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Abstract: With the advent of new satellite technology, the radiative energy exchanges 

between Sun, Earth, and space may now be quantified accurately. Nevertheless, much less 

is known about the magnitude of the energy flows within the climate system and at the 

Earth’s surface, which cannot be directly measured by satellites. This review surveys the 

basic theories, observational methods, and different surface energy balance algorithms for 

estimating evapotranspiration (ET) from landscapes and regions with remotely sensed 

surface temperatures, and highlights uncertainties and limitations associated with those 

estimation methods. Although some of these algorithms were built up for specific land 

covers like irrigation areas only, methods developed for other disciplines like hydrology 

and meteorology, are also reviewed, where continuous estimates in space and in time are 

needed. Temporal and spatial scaling issues associated with the use of thermal remote 

sensing for estimating evapotranspiration are also discussed. A review of these different 

satellite based remote sensing approaches is presented. The main physical bases and 

assumptions of these algorithms are also discussed. Some results are shown for the 

estimation of evapotranspiration on a rice paddy of Chiayi Plain in Taiwan using remote 

sensing data. 
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1. Introduction 

The global energy balance considers the energy flows within the climate system and their 

exchanges with outer space. In many publications and textbooks, the global mean energy balances are 

prominently featured through iconic diagrams. However, the actual numbers representing the energy 

flows in the various pictures exhibit considerable fluctuations [1–6]. This indicates a major uncertainty 

in our present understanding of the climate system, inherent in assessing some of these fundamental 

energy flows as shown in Figure 1. Advanced spaceborne observation systems help in determining the 

energy flows of the climate system at the top of atmosphere (TOA) [7,8], but our technical knowledge 

is still insufficient for determining the energy flows within the climate system and at the Earth’s 

surface, which are directly immeasurable from satellites. Hence, compared to the top of the 

atmosphere, the estimation of surface energy fluxes is associated with larger uncertainties, and 

therefore becomes a topic of greater debates. 

Figure 1. Schematic diagram of the global mean annual energy balance (W·m−2) of the 

Earth. Numerical values are taken from (a) Kiehl el al. [3] and (b) Wild et al. [1]. 
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Among the various energy flows within the atmosphere and Earth’s surface, the knowledge of both 

sensible (H) and latent (LE) heat fluxes, as well as of soil moisture content, are of great importance to 

many environmental applications, including the monitoring of plant water demand, plant growth and 

productivity, as well as for cultivation and irrigation management systems [9–12]. Such information is 

essential for numerical modeling of atmospheric and hydrological processes and for improving the 

accuracy of the models used in weather forecasting [13]. Additionally, quantitative information on 

these parameters is highly important for monitoring of land degradation and desertification on a 

regional scale [14,15]. Planning and management of land use are therefore closely related to the 

sustainability of water resources as land use changes are linked with water volume through relevant 

hydrological processes [16]. Several factors like climate and land use and land cover (LULC) change 

again affect the hydrological cycle. Quantifying the energy budget above plant canopies is critical for 

understanding hydrologic cycles, and provides insights for improving modeling of future regional and 

global climate regimes [17–20]. Hence, conventional techniques like eddy covariance (EC) and Bowen 

ratio (BR) have been applied to several land uses such as grassland, forest, mango orchard, garlic, 

grapes, citrus, etc. [21–28]. However, these conventional techniques do not provide spatial trends  

(or distribution) at the regional scale especially in regions with advective climatic conditions. 

Evaporation is the primary process by which water is removed from a watershed and transpiration is 

the process of removing water from vegetation or any other moisture containing living surface. 

Therefore, evapotranspiration, which is a combined process of evaporation and transpiration, is a 

crucial factor in the hydrological cycle. ET is the largest outgoing water flux from the Earth’s surface; 

accurate quantifying ET is critical to developing a greater understanding of a range of hydrological, 

climatic, and ecosystem processes, and beneficial in numerous applications, e.g., water resources 

management, drought monitoring, improvement of hydrological modeling, weather forecasts, and 

vulnerability of forest to fire [29,30]. The regional evapotranspiration is more than half of the total 

precipitation and the amount of evapotranspiration is almost equal to the precipitation in the semi-arid 

region [31]. Therefore, it is highly essential to gain an in depth understanding about the interaction 

between LULC and hydrological cycle. Frequent changes in LULC are observed especially in the 

developing countries which have agriculture based economies and rapidly increasing populations. 

LULCC is generally classified into two broad categories: conversion and modification [32]. Change 

from one land cover or land use category to another is referred as conversion, while on the other hand, 

change within one land use or land cover category due to changes in its physical or functional 

attributes is referred as modification. Such changes in LULC systems have important consequences for 

our environment through their impacts on soil moisture and water, biodiversity, and microclimate [33]. 

