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Abstract: To achieve energy saving and emission reduction for vehicle diesel engines, the 

organic Rankine cycle (ORC) was employed to recover waste heat from vehicle diesel engines, 

R245fa was used as ORC working fluid, and the resulting vehicle diesel engine-ORC 

combined system was presented. The variation law of engine exhaust energy rate under 

various operating conditions was obtained, and the running performances of the screw 

expander were introduced. Based on thermodynamic models and theoretical calculations, 

the running performance of the vehicle diesel engine-ORC combined system was analyzed 

under various engine operating condition scenarios. Four evaluation indexes were defined: 

engine thermal efficiency increasing ratio (ETEIR), waste heat recovery efficiency (WHRE), 

brake specific fuel consumption (BSFC) of the combined system, and improvement ratio of 

BSFC (IRBSFC). Results showed that when the diesel engine speed is 2200 r/min and 

diesel engine torque is 1200 N·m, the power output of the combined system reaches its 

maximum of approximately 308.6 kW, which is 28.6 kW higher than that of the diesel 

engine. ETEIR, WHRE, and IRBSFC all reach their maxima at 10.25%, 9.90%, and 

9.30%, respectively. Compared with that of the diesel engine, the BSFC of the combined 

system is obviously improved under various engine operating conditions. 
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1. Introduction 

Internal combustion (IC) engines consume a large amount of petroleum resources. The thermal 

efficiency of IC engines is less than 40%. A large proportion of the energy from fuel combustion is 

released in the form of waste heat into the atmosphere through the exhaust and the coolant  

system [1,2]. Waste heat recovery is an effective means to improve fuel consumption, save energy, and 

reduce IC engine emissions [3]. 

The organic Rankine cycle (ORC) system is considered effective in converting low-grade waste 

heat to useful work and has recently been widely studied and applied in many domains [4–7].  

Wang et al. [8] established an off-design model of an ORC system driven by solar energy.  

El-Emam et al. [9] presented thermodynamic and economic analyses on a novel type of geothermal 

regenerative ORC system. Uris et al. [10] assessed the technical and economic feasibility of  

biomass-fueled ORC power plants. Carcasci et al. [11] indicated that the use of an ORC is a promising 

choice for the recovery of waste heat at low or medium temperatures. 

Many researchers have concluded that the ORC system is a highly effective means of recovering 

waste heat for IC engines [12–15], thus the topic has become a research hot spot worldwide.  

Peris et al. [16] utilized the ORC system to recover the waste heat of jacket cooling water from IC 

engines. Meinel et al. [17] recovered the exhaust energy of IC engines by means of an ORC system. 

Hajabdollahi et al. [18] built a model of an ORC for diesel engine waste heat recovery and analyzed 

the thermal efficiency and the total annual cost of the system. 

In an ORC system, the match of organic working fluids with heat source and systems significantly 

affects system performance. Numerous researchers have conducted studies on organic working fluid 

selection [19–22]. Wang et al. [23] analyzed nine different pure organic working fluids and indicated 

that R245fa and R245ca are the most suitable working fluids for engine waste heat recovery 

applications. Lakew et al. [24] concluded that R245fa can provide high power output for temperatures 

higher than 160 °C. Rayegan et al. [25] asserted that R245fa and R245ca are suitable working fluids 

for an ORC system at medium temperature. Based on the literature survey, R245fa performs suitably 

as the working fluid in an ORC system because of good thermodynamic and environmental performance. 

As a key component of the ORC system, an expander is used to produce useful work, and the 

running performance of the expander has a crucial effect on the running performance of the ORC 

system, including such aspects as net power output ( netW ) [26–30]. Kang et al. [31] conducted an ORC 

capable of generating electric power with a radial turbine and analyzed the influence factors of the 

ORC system. Twomey et al. [32] tested the performance of a scroll expander in a small ORC system. 

Qiu et al. [33] concluded that vane expanders and scroll expanders might be the best choices for 

micro-scale combined heat and power systems. 

