinus sylvestris wood  

Pinus sylvestris knots 
Acetone 

0.12%–0.98% A 

0.91%–3.5% A 
[47] 

Resveratrol Stilbenes Picea mariana bark Water 0.01% A [114] 

Pterostilbene (7) Stilbenes Pterocarpus marsupium wood EtOAc No data [115] 

Secoisolariciresinol Lignans Araucaria araucana wood Methanol 32.99% C [116] 

Lariciresinol Lignans Araucaria araucana wood Methanol 10.09% C [116] 

Pinoresinol Lignans Araucaria araucana wood Methanol 7.32% C [116] 

Eudesmin (8) Lignans Araucaria araucana wood Methanol 18.24% C [116] 

Gramine (9) Alkaloids 
Hordeum vulgare shoots  

Phalaris arundinacea samples 
No data  

Chloroform 

0.7% A  

0.011% A 

[117] 

[52] 

Berberine (10) Alkaloids Phellodendron bark Water or Methanol No data [118] 

Flindersine (11) Alkaloids 
Flindersia australis wood  

Hortia colombiana wood 
No data Ethanol 

No data  

0.009% A 

[119] 

[120] 
A expressed as % of dried tested material; B expressed as % of water bark extract; C expressed as % of 

aqueous MeOH extract.  
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Table 4. Cont. 

 

3.10. Polyphenols 

Polyphenols available mainly in wood and bark can be divided into hydrolysable tannins, 

condensed tannins or smaller flavonoids, stilbenes and lignans (Table 4). Hydrolysable tannins contain 

esters of gallic acids with glucose (gallotannin) or esters of hexahydroxydiphenic acids and gallic acids 

with glucose (ellagitannins) as basic units [121]. Condensed tannins are proanthocyanidins [122] 

composed of flavanol units (catechin or epicatechin). Flavonoids found in bark are quercetin (flavonol) 

or rutin (quercetin glycoside) [112]. Stilbenes are diphenylethylene substances [123] such as 

pinosylvin present in wood or knots [47], resveratrol present in bark [114] or pterostilbene present in 

wood [115]. Lignans available in wood are derivatives of phenylpropanoid dimers and include 

secoisolariciresinol, lariciresinol, pinoresinol and eudesmin [116]. 

Release of tannins can be achieved by means of water extraction [113,124], also with addition of 

inorganic salt (Na2CO3, NaHSO3) [125], as well as hexane, ethyl acetate, ethanol [126], methanol [127] 

or water‒ethanol [124] and water‒chloroform mixtures [112]. The extract prepared from  

Terminalia paniculata bark after water‒chloroform extraction treatment contained gallic acid, ellagic 

acid, quercetin and rutin [112]. The effect of gallic acid, a simple phenol molecule that forms ester 

bonds with glucose in the gallotannin structure, was tested on the cyanobacterium Nostoc sp. [128]. 

Gallic acid at 10 mg/L caused 40% growth inhibition, 84% protein content decrease and 98% 

chlorophyll content reduction. Additionally, the enzymatic activity of glutamine synthetase and nitrate 

reductase in Nostoc cells was inhibited by 30% and 68%. In cyanobacteria, nitrate (NO3
−) is reduced 

by nitrate reductase and nitrite reductase into ammonium, which is combined with 2-oxoglutarate via 

glutamine synthetase/glutamate synthase action to form glutamic acid [129]. This amino acid 

possesses a primary role in the synthesis of other amino acids—building blocks for peptides and 

proteins, and is also converted to 5-aminolevulinic acid—a precursor of chlorophyll synthesis [130]. 
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Inhibition of enzymes involved in glutamic acid synthesis pathway caused inhibition of chlorophyll 

and pigment production. Ellagic acid, a lactonized product of hexahydroxydiphenic acid present in 

ellagitannin, was tested in terms of its effect on the cyanobacterium Microcystis aeruginosa [131]. 

Growth of Microcystis was inhibited by 50% in the presence of 5 mg/L ellagic acid. As a comparison, 

gallic acid caused 50% growth inhibition of Microcystis at a concentration of 1 mg/L. Quercetin was 

reported to inhibit the photosynthetic mechanism in the diatoms Thalassiosira pseudonana, 

Phaeodactylum tricornutum and Thalassiosira weissflogii, 67%, 62% and 55%, respectively, at 6 mg/L. 