Therefore, better knowledge on the influence of land cover changes on the hydrology will help 

planners to formulate policies to minimize the undesirable effects of future land cover changes.  

The ground instrumentation used for the estimation of LE, H fluxes, and soil moisture 

measurement, offers certain advantages. However, ground-based instruments are generally able to give 

only localized estimates of the surface energy fluxes and soil moisture content and their employment is 

often costly, time consuming, labour-intensive and sometimes subject to instrument failure. Integration 

of ancillary ground information with remote sensing imagery is often able to provide repetitive and 

synoptic views of crucial parameters characterizing land surface interactions, surface energy fluxes, 

and surface soil moisture. Various methods have been developed for this purpose using a wide range of 
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remote sensing data. Over the last few decades, the advent of satellite remote sensing has led to  

a substantial amount of work in resolving whether such systems can provide spatially explicit 

information relating to surface fluxes. Satellite remote sensing techniques have become attractive for 

the retrieval of these parameters because of their ability to provide repetitive and synoptic views  

in a spatially contiguous manner without any disturbance and site accessibility issues in the area to be 

surveyed [34,35]. As a result, various algorithms have been developed utilizing information from various 

types of remote sensing observations and often in conjunction with ancillary surface and atmospheric 

observations for the estimation of these parameters. Combined use of satellite data from optical and 

thermal infrared radiometers has shown evidence for the retrieval of both LE and H fluxes and soil 

moisture variations [36–39]. It has been indicated that the thermal infrared remote sensing data is 

useful for analyzing landscape biophysical characteristics and modeling of landscape ecological 

processes [40]. These methods vary from purely empirical to more physically based approaches based 

on the energy balance equation and the information obtained from the “scatterplot” relationships 

between satellite-derived vegetation index (VI) and surface radiant temperature measures. Various 

methodologies have been described relatively recently by, for example, Moran et al., Courault et al., 

Verstraeten et al., Long and Singh, Long et al., Yang and Shang; and Moran and Jackson [41–47]. 

Evapotranspiration (ET) is a collective term that includes evaporation from vegetation or any other 

moisture containing living surface (transpiration) and evaporation from the water bodies and soil and is 

used to describe the loss of water from the Earth’s surface to the atmosphere by the combined 

processes of evaporation and transpiration. Perhaps it is the most difficult hydrological flux to estimate 

or model especially at regional or global scales in the assessment of water resources and the impact of 

land use change on these resources. Traditional approaches of ET estimation (e.g., weighing lysimeter, 

Energy Balance Bowen Ratio (EBBR), eddy covariance techniques, pan-measurement, sap flow, 

scintillometer, etc.) are mainly based on a variety of complex models and at local, field, and landscape 

scales. The accurate estimates of ET over a homogeneous area can be made by these conventional 

techniques. However, such measurements cannot be directly extended to large-scale ET due to natural 

heterogeneity of the land surface and complexity of hydrologic processes and because of the need for a 

variety of surface measurements and land surface parameters [48]. Remotely sensed images have 

provided a promising source of data for mapping regional- and meso-scale patterns of ET on the 

Earth’s surface and surface temperature helps to establish the direct link between surface radiances and 

energy balance components [49–55]. Information embedded in visible, near‐infrared, and thermal 

infrared band can be used to retrieve the land surface temperature (LST), VI, and atmospheric 

temperature. These critical surface and atmospheric variables then feed as inputs to simulate surface 

fluxes and ET based on the energy balance equation. Remote sensing technology can provide a large 

and continuous spatial coverage within a few minutes. It costs less than when the same spatial 

information is obtained with conventional measurements and it is the only approach for ungauged 

areas where man-made measurements are extremely difficult to conduct [31,56]. Remotely sensed 

surface temperature can provide a surface measurement from a resolution of a few cm2 to several km2 

from certain satellites [57]. Remote sensing based evapotranspiration estimation and its development 

has been reviewed from time to time [40,47,55]. This issue has been addressed from a hydrological 

perspective by Overgaard et al. [58] with particular emphasis to plant sciences, agronomy, and 

irrigation applications [59,60]. Farahani et al. [61] provide a focused survey of progress in crop 
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evapotranspiration measurement and modeling with particular emphasis on the aspects of irrigational 

interest. A comprehensive review is found on ground-based measurements and remote sensing methods 

for assessing terrestrial evaporation and soil moisture content at multi-scale scale observation [43] 

while some compact review on various methods for estimating terrestrial evaporation with surface 

temperatures at various scales are also found in the literature [62,63], but these reviews put emphasis 

particularly on studies published since the early 1990s. Regional and global scale ET estimation can be 

made by combining surface parameters obtained from remote sensing data with surface meteorological 