In practice, a vehicle IC engine generally runs under various operating conditions, and the amount 

of waste heat from IC engine varies with these engine operating conditions. To recover the waste heat 
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efficiently and effectively under engine various operating conditions, it is crucial to know the variation 

law of engine exhaust energy and select an ideal expander. In this paper, by experiment, the variation 

law of engine exhaust energy rate under various operating conditions was obtained, and the running 

performances of the screw expander were investigated, then the vehicle diesel engine-ORC combined 

system was designed. Furthermore, by theoretical calculation, the running performances of the vehicle 

diesel engine-ORC combined system were analyzed under various operating conditions of the engine. 

As we all know, there are many electrical equipments powered by the electricity generator and 

battery in the vehicle. Generally, the electricity generator is driven by the vehicle engine, which 

certainly decreases the net power output of the vehicle engine. In this research, an ORC system is 

adopted to recover waste heat from diesel engine exhaust, and the screw expander used in the ORC 

system, in place of vehicle engine, is employed to drive the electricity generator. In this way, we can 

effectively improve the fuel consumption of the vehicle engine. Furthermore, electricity generation 

based on waste heat recovery of vehicle engine may also be an efficient way of saving energy and 

reducing emissions for the internal combustion engine–electric motor hybrid vehicle in the near future. 

2. Experimental Study on Exhaust Energy Rate and Screw Expander 

2.1. Available Exhaust Energy Rate of Vehicle Diesel Engine 

The IC engine used for the study of waste heat recovery is a six-cylinder and four-stroke vehicle 

diesel engine. The main parameters of the vehicle diesel engine are listed in Table 1. The diesel engine 

experimental system is illustrated in Figure 1. The test was performed under engine various operating 

conditions, including more than 85 operating condition points. During the diesel engine test, the engine 

speed varied from 600 r/min to 2200 r/min, and the engine torque varied from 0 N·m to 1500 N·m. 

Some of the tested operating condition points are listed in Table 2. 

Table 1. Main parameters of the diesel engine. 

Item Parameter Unit 

Displacement 9726 mL 
Cylinder diameter 126 mm 

Stroke 130 mm 
Rated speed 2200 r/min 

Maximum torque 1500 N·m 
Rated power 280 kW 

Compression ratio 17 - 
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Figure 1. Schematic diagram of the diesel engine experimental system. 

 

Table 2. Tested engine operating condition points. 

Engine speed 
(r/min) 

Engine 
torque (N·m) 

Engine 
power (kW) 

Fuel consumption 
rate (kg/h) 

Intake air flow 
rate (kg/h) 

Engine exhaust 
temperature (K) 

2200 1214.9 279.87 66.01 1661.6 818.95 
2000 1313.9 275.17 60.97 1554.2 783.45 
1800 1420.8 267.8 56.7 1432.4 779.85 
1600 1514 253.67 50.76 1252.4 745.95 
1400 1543.2 226.24 44.14 1090.1 710.75 
1200 1537.3 193.18 36.83 918.4 704.05 
1000 1183.6 123.95 23.18 595.4 650.75 
800 1001 83.86 16.38 361.7 653.95 
600 610.9 38.38 8.24 214.7 568.85 

The variation trend of brake specific fuel consumption (BSFC) of the diesel engine under various 

operating conditions is shown in Figure 2. When the engine speed is lower than 1100 r/min, BSFC 

gradually decreases with the increase of engine torque. When the engine speed is higher than 1100 r/min, 

BSFC gradually decreases initially and then gradually increases with the increase of engine torque. 

When the engine torque is lower than 400 N·m, BSFC gradually decreases initially and then gradually 

increases with the increase of engine speed. When the engine runs with high speed and low torque, 

BSFC is relatively high. When engine speed is 1100 r/min and engine torque is 1300 N·m, BSFC 

reaches its minimum. 
The available exhaust energy rate ( avaQ ) of the diesel engine can be calculated as follows: 

)( minexh_1exhpava T-TmcQ  =  (1)
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where, exhm  is the exhaust mass flow rate of the diesel engine and is the sum of the intake air flow rate 

and fuel consumption rate ( fuelm ), which can be obtained during the diesel engine test; exh_1T  is the 

engine exhaust temperature at the inlet of the evaporator of the engine exhaust side and can be 
obtained during the diesel engine test; minT  is the available minimum temperature of the exhaust at the 
outlet of the evaporator of the engine exhaust side and is set to 303.15 K; and pc is the isobaric specific 

heat of engine exhaust, which can be calculated as follows: 

990000250 exh_1P .T.c +=  (2)

Figure 2. BSFC of the diesel engine. 