In contrast, the green microalgae Chlamydomonas sp. and Dunaliella tetriolecta were not inhibited 

even in the presence of 12 mg/L quercetin [132]. Rutin, a glycoside composed of quercetin and 

rutinose, showed to exert 50% inhibition of Sceletonema costatum growth at 0.4 mg/L [133]. Catechin, 

a flavanol present in condensed tannins, can be produced from Acacia catechu wood upon water 

extraction [113]. An exposure of Microcystis aeruginosa and Pseudokirchneriella subcapitata to 

catechin (25–100 mg/L) caused an increased formation of reactive oxygen species (ROS) in cells of 

both tested strains cultivated in dark or light conditions. Catechin, upon cell uptake, was suggested to be 

converted to quinone with generation of ROS, which can damage structural cell components. ROS 

formation in cells exposed to catechin was higher in light than in dark conditions. Presumably, oxygen (O2) 

and reducing power (NAD(P)H) generated during photosynthesis can enhance catechin to quinone 

conversion and ROS formation [134]. Pinosylvin, a dihydroxyl derivative of stilbene, was found in 

acetone extracts from Scots pine (Pinus sylvestris) wood and knots [47]. Resveratrol, a trihydroxyl 

derivative of stilbene, can be released from Black Spruce (Picea mariana) bark upon hot water 

extraction [114]. Pterostilbene, a dimethylated derivative of resveratrol, can be extracted from 

Pterocarpus marsupium wood with the use of ethyl acetate [115]. Inhibitory effect of pinosylvin, 

resveratrol and pterostilbene was tested on Selenastrum capricornutum and cyanobacterium 

Oscillatoria perornata growth [135]. Pterostilbene negatively affected Selenastrum and Oscillatoria 

growth at concentrations of 2.5 mg/L and 25.6 mg/L, respectively, thereby showing higher Selenastrum 

susceptibility. On the other hand, pinosylvin (21.2 mg/L) or resveratrol (22.8 mg/L) did not affect growth 

of tested strains. Eudesmin, a tetramethylated furofuran derivative of phenylpropanoid dimers, was 

present in aqueous methanol extract from Araucaria araucana wood [116]. Eudesmin negatively 

affected the growth of Oscillatoria perornata at 3.86 mg/L and Selenastrum capricornutum at  

38.6 mg/L, thereby showing the higher susceptibility of O. perornata. As a contrast, eudesmin exerted 

no effect on Oscillatoria agardhii even at 38.6 mg/L [136]. 

3.11. Alkaloids 

Gramine, an indole alkaloid (Table 4) present in young barley shoots (up to 0.7%) [117] or reed 

canary grass (up to 0.01%) [52], is synthetized in a self-defense mechanism against animal grazers [137]. 

Microcystis aeruginosa cultivated in the presence of various gramine concentrations and exposure times 

showed structure breakage (2 mg/L, 24–60 h) and DNA fragmentation (1 mg/L, 5 days; 8 mg/L, 1 or  

5 days) [138]. Growth of Chlorella vulgaris was also inhibited by 50% when 65 mg/L gramine was 

added [139]. Berberine, an isoquinoline alkaloid extracted from Phellodendron bark [118], inhibited 

growth of Scenedesmus quadriqauda, Microcystis aeruginosa, Synechococcus nidulans and 

Aphanothece clathrata by 50% at 0.75 mg/L, 0.27 mg/L, 0.57 mg/L and 0.64 mg/L, respectively.  
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On the other hand, 50% inhibition of Pseudokirchneriella subcapitata and Chlorella vulgaris growth could 

be achieved only if berberine concentrations higher than 1 mg/L, were applied [140]. Flindersine, a 

pyranoquinoline alkaloid isolated from wood of Flindersia australis [119] and Hortia colombiana [120], 

caused 50% inhibition of Oscillatoria perornata and Selenastrum capricornutum growth at a dosage of 

3.6 and 4 mg/L, respectively. No effect on Oscillatoria agardhii growth was detected, even with  

22.7 mg/L [136]. The mode of inhibitory action of alkaloids against microalgae may be attributed to 

their ability to cause oxidative damage in cells. Berberine, in an experiment on Microcystis aeruginosa 

growth, was reported to inhibit activity of superoxide dismutase (SOD), the enzyme responsible for 

converting O2
− into H2O2 and O2. O2

− is a ROS causing damage to macromolecules in cellular 

structures. Because berberine inhibited by 43% SOD activity, cell O2
− content was elevated up to 7 times 

[141]. However, concentration of berberine used in that study (0.2 g/L) was much higher than in another 

growth inhibitory report [140]. 

3.12. Impurities 

Some compounds can be present in lignocellulosic hydrolysates as contaminants from environment 

(heavy metals) or as remnants after chemical pretreatment (ionic liquids). Their possible effect on 

microalgae should be also taken into consideration. 