variables and vegetation characteristics. Remote sensing technique can provide spatial and temporal 

information of Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface 

albedo, surface emissivity, and radiometric surface temperature, most of which are indispensable to the 

models and methods that partition the available energy [63,64]. Apart from its numerous advantages, 

satellite remote sensing has shown extra potential to retrieve near-surface variables also. MODIS 

sensor (the MOD07_L2 product) is among those in which the thermal infrared band information can be 

used to retrieve air temperature and humidity at 20 vertical levels of the atmospheric profile, including 

the near-surface at the sea level, which can definitely be corrected for terrain effects and get the  

near-surface air temperature and humidity [65]. This facility of remote sensing has extended the 

applications of the energy balance equation to homogeneous areas with uniform vegetation, soil 

moisture, and topography. A large number of efforts have been made to incorporate remotely sensed 

surface temperature in combination with other critical variables, e.g., VI and albedo, into ET modeling 

during the past three decades [62]. These efforts have resulted in the development of a broad range of 

satellite-based ET models with varying degrees of model inputs and outputs, model-structure complexity 

and mechanisms and in their advantages and drawbacks. Therefore, considering the characteristics and 

significance of the various ET methods developed over the past decades, precise estimation of ET over 

a regional scale based on the remote sensing technology has become a critical question to hydrologists, 

water resources and irrigation engineers, and climatologists in various ET-related applications and 

studies. Hence, summaries and comparisons of different remote sensing-based ET estimation methods 

are needed for a better understanding of the mechanisms involved among the hydrosphere, atmosphere, 

and biosphere of the Earth. 

It was Penman [66] who laid the foundation for relating evapotranspiration to meteorological 

variables [67]. Thereafter in the 20th century, a substantial progress was made in evapotranspiration 

processes with energy exchanges. Model simulations or empirical equations requiring meteorological 

data are the traditional way of estimating evapotranspiration. However, because of some practical 

reasons like diversity in land covers or temporal changes in the landscape, these methods may not 

represent the evapotranspiration at a regional scale effectively [68]. The most frequently used method 

for estimating evapotranspiration at present is the Penman-Monteith equation. It is a point based 

method and hence not applicable for large heterogeneous areas. Moreover the Penman-Monteith 

equation often requires a large amount of detailed information that may not be practical to obtain over 

large areas [69]. Because of these reasons there is a significant need for a remote sensing technology 

that can give ET value on a continuous basis for shorter time duration. Acquiring data of a large area in 

an instantaneous view is possible through remote sensing and the data can be utilized to retrieve 

representative parameters like radiometric surface temperature, VI, albedo, etc. [55,70,71]. The energy 

balance concept and net radiation are used as the principal parameters in most of the remote sensing 
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methods for estimating evapotranspiration [72]. Till date several energy balance algorithms are 

available for calculating ET through remote sensing. Different algorithms are used by various 

scientists in different parts of globe and have yielded satisfactory results. In this paper we have 

reviewed different surface energy balance algorithms, which are used for estimation of ET through 

remote sensing and their advantages and disadvantages are discussed below. 

2. Surface Energy Balance Models 

The Earth system is operated close to an energy balance, which implies that an equal amount of 

energy enters into the Earth system and emerges out of it. Consequently, the temperature of the whole 

system over a long period of time remains relatively unaltered. However, variations over time and 

space persist within the Earth system. Some of these variations result from the changes in surface 

conditions, such as whether the surface is land/water, covered by snow/ice, etc. Such variations in 

surface conditions lead to changes in the surface energy balance. The variations in surface conditions 

affect the amount of energy retained and distributed in and within the Earth system. 

2.1. Surface Energy Balance 

The surface energy balance at the land-air interface can be written as Equation (1) as follows and 

the net radiation is considered as a residual of the soil heat flux, the sensible heat flux, and the latent 

heat flux: 

LEHGRn ++=  (1)

where G is the soil heat flux (W·m−2), H is the sensible heat flux (W·m−2), and LE is the latent heat flux 

(W·m−2). Net radiation (Rn) is partitioned into G, H, and LE. It can be estimated from the sum of the 

difference between the incoming (Rs↓) and the reflected outgoing shortwave solar radiation (Rs↑)  

(0.15 to 5 μm), and the difference between the downwelling atmospheric (RL↓) and the surface-emitted 

and -reflected longwave radiation (RL↑). 