 

The variation law of available exhaust energy rate under various operating conditions is shown in 

Figure 3. The engine available exhaust energy rate gradually increases with the increase of engine 

torque and engine speed, and the maximum of engine available exhaust energy rate is 290.0 kW. From 

Table 1, it is shown that the rated power of the diesel engine is 280 kW, which is lower than the 

maximum of engine available exhaust energy rate, so it is meaningful to recover and utilize the waste 

heat of the diesel engine exhaust. 

Figure 3. Available exhaust energy rate of the diesel engine. 
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2.2. Screw Expander 

The screw expander experimental system is illustrated in Figure 4. The screw expander was 

designed and manufactured by our research group at the Beijing University of Technology [34–37]. 

The screw expander experimental system mainly consists of screw expander, working fluid 

(compressed air) circuit, lubricating oil circuit, power testing system, data acquisition system and 

water cooling system. The experiment uses compressed air as working fluid, ambient air is sucked into 

the compressor and pressurized, and finally be discharged to the ambient environment after the 

expansion process in the screw expander. The air flow rate entering the screw expander can be 

adjusted through the regulation valve at the outlet of the gasholder. The lubricating oil is driven by an 

oil pump and flows into the screw expander for the purpose of lubricating and sealing. An oil separator 

is used to remove lubricating oil in the air which flows out of the screw expander. An eddy current 

dynamometer is used to measure the power produced by the screw expander, and the water cooling 

system is employed to cool down the eddy current dynamometer. Different parameters, such as flow 

rate, inlet and outlet pressure, inlet and outlet temperature, rotational speed, torque, and power,  

are measured. 

Figure 4. Schematic diagram of the screw expander experimental system. 

 

The variation of screw expander power output with the inlet pressure and rotational speed of the 

screw expander is shown in Figure 5. With the increase of inlet pressure and rotational speed of screw 

expander, the power output of the screw expander gradually increases. When the inlet pressure  

is 1.7 MPa and rotational speed is 3200 r/min, the power output reaches its maximum of approximately 

51.20 kW. 
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Figure 5. Variation of power output with inlet pressure and rotational speed. 

 

The expansion ratio is the ratio of inlet pressure to outlet pressure of the screw expander. The 

variation tendency of the expansion ratio with inlet pressure is shown in Figure 6, which demonstrates 

that the expansion ratio evidently varies with the inlet pressure and rotational speed. Overall, the 

expansion ratio tends to become lower with the increase of rotational speed. Furthermore, when the 

inlet pressure is relatively low, the expansion ratio tends to become higher with the increase of inlet 

pressure. When the inlet pressure is 1.7 MPa and rotational speed is 3200 r/min, the expansion ratio of 

the screw expander is approximately 8. 

Figure 6. Variation of expansion ratio with the inlet pressure. 

 

The variation of screw expander isentropic efficiency with the inlet pressure and rotational speed of 

the screw expander is shown in Figure 7. It can be seen that the isentropic efficiency evidently varies 

with the inlet pressure and rotational speed. Overall, isentropic efficiency tends to increase with the 
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increase of rotational speed. Furthermore, when the inlet pressure is relatively high, isentropic efficiency 

tends to become higher with the increase of inlet pressure. When the inlet pressure is 1.7 MPa and 

rotational speed is 3200 r/min, the isentropic efficiency of the screw expander is approximately 0.65. 

Figure 7. Variation of isentropic efficiency with inlet pressure and rotational speed. 