3.12.1. Heavy Metal Ions 

Heavy metal ions can be released into lignocellulose hydrolysate from corroded equipment used  

for hydrolysis [142] or from hydrolyzed lignocellulose materials, as plants accumulate heavy  

metals [143] during cultivation on polluted areas (post-industrial terrains, roadsides etc.). Metal ions 

such as lead (Pb), chromium (Cr), cadmium (Cd) and nickel (Ni) have an influence on microalgae  

growth. Pb at a concentration of 0.5 mg/L caused 50% inhibition of Selenastrum capricornutum, 

Chlorella pyrenoidosa, Chlorella ellipsoidea and Chlorella vulgaris cultivated in phosphate limited 

medium [144]. The presence of 10 mg/L Ni reduced growth of the cyanobacterium Synechococcus sp. 

and was accompanied by cell morphological changes and elevated Ni content [145]. Cd at a 

concentration of 17 mg/L inhibited the growth by 51% and photosynthetic oxygen evolution by 30% in 

Scenedesmus armatus culture cultivated in the presence of 0.1% CO2, but the increase in CO2 to 2% 

improved protection of Scenedesmus cells against cadmium, as only 8% inhibition of oxygen evolution  

and 27% growth inhibition was observed [146]. Cr at 0.97 mg/L was also shown to strongly suppress 

growth and the photosynthetic mechanism in Chlorella vulgaris cells [147]. 

3.12.2. Ionic Liquids 

Ionic liquids are a class of new organic solvents used for hydrolysis of polymers present in 

lignocellulose. Treatment of legume straw with 1-butyl-3-methylimidazolium chloride (BMIM Cl) 

gave two solid fractions, a residue fraction with decreased by 31% lignin content and a lignin-cellulose 

flocculated fraction containing no hemicellulose [148]. The use of 1-ethyl-3-methylimidazolium 

chloride (EMIM Cl) with H2SO4 resulted in 73% and 77% conversion of cellulose and hemicellulose 

from hydrolyzed Miscanthus grasses [149]. If solid fractions containing ionic liquid remnants [150] are 
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further hydrolyzed with enzymes, ionic liquid molecules can be released into hydrolysates. The 

presence of ionic liquids in lignocellulose hydrolysate should be avoided, as inhibitory effect of  

EMIM Cl and BMIM Cl was also reported for microalgae [151]. Growth of Chlorella vulgaris was 

inhibited by 56% with 1.46 g/L EMIM Cl and by 66% with 0.17 g/L BMIM Cl. Oocystis submarina 

growth was suppressed by 70% with 1.83 g/L EMIM Cl and by 67% with 0.26 g/L BMIM Cl.  

Growth of diatom Cyclotella meneghiniana was reduced by 66% with 14.6 mg/L EMIM Cl and by  

68% with 1.74 mg/L BMIM Cl. 1-Butyl-3-methylimidazolium chloride proved to be a stronger 

inhibitor of microalgae than 1-ethyl-3-methylimidazolium chloride and the diatom Cyclotella was 

shown to be more sensitive to ionic liquids than the green microalgae Chlorella or Oocystis. 

Additionally, a decrease in growth inhibition to less than 10% with the increase in salinity of the growth 

medium used for Chlorella, Oocystis and Cyclotella cultivation was observed. It was suggested that salts 

created ion pairing with methylimidazolium cation molecules, thereby diminishing their interaction with 

negatively charged components of cell wall structure and alleviating growth inhibitory effects. 

4. Effect of Lignocellulose Hydrolysates on Microalgae 

Many lignocellulose related compounds have been tested separately in terms of their effect (Table 5) 

on microalgae cultures, but so far only few works have been reported about the direct effect of 

lignocellulosic hydrolysates on microalgae. In one study [152], rice straw, upon organosolvent 

treatment and a further hydrolysis with cellulosic enzymes to produce glucose from cellulose, was 

used as a feedstock for mixotrophic cultivation of Chlorella pyrenoidosa. Interestingly, the biomass 

productivity of Chlorella growing on rice straw hydrolysate medium containing 11 g/L sugars was 

three times higher than for Chlorella cultivated on synthetic medium containing 11 g/L glucose. It was 

suggested that non-sugar substances present in the rice straw hydrolysate could be responsible for 

acceleration of Chlorella pyrenoidosa growth. However, lipid content in Chlorella cells was only 

slightly higher (56.3%) for the growth on rice straw hydrolysate when compared to lipid content in 

Chlorella (50.3%) grown on glucose enriched medium. In another report [19], wheat bran material was 

biologically treated with fungal strains to produce reducing sugars which were used to enhance the 

growth of Chlorella vulgaris and Scenedesmus obliquus. Experiments showed that 0.25%–1.5% of 

wheat bran hydrolysate in the medium improved the growth of microalgae strains cultivated under 

mixotrophic or heterotrophic mode. Additionally, the presence of wheat bran hydrolysate increased 

carbohydrate and protein content in Chlorella and Scenedesmus cells when mixotrophic or heterotrophic 

cultivation was applied. Lipid content in Chlorella and Scenedesmus cells growing on wheat bran 

hydrolysate under mixotrophic conditions were higher than under heterotrophic mode. Chlorophyll 

content in microalgae cultures growing mixotrophically was up to 10 times higher than in the same 

cultures growing heterotrophically. However, during mixotrophic cultivation on wheat bran hydrolysate, 

chlorophyll content in Chlorella culture was higher in comparison to the control but chlorophyll 

content in Scenedesmus culture was smaller than in the control and decreased with the increase of 

wheat bran hydrolysate content. Recently, it has been mentioned that Chlamydomonas reinhardtii is 

able to excrete cellulosic enzymes which hydrolyze exogenous cellulose into cellobiose [153]. 