2.2. Net Radiation (Rn)  

According to the radiation balance, the net radiation can be considered as a balance between 

incoming and outgoing short-wave and long-wave radiation under steady atmospheric condition: 

n s s L LR R R R R= ↓ + ↑ + ↓ − ↑  (2)

where Rn is the net radiation (W·m−2), Rs↓ is the incoming short-wave radiation (W·m−2), and Rs↑ is the 

outgoing short-wave radiation (W·m−2), while RL↓ is the incoming long-wave radiation (W·m−2), and 

RL↑ is the outgoing long-wave radiation (W·m−2). The net short-wave radiation can be written as follows: 

(1 ) (1 ) ( cos )s s c r aR R S dα α θ τ= − ↓= − ⋅ × × ×  (3)

where α is the surface albedo, Sc is the solar constant (W·m−2), θ is the solar incidence angle, dr is the 

relative Earth-Sun distance, and τa is the atmospheric transmissivity. 
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The incoming long-wave radiation is the downward thermal radiation flux from the atmosphere. 

The air emissivity can be estimated by a function of the water vapor, pressure, and temperature in the 

cloudless atmosphere: 

4
askyL TeR ××↓= σ  (4)

where esky is the air emissivity, σ is the Stefan-Boltzmann constant (W·m−2·K−4), and Ta is the air 

temperature (K). The outgoing long-wave radiation is computed by using the Stefan-Boltzmann equation: 

4
0 sL TR ××↑= σε  (5)

where ε0 is the surface emissivity and Ts is the surface temperature (K). 

2.3. Sensible Heat Flux (H) 

The sensible heat flux (H) is the rate of heat loss to the air by convection and conduction due to a 

temperature difference, which can be written as: 

ah
pair r

dT
CH ρ=  (6)

where ρair is the density of air (kg·m−3), Cp is the air specific heat (=1004 J·kg−1·K−1), while dT is the 

difference between the air temperature and the aerodynamic temperature near the surface, (dT = Ta − Ts), 

calculated as set out in the SEBAL Users Manual [73] and rah is the aerodynamic resistance. 

2.4. Latent Heat Flux (LE) 

Latent heat flux is the rate of latent heat loss from the surface due to evapotranspiration. According 

to the Equation (1), the latent heat can be written as: 

HGRLE n −−=  (7)

3. Different Surface Energy Balance Algorithms 

3.1. Surface Energy Balance Index (SEBI) 

Based on the contrast between dry and wet regions, Menenti and Choudhury [74] proposed  

the Surface Energy Balance Index (SEBI) method to derive the evapotranspiration from evaporative 

fraction. This method is based on the Crop Water Stress Index (CWSI) [75]. In this approach, relative 

evaporation is determined by scaling an observed surface temperature in a maximum range of surface 

temperature, denoted by extremes in the surface energy balance suggesting a theoretical lower and 

upper bounds on the surface and air temperature difference. Here under dry-condition, evaporation is 

assumed to be zero due to the limitation of water availability in soil for a particular set of boundary 

layer characteristics so that the sensible heat flux density takes its maximum value Ts,max (maximum 

surface temperature). Ts,max is inverted from the bulk transfer equation, which is expressed as [76]: 

)(max,max,
p

apbls C

H
rTT

ρ
+=  (8)
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where <T>pbl represents the average planetary boundary layer temperature in K. ra,max is the maximum 

aerodynamic resistance to sensible heat transfer s/m. 

The minimum surface temperature is obtained for the wet region from Equation (9) by computing 

the potential ET from the Penman-Monteith equation considering zero internal resistance:  

γ

γρ
Δ+

−−
−

+=
1

)()(min,

min,

ee

c

GRr

TT

sat

p

na

pbls  (9)

where ra,min represents minimum aerodynamic resistance in s/m and e and esat stand for actual and 

saturation vapor pressure, respectively. Δ is the slope of saturated vapor pressure as a function of Ta 

(air temperature measured at a reference height) in k·Pa/°C. γ denotes the psychrometric constant in 

k·Pa/°C. Interpolating the observed surface temperature with the maximum and minimum surface 

temperatures, the relative evaporative fraction can then be calculated from the equation given 

below [76]: 

1
min,min

1
max,max

1
min,min

1

1 −−

−−

×Δ−×Δ
×Δ−×Δ

−=
aa

aa

p rTrT

rTrT

LE

LE  (10)

where ∆T = Ts − Tpbl, ∆Tmin = Ts,min − Tpbl, and ∆Tmax = Ts,max − Tpbl. Surface temperature Ts is 

determined by using image data in the thermal infrared region for each pixel, while Tpbl is the air 

potential temperature at higher elevation or at the top of the Planetary Boundary Layer (PBL). 

Modifying the CWSI [75], Menenti and Choudhury [74] defined theoretically the pixel-wise ranges for 

LE and Ts to account for surface variability of actual evaporation caused by albedo and aerodynamic 

roughness. For a surface at particular surface albedo and roughness, pixel-wise maximum and 

minimum surface temperatures and redefined CWSI as a pixel-wise SEBI are computed to derive the 

regional ET from the relative evaporative fraction [74].  