 

3. Vehicle Diesel Engine-ORC Combined System 

3.1. Configuration of the Combined System 

In this paper, on the basis of studying variation law of engine exhaust energy rate and running 

performances of the screw expander, the vehicle diesel engine-ORC combined system is presented, the 

combined system mainly consists two parts: vehicle diesel engine, ORC system. The working process 

of the vehicle diesel engine is based on the diesel cycle, whereas the working process of the ORC 

system is based on the Rankine cycle. For the combined system, diesel cycle is the topping cycle, and 

Rankine cycle is the bottoming cycle. The vehicle diesel engine-ORC combined system is illustrated in 

Figure 8. The ORC system mainly consists of an evaporator, screw expander, condenser, reservoir, and 

pump. When the ORC system is running, the working fluid is drawn from the reservoir and pressurized 

into a subcooled liquid state by the pump. The working fluid is then sent to the evaporator and is 

heated by engine exhaust. The working fluid turns into saturated vapor state with high temperature and 

high pressure. The saturated vapor flows into the screw expander to produce useful work. After the 

expansion process, with a decrease in temperature and pressure, the superheated vapor exhausted from 

the screw expander enters the condenser, and condenses into saturated liquid state in the condenser, 

then flows into the reservoir. The whole organic Rankine cycle (ORC) process is completed. R245fa is 

used as the working fluid for the ORC system, and its main properties are listed in Table 3. 
  



Energies 2014, 7 3408 

 

 

Figure 8. Schematic diagram of the vehicle diesel engine-ORC combined system. 

 

Table 3. Main properties of the working fluid R245fa. 

Working fluid Chemical formula Molar mass (kg/kmol) Tcritical (K) 

R245fa CHF2CH2CF3 134.05 427.16 

Pcritical (MPa) ρcritical (kg/m3) ODP GWP (100 years) 
3.651 516.08 0.0 950 

The evaporator employed for this research is a finned-tube heat exchanger, which has a larger heat 

transfer area to improve the heat transfer rate between the working fluid and engine exhaust compared 

to a shell-and-tube heat exchanger. Moreover, a finned-tube heat exchanger has lower flow resistance. 

Initially, a plate heat exchanger was used as the condenser. Through some preliminary experiments, we 

found that the plate heat exchanger has higher flow resistance, which results in higher outlet pressure 

of the expander and lower net power output of the ORC system. In the next stage, we plan to use a 

finned-tube heat exchanger as the condenser in order to optimize the running performance of the ORC 

system and the combined system. At present, a multistage centrifugal pump is selected as the working 

fluid pump due to its merits such as stable operation, low vibration and long working life. By regulating 

valves installed in the pipelines, the mass flow rate of the working fluid can be effectively adjusted. 

The single screw expander has many advantages, such as balanced loading of the main screw, long 

working life, high volumetric efficiency, high expansion ratio, low noise, low vibration and compact 

configuration, etc. Quite a few kinds of fluids, such as high pressure gas, superheated steam, saturated 

steam, gas-liquid two-phase fluid and hot liquid can be used as the working fluid for single screw expander. 

3.2. Thermodynamic Model 

The T-s diagram of the ORC system is shown in Figure 9, where exh_1T is the engine exhaust 

temperature at the inlet of the evaporator of the engine exhaust side, exh_3T  is the engine exhaust 
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temperature at the outlet of the evaporator of the engine exhaust side, Process exh_1T – exh_3T is the heat 

rejection process of the engine exhaust in the evaporator, and ppΔT  is the pinch point temperature 

difference (PPTD) between the diesel engine exhaust and the working fluid R245fa, and it is set to  

10 K in this paper. Process 1–2 is the actual expansion process of the working fluid in the screw 

expander. Process 1–2s is the isentropic expansion process. Process 2–3 is the isobaric condensing 

process of the working fluid in the condenser. Process 3–4 is the actual compression process of the 

working fluid in the pump. Process 3–4s is the isentropic compression process. Process 4–1 is the 

isobaric endothermic process of the working fluid in the evaporator. Because the engine exhaust 

temperature varies with engine operating condition, according to the different operating conditions of 

the diesel engine, occurrence position of pinch point temperature difference (PPTD) between the diesel 

engine exhaust and the working fluid R245fa may change, which may appear at the inlet of the 

evaporator of the working fluid side (state point 4 in Figure 9), at the outlet of the evaporator of the 

working fluid side (state point 1 in Figure 9), or at the saturated liquid state point of the working fluid 

(state point a in Figure 9). On the basis of our previous research, we can conclude that when the diesel 

engine torque is higher than 300 N·m, the occurrence position of pinch point temperature difference 

(PPTD) between the engine exhaust and working fluid certainly appears at state point 4 in Figure 9 

(the inlet of the evaporator of the working fluid side). The main thermodynamic parameters of each 

state point of the ORC system are listed in Table 4. 