Consequently, cellobiose was consumed by Chlamydomonas under mixotrophic CO2 limiting conditions, 

but the effect of cellobiose was better seen under heterotrophic conditions. 
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Table 5. Effect of lignocellulosic hydrolysate related compounds on microalgae under various cultivation conditions: a summary. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 
Glucose  

Mannose  

Galactose 

50 g/L a Chlorella zofingiensis No Not mentioned 
Growth confirmed  

Astaxanthin synthesis confirmed 
[74] 

Glucose 10 g/L Chlorella vulgaris No 6 days 
Increased growth 1  

Decreased lipid content 1 
[75] 

Glucose  

Cellobiose 
10 g/L a Neochloris oleoabundans No 5 days Growth confirmed [31] 

Xylose  

Arabinose 
10 g/L a Neochloris oleoabundans No 5 days No effect on growth [31] 

Glucose 
8 g/L  

8 g/L 
Chlorella sorokiniana 

Yes  

No 

6 days  

6 days 

Growth acceleration 1  

Increased total fatty acid content 1  

Growth acceleration 1  

Increased total fatty acid content 1 

[76] 

Glucose 18 g/L Chlorella sorokiniana Yes 10 days 
Increased biomass density 1  

Decreased lutein content 1 
[77] 

Glucose 0.5–1 g/L Phaeodactylum tricornutum Yes 10 days 
Increased growth 1  

Increased lipid content 1 
[78] 

Xylose 0.15 g/L Chlorella Yes 2 weeks Increased growth 2 [79] 

Glucose  

Rhamnose  

Xylose 

1.8 g/L a  

1.64 g/L a  

1.5 g/L a 

Chlorella vulgaris No 15 days Growth confirmed [80] 

Acetate 
2.46 g/L  

over 4.1 g/L 
Haematococcus pluvialis Yes 8 days 

Growth confirmed  

Decreased growth 3 
[81] 

Acetate 
2.5 g/L  

10–20 g/L 
Haematococcus pluvialis Yes 10 days 

Increased growth 1  

Increased carotenoid content 1  

Decreased growth 1  

Increased carotenoid content 1 

[82] 
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Table 5. Cont. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 

Acetate 
up to 3.28 g/L  

4.1–4.9 g/L 
Chlorella sorokiniana Yes 10 days 

Increased biomass concentration 1  

Increased lutein content 1  

Increased biomass concentration 1  

Decreased lutein content 1 

[77] 

Acetate 1 g/L Chlamydomonas reinhardtii Yes 2 days 

Increased growth 1  

Chlorophyll content increased 1  

Cell size increased 1  

Oxygen production increased 1  

Increased growth 4  

Chlorophyll content decreased 4  

Cell size unchanged 4  

Oxygen production decreased 4 

[84] 

Methanol 

7.9 g/L + 5% CO2 

7.9 g/L without 

5% CO2 

Chlorella sp. 
Yes  

Yes 

45 days  

45 days 

Increased biomass growth 4  

Increased lipid content 4  

Decreased biomass growth 4  

Decreased lipid content 4 

[85] 

Methanol 3.9 g/L Scenedesmus obliquus 
Yes  

No 

40 h  

24 h 

Biomass growth enhancement 1  

No growth enhancement 1 
[86] 

Glucuronic acid 2.5 g/L b Ochromonas danica Yes 6 h No increase in ascorbic acid synthesis 5 [89] 

Glucuronic acid 2.5 g/L Euglena gracilis Yes 4 h Enhanced ascorbic acid synthesis 6 [90] 

Galacturonic acid 2.5 g/L b Ochromonas danica Yes 6 h Enhanced ascorbic acid synthesis 5 [89] 

Galacturonic acid 2.5 g/L Euglena gracilis Yes 4 h Enhanced ascorbic acid synthesis 6 [90] 

Catechol 0.05 μg c 

Chlorella zofingiensis  
Coelastrum microporum  

Mesotaenium caldarorium 
Yes Not mentioned Growth inhibition 7a [92] 

Catechol 0.05 μg c 
Chlorella saccharophila  

Scenedesmus quadricauda 
Yes Not mentioned No effect on growth 7b [92] 
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Table 5. Cont. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 
Catechol  

P-hydroxybenzoic acid  

P-coumaric acid  

Caffeic acid  

Ferulic acid 

0.4 g/L a Scenedesmus quadricauda Yes 5 or 10 days Removal of compounds from growth medium [92] 

O-hydroxybenzoic acid  

P-hydroxybenzoic acid 
13.8 mg/L a Chlorella vulgaris Yes 6–9 days 

Growth stimulation 8  

Increased pigment content 8  

Increased protein content 8  

Increased RNA and DNA content 8 

[93] 