3.2. Surface Energy Balance System (SEBS) 

Another well-known model is the Surface Energy Balance System (SEBS). Su [77,78] and  

Su et al. [79,80] described a modified form of SEBI for the estimation of land surface energy balance 

using remotely sensed data, which has been named SEBS. SEBS estimates sensible and latent heat 

fluxes from satellite data and routinely available meteorological data. Computations of land surface 

physical parameters, calculation of roughness length for heat transfer, and estimation of the 

evaporative fraction based on energy balance at limiting cases are the main bases of SEBS [70]. In 

SEBS, the latent heat flux is considered to be zero at the dry limit, which means sensible heat flux 

reaches its maximum value (i.e., Hdry = Rn − G). On the other hand, at the wet limit, ET takes place at 

potential rate (LEwet), (i.e., the evaporation is restricted only by the energy available for a particular 

surface and atmospheric condition) and the sensible heat flux attains its minimum value, Hwet. The 

sensible heat flux at dry and wet limits can be expressed as: 

GRH ndry −=  (11)
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where ra is dependent on the Obukhov length, which in turn is a function of the friction velocity and 

sensible heat flux. The relative evaporative fraction (EFr) and evaporative fraction (EF) then can be 

expressed as: 

wetdry

dry
r HH

HH
EF

−
−

=  (13)

GR

LEEF
EF

n

wetr

−
×=  (14)

By utilizing similarity theory, a distinction is made in SEBS between the PBL/Atmospheric 

Boundary Layer (ABL) and the Atmospheric Surface Layer (ASL). Such distinction is made to take 

the ABL height as a reference of potential air temperature to calculate the heat fluxes. Here a 

distinction is made between surface temperature and potential air temperature. Remote sensing  

data-derived land parameters and ground-based meteorological measurements are used as inputs in 

SEBS. Using remote sensing data from ATSR and ground data from a Numerical Weather Prediction 

model, Jia et al. [81] proposed a modified version of SEBS and validated the estimated sensible heat 

flux with large aperture scintillometers. Wood et al. [82] applied SEBS to the Southern Great Plains 

region of the United States and compared the latent heat fluxes with the measurements from the 

Energy Balance Bowen Ration (EBBR) sites. Their results indicate the potential usefulness of SEBS 

approach in estimating surface heat flux from space for data assimilation purposes. Daily, monthly, 

and annual estimation of evaporation in a semi-arid environment have been done by SEBS [79]. SEBS 

can be even used for both local scaling and regional scaling under all atmospheric stability regimes as 

shown by Su [77]. Accuracy of ET value estimated from SEBS could reach 10%–15% of that of in-situ 

measurements even when evaporative fraction ranged from 0.5 to 0.9 as shown by Su et al. [83].  

Main advantages of the SEBS include: (1) consideration of the energy balance at the limiting cases, 

which minimizes the uncertainty involved in surface temperature or meteorological variables;  

(2) new formulation of the roughness height for heat transfer instead of using constant values;  

(3) characterizing actual turbulent heat fluxes without any prior knowledge; and (4) representativeness 

of parameters associated with surface resistance. Note that SEBS has been widely applied over large 

heterogeneous areas fed with MODIS data with thermal band information of 1 km [15,84]. However, 

relatively complex solution of the turbulent heat fluxes and too many required parameters can often 

cause more or less inconveniences in SEBS when data are not readily available. 

3.3. Simplified Surface Energy Balance Index (S-SEBI) 

A simplified new method derived from SEBI, called Simplified Surface Energy Balance Index  

(S-SEBI), has been developed to estimate the surface flux from remote sensing data [85]. Contrast 

between a reflectance (albedo) dependent maximum and minimum surface temperature for dry and wet 

conditions, respectively, is a main base of this method to partition available energy into sensible and 

latent heat fluxes. No additional meteorological data is needed if the surface extremes are available on 
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the scene studied. By assuming steady global radiation and air temperature, a physical explanation to 

the observed surface reflectance and temperature in the S-SEBI approach can be given when surface 

characteristics within the observed image changes between dark/wet and dry/bright pixels. At low 

reflectance, surface temperature remains almost constant with increasing reflectance because of the 

presence of sufficient water under these conditions. At higher reflectance, surface temperature 

increases to some value with the increase of reflectance and is designated as “evaporation controlled” 

because of the fact that the change in temperature at this stage is solely controlled by the decrease of 

evaporation resulting from the less soil moisture availability. Beyond the inflexion of reflectance,  

the surface temperature declines with the increase of surface reflectance. At this point, soil moisture 

shrinks to such a level that evaporation cannot occur. Therefore, the available energy is completely 

utilized for surface heating. Thus, an increase in surface reflectance yields a net radiation decrease, 

which in turn produces less surface heating and the corresponding surface temperature, which is 

referred as “radiation controlled” [63,85,86] (Figure 2). Here, evaporative fraction (EF) is constrained 

by the dry and wet regions and formulated by interpolating the reflection-dependent surface 

temperature between the reflection-dependent maximum and minimum surface temperatures as shown 

in Equation (15): 