Figure 9. T-s diagram of the ORC system. 

 

Table 4. Thermodynamic parameters of each state point of the ORC system. 

Parameters 
State point 

1 
State point 

2 
State point 

2s 
State point 

3 
State point 

4 
State point 

4s 

Temperature [K] 386.973 335.251 321.653 308.258 309.027 308.815 
Pressure [MPa] 1.700 0.213 0.213 0.213 1.700 1.700 

Enthalpy [kJ·kg−1] 481.637 456.767 443.376 245.952 247.369 247.086 
Entropy [kJ·(kg·K)−1] 1.797 1.838 1.797 1.157 1.158 1.157 
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The power output of the screw expander can be expressed as: 

s2s121s η)()( h-hmh-hmW  ==  (3)

The heat transfer rate between hot fluid and cold fluid in the condenser can be expressed as: 
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The power consumption of the pump can be expressed as: 

p
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The heat transfer rate between hot fluid and cold fluid in the evaporator can be expressed as: 

)( 41e h-hmQ  =  (6)

The net power output of the ORC system can be calculated as follow: 

psnet W-WW  =  (7)

The power output of the combined system ( comW ) can be calculated as follow: 

icenetcom WWW  +=  (8)

To objectively evaluate the running performances of the combined system, four evaluation indexes 

of engine thermal efficiency increasing ratio (ETEIR), waste heat recovery efficiency (WHRE), brake 

specific fuel consumption (BSFC) of the combined system, and improvement ratio of BSFC (IRBSFC) 

are proposed. 

ETEIR can be calculated as follows: 
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WHRE can be calculated as follows: 
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netWHRE
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=  (10)

BSFC of the combined system ( combsfc ) can be calculated as follows: 

netice
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+

=  (11)

IRBSFC ( bsfcη ) can be calculated as follows: 

icefuel

neticefuelicefuel
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W/m

WW/mW/m


 +−
=η  (12)

From the aforementioned experimental results, it can be seen that, when the inlet pressure is 1.7 MPa 

and rotational speed is 3200 r/min, the expansion ratio of the screw expander is approximately 8, and 

the isentropic efficiency of the screw expander is approximately 0.65. Furthermore, the power output of 
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the screw expander reaches its maximum. Thus, the above-mentioned parameter values are selected for 

the design operating point of the screw expander in the combined system, which indicates that the 

evaporating pressure of the ORC system can be set to 1.7 MPa. Moreover, for the ORC system, 

pressure drop and heat loss of components and pipelines are neglected, isentropic efficiency of the 

pump is set to 0.8, pinch point temperature difference between diesel engine exhaust and working fluid 
R245fa ( ppΔT ) is set to 10 K. 

4. Calculation Results and Discussion 

The power output of the vehicle diesel engine-ORC combined system under engine various 

operating conditions is shown in Figure 10. It can be concluded that, power output of the combined 

system gradually increases with the increase of engine speed and engine torque. The main reason for 

this is, with the increase of engine speed and engine torque, both power out of the diesel engine and net 

power output of the ORC system increase. When diesel engine speed is 2200 r/min and diesel engine 

torque is 1200 N·m, the power output of the combined system reaches its maximum of approximately 

308.6 kW. The rated power of the diesel engine is 280 kW, and the power output of the combined 

system is 28.6 kW higher than that of the diesel engine. 

Figure 10. Power output of the combined system. 