M-hydroxybenzoic acid 13.8 mg/L Chlorella vulgaris Yes 6–9 days Growth inhibition 8 [93] 

P-hydroxybenzoic acid 13.8–55 mg/L Chlorella pyrenoidosa Yes 16 days Growth stimulation 8 [94] 

Vanillic acid 16.8–67 mg/L Chlorella pyrenoidosa Yes 16 days Growth stimulation 8 [94] 

Syringic acid 
19.8–79 mg/L 

99 mg/L 
Chlorella pyrenoidosa Yes 16 days 

Growth stimulation 8  

Culture death 
[94] 

P-hydroxybenzoic acid 
13.8–138 mg/L 

1.36 g/L 
Pseudokirchneriella subcapitata+ Yes 72 h 

Growth stimulation 8  

Growth inhibition 8 
[95] 

O-hydroxybenzoic acid 13.8–138 mg/L Pseudokirchneriella subcapitata+ Yes 72 h Growth inhibition 8 [95] 

2-Furfural 0.67 g/L Spirulina maxima Yes 144 h 
Growth inhibition 8  

Photosynthesis inhibition 8 
[102] 

2-Furfural 0.6 g/L + acetate Chlamydomonas reinhardtii Yes Not mentioned Growth inhibition 9 [103] 

5-HMF 1.13 g/L Spirulina maxima Yes 144 h 
Growth inhibition 8  

Photosynthesis inhibition 8 
[102] 

Levulinic acid 1.16–11.6 g/L Sceletonema costatum Yes 96 h 

Growth inhibition 8  

Aminolevulinic acid accumulation 8  

Chlorophyll synthesis inhibited 8 

[105] 
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Table 5. Cont. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 

Levulinic acid 1.16–5.8 g/L Chlorella vulgaris Yes 24 h 

Growth inhibition 8  

Aminolevulinic acid accumulation8  

Chlorophyll synthesis inhibited 8 

[104] 

Levulinic acid 6.96 g/L Agmenellum quadruplicatum Yes 14 h 

Growth inhibition 8  

Aminolevulinic acid accumulation 8  

Chlorophyll synthesis inhibited 8 

[106] 

Palmitic acid C16:0 3.87 mg/L Selenastrum capricornutum Yes 72 h Growth inhibition 8 [108] 

Palmitic acid C16:0 59.1 mg/L Chlorella vulgaris Yes 24 h 
Growth inhibition 8  

K+ leakage from cells 
[109] 

Palmitic acid C16:0 9.2 mg/L Monoraphidium contortum Yes 24 h 
Growth inhibition 8  

K+ leakage from cells 
[109] 

Oleic acid C18:1 0.47 mg/L Selenastrum capricornutum Yes 72 h Growth inhibition 8 [108] 

Oleic acid C18:1 12.4 mg/L Chlorella vulgaris Yes 24 h 
Growth inhibition 8  

K+ leakage from cells 
[109] 

Oleic acid C18:1 12.1 mg/L Monoraphidium contortum Yes 24 h 
Growth inhibition 8  

K+ leakage from cells 
[109] 

Linoleic acid C18:2 1.55 mg/L Selenastrum capricornutum Yes 72 h Growth inhibition 8 [108] 

Linoleic acid C18:2 9.4 mg/L Chlorella vulgaris Yes 24 h 
Growth inhibition 8  

K+ leakage from cells 
[109] 

Linoleic acid C18:2 8.0 mg/L Monoraphidium contortum Yes 24 h 
Growth inhibition 8  

K+ leakage from cells 
[109] 

α–Pinene  

β–Pinene  

Limonene 

10 g/L d Chlorella pyrenoidosa Yes 2 days No effect on growth 7b [110] 

α–Pinene 
Analytical 

grade 
Chlorella vulgaris stored as dried paste – 

7–8 h of 

extraction 
Extraction of lipids from Chlorella [111] 
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Table 5. Cont. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 

Gallic acid 10 mg/L Nostoc sp. Yes 5 days 

Growth inhibition 8  

Protein content reduction 8  

Chlorophyll content reduction 8  

Inhibition of glutamine synthetase activity 8 

Inhibition of nitrate reductase activity 8 

[128] 

Gallic acid 1 mg/L Microcystis aeruginosa Yes 15 days Growth inhibition 8 [131] 

Ellagic acid 5 mg/L Microcystis aeruginosa Yes 15 days Growth inhibition 8 [131] 

Quercetin 6 mg/L 

Thalassiosira pseudonana  
Phaeodactylum tricornutum  

Thalassiosira weissflogii 
Yes Not mentioned Photosynthetic mechanism inhibited 8 [132] 

Quercetin 12 mg/L 
Chlamydomonas sp.  