)(

)(

LEH

SH

TT

TT
EF

−
−=  (15)

where TH is the land surface temperature corresponding to dry condition and represents the minimum 

latent heat flux (LEdry = 0) and maximum sensible heat flux (Hdry = Rn − G), and TLE is the land  

surface temperature corresponding to wet condition and represents the maximum latent heat flux  

(LEwet = (Rn − G)) and minimum sensible heat flux (Hwet = 0) for a given surface reflectance as shown 

in Figure 2. 

Figure 2. Schematic relationship between surface temperature vs. surface reflectance in the 

S-SEBI (after Li et al. [63], Roerink et al. [85], Liou et al. [86]). 
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Using the following regression equation, TH and TLE can be, respectively, calculated: 

αmaxmax dcTH +=  (16)

αminmin dcTLE +=  (17)

where the empirical coefficients cmax, dmax, cmin, and dmin are estimated from the scatter plot of Ts and α 
over the study area. Finally, the EF is calculated from Equation (15) using Equations (16) and (17). 

The major advantages of S-SEBI are that (1) Additional ground-based measurement is not needed 

to derive the EF except the surface temperature and reflectance (albedo) derived from remote sensing 

data if the surface extremes are present in the remotely sensed imagery; and (2) Extreme temperatures 

for the wet and dry conditions vary with changing reflectance (albedo) values, but in other methods 

like SEBAL, a fixed temperature is determined for wet and dry conditions.  

3.4. Surface Energy Balance Algorithm for Land (SEBAL) 

Surface Energy Balance Algorithm for Land (SEBAL), an image-processing model for calculating 

evapotranspiration (ET) as a residual of the surface energy balance, was developed in the Netherlands 

by Bastiaanssen et al. [87,88]. Within the most promising approaches currently available to estimate 

evapotranspiration, the SEBAL has been designed to calculate the energy balance components, at both 

local and regional scales with minimum ground data. This model is an intermediate approach using 

both empirical relationships and physical parameterization. It requires digital imagery data collected by 

any satellite sensor measuring visible, near-infrared, and thermal infrared radiation, Ts, NDVI, and 

albedo maps. Latent heat flux (LE) is estimated as a residual of the energy balance equation on a  

pixel-by-pixel basis. Net radiation (Rn) is computed from the balance of short and longwave radiation. 

Soil heat flux (G) is calculated utilizing the equation proposed by Bastiaanssen, which is applicable to 

all sorts of vegetation cover and soil type [87,88]. Under several climatic conditions, this method has 

been verified at both field and catchment scales with typical accuracy at field scale being 85% and 

95% at daily and seasonal scales, respectively, in more than 30 countries worldwide [89,90]. The 

estimation of sensible heat flux (H) is required to obtain the parameters that will allow the computation 

of ET as a residual from the energy balance. In SEBAL, two reference air temperatures are taken. One 

being an air temperature located at height h1 close to the surface and the other at an upper height h2. To 

determine the value of dT for each pixel, SEBAL assumes the existence of a linear relationship 

between dT and the radiometric surface temperature Ts considering homogeneous metrological and 

surface conditions: 

d sT cT d= +  (18)

where dT is the near-surface air temperature difference, Ts is the radiometric surface temperature, and 

“c” and “d” are empirical coefficients obtained from the so-called “anchor” pixels [91] for a given 

satellite image. Generally, the anchor pixels within the image represent conditions of extreme 

evaporative behavior. Evaporation is assumed to be consuming most of the available energy (Rn − G) 

at a “wet (cold)” pixel, which indicates that the sensible heat flux (H), and consequently dT are both 

assumed to be near zero (dTwet = 0). At a “dry (hot)” pixel where evaporation is near zero, all the 
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available energy is modified essentially into sensible heat. Near surface air-temperature difference, dT, 

is then computed using aerodynamic theory for the two extreme conditions [91] as:  

d dry a dry
dry

air dry p

H r
T

Cρ
×

=  (19)

where Hdry (sensible heat flux at dry limit W·m−2) and is equal to (Rn − G). 

Once the surface-air temperature differences at both dry (hot) and wet (cold) points are determined, 

coefficients “c” and “d” in Equation (18) can be easily estimated. By using “c” and “d”, the surface-air 

temperature difference dT at each pixel is calculated with Ts using Equation (18). In SEBAL, the cold 

pixel is generally taken from a pixel located in deep water, and the hot pixel is taken from a pixel 

located in an area that shows high surface temperature. 