 

The mass flow rate variation of the working fluid R245fa under engine various operating conditions 

is shown in Figure 11. It can be concluded that, with the increase of engine speed and engine torque, 

the mass flow rate of the working fluid gradually increases. This condition can be attributed to the fact 

that with the increase of engine speed and engine torque, engine available exhaust energy rate 

increases, such that more working fluid can be heated and evaporated in the evaporator. When diesel 

engine speed is 2200 r/min and diesel engine torque is 1200 N·m, the mass flow rate of the working 

fluid reaches its maximum of approximately 1.22 kg/s. The required mass flow rate of the working 

fluid varies with the operating condition of the diesel engine. Considering the variation of engine 

available exhaust energy rate, the mass flow rate of the working fluid should be actively regulated for 
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the corresponding operating condition of the diesel engine, which is helpful for recovering the engine 

exhaust energy rate efficiently and effectively. Figures 10 and 11 indicate that the distribution 

tendency of the contour lines of R245fa mass flow rate is similar to that of the contour lines of the 

combined system power output. This condition indicates that mass flow rate has an important effect on 

power output of the combined system under engine various operating conditions. 

Figure 11. Mass flow rate of the working fluid R245fa. 

 

Under various operating conditions of the engine, the power output of the combined system is 

higher than that of the diesel engine. To assess the improvement of fuel economy and thermal 

efficiency, the concept of ETEIR is presented. The variation trend of ETEIR under engine various 

operating conditions is shown in Figure 12. When the engine torque is certain (in this paper, “certain” 

means “be held constant”, the same as below), ETEIR gradually increases with the increase of engine 

speed. When the engine speed is in the range of 600 r/min to 1200 r/min, ETEIR gradually decreases 

with the increase of engine torque. When the engine speed is in the range of 1200 r/min to 2200 r/min, 

with the increase of engine torque, ETEIR decreases initially and then increases. It can be seen that, 

when the diesel engine runs with high speed, ETEIR is relatively high. This observation can be 

attributed to several factors. First, when the diesel engine runs with high speed and low torque, the 

power output of the diesel engine is relatively low, and engine available exhaust energy rate is 

relatively high. Thus, the net power output of the ORC system is relatively high and ETEIR becomes 

higher. Second, when the diesel engine runs with high speed and high torque, engine available exhaust 

energy rate is higher, and net power output of the ORC system is higher, then ETEIR is higher. When 

diesel engine speed is 2200 r/min and the diesel engine torque is 1200 N·m, ETEIR reaches its 

maximum of approximately 10.25%. 
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Figure 12. ETEIR under engine various operating conditions. 

 

In order to assess the utilization ratio of engine available exhaust energy rate, WHRE is defined. 

The variation tendency of WHRE under engine various operating conditions is shown in Figure 13. 

When the engine speed is certain, WHRE gradually increases with the increase of engine torque. When 

the engine torque is in the range of 300 N·m to 400 N·m, WHRE decreases initially and then increases 

with the increase of engine speed. When the engine torque is in the range of 400 N·m to 1200 N·m, 

WHRE increases initially, then decreases, and increases anew with the increase of engine speed. When 

the engine torque is higher than 1200 N·m, WHRE gradually increases with the increase of engine 

speed. This result is mainly ascribed to the fact that both engine available exhaust energy rate and  

net power output of the ORC system may vary with the operating condition of the diesel engine; 

moreover, the amplitude of variation of the engine available exhaust energy rate may be different from 

the amplitude of variation of the ORC system power output. When the engine runs with high speed and 

high torque, WHRE is relatively high, the maximum of WHRE is approximately 9.9%. 

Figure 13. WHRE under engine various operating conditions. 
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The variation tendency of the BSFC of the combined system under engine various operating 

conditions is shown in Figure 14. When the engine torque is in the range of 300 N·m to 1350 N·m, 

BSFC of the combined system decreases initially and then increases with the increase of engine speed. 

When the engine torque is higher than 1350 N·m, BSFC of the combined system gradually increases 

with the increase of engine speed. When the engine speed is in the range of 600 r/min to 1100 r/min, 

BSFC of the combined system gradually decreases with the increase of engine torque. When the 

engine speed is in the range of 1100 r/min to 2200 r/min, BSFC of the combined system decreases 

initially and then increases with the increase of engine torque. Figures 2 and 14 indicate that the 

variation tendency of the BSFC of the combined system is similar to the variation tendency of BSFC 

of the diesel engine. According to the same engine operating condition, the BSFC of the combined 

system is lower than that of the diesel engine. 