Dunaliella tetriolecta 
Yes Not mentioned No inhibition of photosynthetic mechanism 8 [132] 

Rutin 0.4 mg/L Sceletonema costatum Yes 3 days Growth inhibition 8 [133] 

Catechin 25–100 mg/L 
Microcystis aeruginosa  

Pseudokirchneriella subcapitata 

Yes  

No  

Yes  

No 

2 h  

2 h  

2 h  

2 h 

Formation of ROS~ in cells  

Formation of ROS~ in cells  

Formation of ROS~ in cells  

Formation of ROS~ in cells 

[134] 

Pinosylvin 
21.2 mg/L  

21.2 mg/L 

Selenastrum capricornutum  
Oscillatoria perornata 

Yes  

Yes 

4 days  

4 days 

No effect on growth 8  

No effect on growth 8 
[135] 

Resveratrol 
22.8 mg/L  

22.8 mg/L 

Selenastrum capricornutum  
Oscillatoria perornata 

Yes  

Yes 

4 days  

4 days 

No effect on growth 8  

No effect on growth 8 
[135] 

Pterostilbene 
2.5 mg/L  

25.6 mg/L 

Selenastrum capricornutum  
Oscillatoria perornata 

Yes  

Yes 

4 days  

4 days 

Growth inhibition 8  

Growth inhibition 8 
[135] 

Eudesmin 

3.8 mg/L  

38.6 mg/L  

38.6 mg/L 

Oscillatoria perornata  
Oscillatoria agardhii  

Selenastrum capricornutum 

Yes  

Yes  

Yes 

4 days  

4 days  

4 days 

Growth inhibition 8  

No effect on growth 8  

Growth inhibition 8 

[136] 

Gramine 

2 mg/L  

1 mg/L  

8 mg/L 

Microcystis aeruginosa Yes 

24–60 h  

5 days  

1 day or 5 days 

Breakage of cell wall structure 8  

DNA fragmentation 8  

DNA fragmentation 8 

[138] 

Gramine 65 mg/L Chlorella vulgaris Yes 10 days Growth inhibition 8 [139] 
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Table 5. Cont. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 

Berberine 

1 mg/L  

1 mg/L  

0.75 mg/L  

0.27 mg/L  

0.57 mg/L  

0.64 mg/L 

Pseudokirchneriella subcapitata+  

Chlorella vulgaris  
Scenedesmus quadricauda  

Microcystis aeruginosa  
Synechococcus nidulans  
Aphanothece clathrata 

Yes  

Yes  

Yes  

Yes  

Yes  

Yes 

4 days  

4 days  

4 days  

4 days  

4 days  

4 days 

Not stated  

Not stated  

Growth inhibition 8  

Growth inhibition 8  

Growth inhibition 8  

Growth inhibition 8  

[140] 

Berberine 0.2 g/L Microcystis aeruginosa Yes 3 days 
Inhibition of SOD activity 8  

Increased O2
− content in cells 8 

[141] 

Flindersine 

3.6 mg/L  

22.7 mg/L  

4 mg/L 

Oscillatoria perornata  
Oscillatoria agardhii  

Selenastrum capricornutum 

Yes  

Yes  

Yes 

4 days  

4 days  

4 days 

Growth inhibition 8  

No effect on growth 8  

Growth inhibition 8 

[136] 

Lead Pb  

(added as PbCl2) 
0.5 mg/L 

Selenastrum capricornutum  
Chlorella pyrenoidosa  
Chlorella ellipsoidea  

Chlorella vulgaris 

Yes 7 days Growth inhibition 8 [144] 

Cadmium Cd  

(added as CdCl2) 
17 mg/L Scenedesmus armatus Yes 24 h 

Growth inhibition 10a  

Inhibition of photosynthetic mechanism 10a 

Growth inhibition 10b  

Inhibition of photosynthetic mechanism 10b 

[146] 

Nickel Ni  

(added as NiCl2) 
10 mg/L Synechococcus sp. Yes 10 days Growth inhibition 8 [145] 

Chromium Cr  

(added as K2CrO4) 
0.97 mg/L Chlorella vulgaris Yes 96 h 

Growth inhibition 8  

Photosynthetic mechanism inhibited 8 
[147] 

EMIM Cl 1.46 g/L Chlorella vulgaris Yes 72 h Growth inhibition 8 [151] 

EMIM Cl 1.83 g/L Oocystis submarina Yes 72 h Growth inhibition 8 [151] 

EMIM Cl 14.6 mg/L Cyclotella meneghiniana Yes 72 h Growth inhibition 8 [151] 

BMIM Cl 0.17 g/L Chlorella vulgaris Yes 72 h Growth inhibition 8 [151] 

BMIM Cl 0.26 g/L Oocystis submarina Yes 72 h Growth inhibition 8 [151] 
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Table 5. Cont. 