Finally, H is obtained iteratively with ra dry corrected for stability using Equation (6). An 

extrapolation of wind speed from ground level to a height of about 100 to 200 m is required in this 

procedure. Identifying the dry pixels is the most important aspect in SEBAL, while the wet pixels are 

frequently spotted at a location of well watered areas or over a relatively large, calm water surface. 

However, a recent study [92] indicates that the SEBAL model tends to be context-dependent,  

i.e., wet/dry pixels (edges) required to trigger SEBAL may not necessarily exist within a specific 

extent of an image. 

The major advantages of SEBAL for the estimation of land surface fluxes from thermal remote 

sensing data are (1) minimum use of auxiliary ground-based data; (2) automatic internal correction, 

which prevents strict correction of atmospheric effects on surface temperature; and (3) internal 

calibration, which is done within each analyzed image. Besides its several advantages, it has several 

drawbacks as well. Major disadvantages of this method are that (1) Subjective specifications of 

representative hot/dry and wet/cool pixels within the image are required [92,93] to determine model 

parameters a and b. The resulting H flux and ET estimates from SEBAL can vary with differing 

extreme pixels selected by the operator, domain size, and spatial resolution of satellite sensors [94];  

(2) Over mountainous regions, some adjustments are required based on a digital elevation model for  

Ts and u to account for the lapse rate [95,96]; (3) Estimated H is greatly affected by the errors in 

surface-air temperature differences or surface temperatures measurements; and (4) Ignoring the effect 

of radiometer viewing angle, can cause variation in Ts by several degrees for some images.  

3.5. Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC) 

Mapping evapotranspiration at high Resolution with Internalized Calibration (METRIC) is a variant 

of SEBAL, an energy balance model developed in The Netherlands. It is also an image-processing tool 

for mapping regional ET over more complicated surfaces as a residual of the energy balance at the 

Earth’s surface. METRIC has been extended from SEBAL through integration with reference ET, 

which is computed using ground-based weather data. The fundamental principle underlying METRIC 

is that evaporating liquid drops absorbs heat as indicated by Allen et al. [97,98] to derive ET from 

remotely sensed data in visible, near-infrared, and thermal infrared spectral regions along with  

ground-based measurements of wind speed and near-surface dew point temperature. Two anchor 

conditions are selected within an observed scene to internally calibrate the sensible and latent heat flux 
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computation and to fix boundary conditions for the energy balance. Such internal calibration 

eliminates the need for an in-depth atmospheric correction of surface temperature or reflectance 

(albedo) measurements using the radiative transfer model [99]. The internal calibration, similar to 

SEBAL, also reduces impacts of any biases in estimation of aerodynamic stability correction or surface 

roughness. The calibration is done by choosing manually a hot and a cold pixel to define the range of 

vertical temperature gradients (dT) above the surface. The cold condition is typically a well-irrigated 

alfalfa field where ET = ETr (reference ET over the standardized 0.5 m tall alfalfa in mm/h). The hot 

condition is typically a dry bare agricultural field where ET = 0. Once surface temperature, Ts, and dT 

are calculated corresponding to hot and cold conditions, the linear relationship as indicated in 

Equation (18) is defined. However, the context-dependency of SEBAL, METRIC, and triangular 

models has been indicated in a recently conducted study [92]. They indicated that the wet/dry pixels 

(edges) required to trigger these models may not necessarily exist within a specific extent of an image. 

As the extent of satellite image and/or spatial resolution of satellite vary, the wet/dry limits of ET 

could change significantly, thereby resulting in differing model outputs, i.e., the ET estimates from 

these models are not deterministic. It is unknown, particularly in SEBAL, exactly how large extent of a 

study site of interest would be appropriate for the operator to properly select the so-called hot/wet 

pixels that can satisfy the assumptions made in these models so that the linear correlation between the 

near surface temperature difference and remotely sensed surface temperature holds true. In many 

cases, even the very large extent would not necessitate the existence of both hot and wet extremes. For 

instance, one would not be able to select a hot pixel from a large homogeneous forest. Also, there is no 

other alternative for the SEBAL/METRIC models to automatic selection of extreme pixels from 

images with varying extents, spatial resolutions, and clouds [94,100], Furthermore, even though the 

extremes can be properly selected from relatively large images that probably entail hot and cold 

extremes reflecting surface conditions after cloud and terrain effects are favorably reduced/removed, 

the SEBAL-type algorithms appear to be limited in providing reasonable ET patterns due mostly to 

constant coefficients “c” and “d” in the SEBAL algorithm that do not accommodate the effect of 

variations in fractional vegetation cover on ET extremes [92,93]. 