Figure 14. BSFC of the combined system under engine various operating conditions. 

 

IRBSFC is proposed to assess the improvement of BSFC between the combined system and the 

diesel engine. The variation trend of the IRBSFC under engine various operating conditions is shown 

in Figure 15. When the engine torque is higher than 900 N·m, IRBSFC gradually increases with the 

increase of engine speed. When the engine speed is in the range of 600 r/min to 1100 r/min, IRBSFC 

gradually decreases with the increase of engine torque. When the engine speed is in the range  

of 1100 r/min to 2200 r/min, IRBSFC decreases initially and then increases with the increase of engine 

torque. This observation is attributed to the fact that both the BSFC of the diesel engine and the net 

power output of the ORC system may vary with the operating condition of the diesel engine; 

moreover, the amplitude of variation of the diesel engine BSFC may be different from the amplitude of 

variation of the ORC system power output. 
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Figure 15. IRBSFC under engine various operating conditions. 

 

5. Conclusions 

In this paper, a vehicle diesel engine-ORC combined system was designed, and the variation law of 

the engine exhaust energy rate, running performances of the screw expander, and running performances 

of the vehicle diesel engine-ORC combined system were studied. 

(1) Key parameter values were determined experimentally for the design operating point of the 

screw expander in the combined system. The parameter values are as follows: the evaporating 

pressure of the ORC system is 1.7 MPa, rotational speed of the screw expander is 3200 r/min, 

expansion ratio of the screw expander is 8, and isentropic efficiency of the screw expander  

is 0.65. 

(2) With the increase of engine speed and engine torque, the power output of the combined system 

gradually increases. When diesel engine speed is 2200 r/min and diesel engine torque is 1200 

N·m, the power output of the combined system reaches its maximum of 308.6 kW. The rated 

power of the diesel engine is 280 kW, and the power output of the combined system is 28.6 kW 

higher than that of the diesel engine. 

(3) According to the same engine operating conditions, the BSFC of the combined system is lower 

than that of the diesel engine. When diesel engine speed is 2200 r/min and diesel engine torque  

is 1200 N·m, ETEIR, WHRE, and IRBSFC all reach their maxima, which are 10.25%, 9.90%, 

and 9.30%, respectively. 

(4) The engine available exhaust energy rate varies with engine operating conditions. In order to 

recover the engine exhaust energy efficiently, the mass flow rate of the working fluid should be 

actively regulated for the corresponding operating conditions of the diesel engine. 
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Nomenclature 

avaQ  
available exhaust energy rate (kW) W  power (kW) 

iceW  
power output of the IC engine (kW) Q  heat transfer rate (kW) 

netW  
net power output (kW) T  temperature (K) 

comW  
power output of the combined system (kW) s entropy (kJ/kg·K) 

ppΔT
 

pinch point temperature difference (K) P pressure (MPa) 

exh_1T
 

exhaust temperature at evaporator inlet (K) h Enthalpy (kJ/kg) 

exh_3T
 

exhaust temperature at evaporator outlet (K) m  mass flow rate (kg/s) 

exh_2T
 

exhaust temperature corresponding to the 
saturated liquid state zeotropic mixtures in 
evaporator (K) 

fuelQ  
fuel combustion energy rate (kW)

fuelm  fuel consumption rate (kg/h) combsfc

 

BSFC of the combined system 
(g/(kW·h)) 

exhm  exhaust mass flow rate (kg/s) bsfcη  improvement ratio of BSFC (%) 

Greek letters 

sη  isentropic efficiency of expander (%) η efficiency (%) 

pη  isentropic efficiency of pump (%) pc exhaust specific heat (kJ/kg·K) 

Subscript 
 

1,2,2s,3, 
a,4,4s, 

state points in cycle (as shown in Figure 2) p pump 

s expander e evaporator 
c condenser   

Acronyms 

ORC organic Rankine cycle 
BSFC brake specific fuel consumption 
WHRE waste heat recovery efficiency 
PPTD pinch point temperature difference 
ETEIR engine thermal efficiency increasing ratio 
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IRBSFC improvement ratio of BSFC 
ODP ozone depletion potential 
GWP global warming potential 
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