Compound Concentration Microalgae Light Cultivation Time Effect on Microalgae Ref. 
BMIM Cl 1.74 mg/L Cyclotella meneghiniana Yes 72 h Growth inhibition 8 [151] 

Rice straw hydrolysate 11 g/L sugars e Chlorella pyrenoidosa Yes 60 h 
Increased growth 11  

Increased lipid content 11 
[152] 

Wheat bran hydrolysate 0.25%–1.5% f Chlorella vulgaris Yes 6 days 

Increased biomass growth 12  

Increased protein content 12  

Increased pigment content 12 

[19] 

Wheat bran hydrolysate 0.25%–1.5% f Chlorella vulgaris No 6 days 

Increased biomass growth 13  

Increased protein content 13  

Increased pigment content 13 

[19] 

Wheat bran hydrolysate 0.25%–1.5% f Scenedesmus obliquus Yes 8 days 

Increased biomass growth 12  

Increased protein content 12  

Decreased pigment content 12 

[19] 

Wheat bran hydrolysate 0.25%–1.5% f Scenedesmus obliquus No 8 days 

Increased biomass growth 13  

Increased protein content 13  

Decreased pigment content 13 

[19] 

1 when compared to photoautotrophic cultivation; 2 when compared to “non xylose enhanced” strains; 3 when compared to experiments with lower acetate concentrations;  
4 when compared to photoautotrophic cultivation with 5% CO2 supplied; 5 when compared to mixotrophic cultivation with 1% glucose; 6 when compared to experiments 

without any sugars or sugar acids added; 7a diameters of inhibition zone observed on filter paper disk; 7b no inhibition observed on filter paper disk; 8 when compared to 

experiments without tested compound added; 9 when compared to mixotrophic acetate-based cultivation; 10a when compared to control during cultivation with 0.1% CO2; 
10b when compared to control during cultivation with 2% CO2; 

11 when compared to mixotrophic conditions with synthetic medium containing glucose; 12 when compared 

to photoautotrophic cultivation without wheat bran hydrolysate in growth medium; 13 when compared to cultivation in dark without wheat bran hydrolysate in growth 

medium; a compounds tested separately; b as an addition to 1 g/L of glucose; c expressed as weight on filter paper disk; d concentration in ethanol used to saturate paper 

disks on agar plates; e sugars from rice straw hydrolysate in growth medium; f % of wheat bran hydrolysate in growth medium; + formerly known as Selenastrum 
capricornutum; ~ Reactive Oxygen Species. 
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5. Strategies for Implementing Lignocellulose Extracts into Microalgae Cultivation Systems 

In this review, a new approach to use lignocellulose hydrolysates as a feedstock for microalgae 

culture is presented. Such an approach requires many processing steps, including lignocellulose 

hydrolysis, detoxification of lignocellulosic hydrolysates with their implementation in microalgae 

cultivation systems and downstream processing of microalgae cultures. Many systems such as open 

ponds, or closed-up photobioreactors or bioreactors have been developed to cultivate microalgae [11]. 

Open ponds are the simplest cultivation systems where algae growing in ponds covering wide areas, 

are exposed to sun irradiation and convert light into biomass. Closed-up photobioreactors are  

systems where parameters such as pH, temperature, O2 tension, concentration of CO2 added or  

nutrient availability can be strictly controlled during cultivation. Such photobioreactors can be situated 

outdoors with light energy supplied from sun or can be placed indoors where light energy is provided 

by artificial lamps. In bioreactors, similar to photobioreactors, all cultivation parameters are controlled 

but a lack of light source makes this system only suitable for cultivation of microalgae that can use 

organic carbon sources, instead of light. Lignocellulosic hydrolysates contain organic carbon, in the 

form of sugars and acetate, which can be added to the bioreactor to support heterotrophically cultivated 

microalgae. Hydrolysates can be also implemented in photobioreactor cultivation, as addition of 

organic carbon in mixotrophic cultures was proved to increase biomass growth, if compared to 

photoautotrophic cultures. Whether production of compounds from microalgae cultures enriched with 

lignocellulosic hydrolysates can be incorporated on a commercial scale, depends strictly on economic 

factor. A long chain of processing steps generates costs due to energy input for material transport, 

hydrolysis, detoxification and cultivation system operations. Also the cost of chemical usage and labor 

have to be taken into consideration. All costs contribute to the final price of a desirable product and if 

this price is too high, the product cannot appear on the market. Therefore, efforts should be made to 

design systems that can provide efficient production process along with reduced energy input and 

maintenance costs. Microalgae are commercially cultivated in open ponds because of their economic 

feasibility and simplicity of maintenance. However in open systems, the light provided to microalgae cells 

is not sufficient and as a result, biomass density is not higher than 0.5 g/L [11]. Nowadays microalgae 

research is focused on closed-up photobioreactors, where better light utilization by microalgae cells 

results in achievable biomass densities between 5 and 25 g/L, however due to light limitation, this is 

not possible in scale-up systems [154]. Heterotrophic cultivation of microalgae in light independent 

bioreactors can also give biomass densities as high as 100 g/L in scale-up systems, when organic 

carbon source is supplied [15]. Implementation of lignocellulosic hydrolysates into open pond  

systems is rather doubtful, as bacteria can contaminate systems, consume supplied organic carbon, 

grow and overcome the microalgae cultures. This major problem could be solved by addition of 

organic solvents such as methanol or ethanol, together with lignocellulosic hydrolysates, into open 

systems. Methanol, which enhanced Chlorella [85] and Scenedesmus [86] growth and ethanol, which 

improved growth of Euglena gracilis [155], would also provide a sterility factor to prevent contamination 

by wild strains. However, not all microalgae strains are capable of utilizing methanol or ethanol and at 

higher concentration these solvents could also become inhibitory for microalgae [156,157]. Combination 

of some of processing steps into one process could be an interesting approach. Hydrolysates from 

lignocellulose hydrolysis can contain inhibitory substances such as furans, levulinic acid, fatty acids, etc. 



Energies 2014, 7 4471 
 
Hydrolysate sugars can support microalgae growth, but inhibitors present in the same hydrolysate can 

cause negative effects, making implementation of lignocellulosic hydrolysate a useless process. In 

order to overcome this barrier, detoxification methods such as evaporation, precipitation, active 

charcoal or ion exchange resin treatment are used [158]. A promising method could be adaptation of 

microalgae to inhibitors as in case of a Chlamydomonas reinhardtii strain, which was cultivated for 

170 days in the presence of gradually increasing concentrations of a bio-oil fraction that contained 

furfural and phenolics. As a result, an increased tolerance of Chlamydomonas towards toxic substances 

was achieved [103]. Some microalgae are also capable of removing phenolics from the growth 

medium [92]. Therefore, the possibility of using microalgae cultures as a detoxification treatment for 

lignocellulosic hydrolysates could be considered. Such hydrolysates containing phenolic compounds 

could be implemented into growth media during cultivation of microalgae in open ponds or enclosed 

photobioreactors. However, microalgae cultivated in open ponds are at risk of contamination from 

wild strains. Hence closed-up photobioreactors, where culture sterility can be maintained with less 

difficulty, seem to be more suitable for detoxification process with the use of microalgae. On the other 

hand, the presence of wild strains can be beneficial for detoxification process, as microalgae in 

consortium with bacteria can also degrade phenols [159,160]. The concentration of the added phenolic 

fraction should be also taken into consideration, in order to not cause lethal effects on the microalgae. 

Phenolics could be also implemented at lower concentration to increase biomass production, as these 

compounds were mentioned to stimulate growth of microalgae [93]. Again closed up systems are more 

suitable for this purpose, as the amount of the implemented phenolic fraction can be optimized in response 

to detoxification rate and culture growth rate, during cultivation on batch or fed‒batch mode [161]. 

Heterotrophic cultivation in bioreactors can also be harnessed for detoxification, as the microalga 

Ochromonas danica was able to grow in a medium containing phenol or phenol with sugars, in the 

dark, with complete phenol removal from the medium [162]. Finally, the capability of producing 

cellulosic enzymes by Chlamydomonas reinhardtii [153] allows consideration of new possibilities of 

cultivating microalgae on lignocellulose without the need of using lignocellulose pretreatment methods 

or specific commercial hydrolysis enzymes. 

6. Conclusions 

Lignocellulose extracts have potential to enhance the growth of microalgae and stimulate 

accumulation of specific products in mixotrophic or heterotrophic cultures, but the selection of  

suitable strains and adjustment of cultivation conditions should be properly combined. Sugars and 

acetates present in lignocellulosic hydrolysates can be used by microalgae cells as carbon sources. 

Improved growth of some strains and production of target compounds in the presence of sugars or 

acetates can be expected in some strains [76,78,82], but in other strains increased growth can only be 

achieved at the expense of decreased content of target compounds in microalgae cells [75,77].  

The concentration of organic substances should be also taken into consideration as acetates at higher 

concentrations can inhibit growth or product synthesis [77,81,82]. Moreover, cultivation conditions 

such as availability of light strongly influences production of specific substances in microalgae 

cultures [19]. In addition to sugar and acetates, other substances such as phenolics and furans are 

constituents of lignocellulose hydrolysates [98–101]. Phenolic compounds can be stimulatory or inhibitory 
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for microalgae, but the final effect depends strictly on phenolic structure and concentration, as well as on 

microalgae strains used [93–95]. Furans show inhibitory activity toward microalgae [102,103], but this 

effect has been scarcely investigated. Furans originate from sugars during lignocellulose treatment and 

it seems necessary to either maintain furan concentration below the inhibitory threshold or apply a  

pre-adaptation step to increase the resistance of microalgae strains to furans in the cultivation medium 

enriched with lignocellulose derived compounds [103]. Finally, the composition of lignocellulosic 

hydrolysates is dependent on the lignocellulose treatment method implemented. Methods and process 

hydrolysis conditions should be selected in such a way to achieve optimal feedstock substrates for 

microalgae cultivation, without generation of growth inhibitors. 
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