The performance of the METRIC model has been tested by Gowda et al. [60] in the Texas High 

Plains on two different days in 2005 using Landsat 5 TM data by comparison of resultant daily ET 

estimates with measured values derived from soil moisture budget. Integration of water balance model 

with METRIC estimated ET could provide significant improvements in the irrigation schedules as 

found in Spain by Santos et al. [101]. Tasumi et al. [99] pointed out the high potential for successful 

ET estimates of SEBAL/METRIC models by comparing the derived ET with lysimeter measured 

values in the semi-arid US. 

3.6. Two-Source Models (TSM) 

Norman et al. [102] proposed a new model named two-source model, also known as duel-source 

model to improve the accuracy of LE estimates using satellite remote sensing data, especially over 

sparse surfaces [102–106]. The basic principle of this model is to partitioning the composite 

radiometric surface temperature into soil and vegetation components, and considered sensible and 

latent heat fluxes are transferred to the atmosphere from both surface components. Dispensability of 
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ground-based information or any priori calibration has made the applicability of duel source model 

wider without resorting to any additional input data. In the duel source model, satellite-derived surface 

temperature (Ts) is considered to be a composition of the soil (Tsoil) and canopy temperatures (Tveg), 

and H and LE are also divided into soil and vegetation contributions, respectively. Canopy latent heat 

flux is computed using the Priestley-Taylor equation [107]. An iterative method is used to obtain the 

soil (Tsoil) and canopy temperatures (Tveg) from satellite-derived Ts setting an initial value of 1.3 for the 

Priestley-Taylor parameter α [108,109]. This nominal choice of α overestimates canopy latent heat flux 

under moisture-stressed conditions and yield negative soil evaporation (LEsoil) and is regarded as a 

nonphysical solution during the daytime. The α is therefore iteratively reduced until LEsoil approaches 

zero to obtain a final α as well as Tsoil and Tveg. The LE and H are then calculated from these estimates. 

Both the one- and Two-source models are sensitive to their use of the temperature differences to 

estimate H. Dispensability of precise atmospheric corrections, emissivity estimations and high 

accuracy in sensor calibration are the main advantages of the duel source method. Coupling of the duel 

source models with PBL eliminates the need of ground-based measurement of Ta [55] and, thus, is 

much better suitable to applications over large-scale regions than other algorithms [110]. Effects of 

view geometry are normally incorporated, while the empirical corrections for the “excess resistance” 

are eliminated in the duel-source models. More details of these Two-source models are found in  

Li et al. [63], while the revision and recent advancements of these Two-source models are found in  

the literature [62,63,111–117]. 

4. Distinction between SEBAL and METRIC 

Distinctions between SEBAL and METRIC are summarized here:  

(1) At wet pixel, METRIC does not assume Hwet = 0 or LEwet = (Rn − G). Instead, a daily surface 

soil water balance is used to assure that ET is zero and set to 1.05ETr at hot and wet pixels, 

respectively. ETr is the hourly tall reference (like alfalfa) ET calculated using the standardized 

ASCE Penman- Monteith equation;  

(2)  In METRIC, wet pixels are selected in an agricultural setting, while on the other hand the cold 

pixels are selected based on biophysical characteristics similar to the reference crop (like 

alfalfa); and  

(3) Instead of the actual evaporative fraction, the interpolation (extrapolation) of instantaneous ET 

to daily value is based on the alfalfa ETrF (ratio of instantaneous ET to the reference ETr and is 

computed from meteorological station data at satellite overpass time).  

Comparisons of the different remote sensing ET models reviewed above are summarized in Table 1 

for quick reference. 
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Table 1. Comparisons of the different remote sensing ET models. 

Algorithms 
Input 

Parameters 
Main assumptions Merits Demerits 

SEBI <T>pbl, hpbl, v, 

Ts, Rn, G 

(ET)dry limit = 0; 

(ET)wet limit → evaporates potentially

Relating the effects of Ts and ra 

directly on LE 

Requires ground based 

measurements 

SEBS Tair, ha, v, 

Ts, Rn, G 

(ET)dry limit = 0; 

(ET)wet limit → takes place at a 

potential rate 

Uncertainty in SEBS from Ts 

and meteorological parameters 

can partially be solved; 

Roughness height for heat 

transfer is computed explicitly 

instead of using fixed values 

Requires too many 

parameters; 

Relatively complex 

derivation of turbulent 

heat fluxes 

S-SEBI Ts, αs, Rn, G (EF)α = (TH − TS)/(TH − TLE) 

TH = (LE)min 

TLE = (LE)max 

Ground based measurements 

are not required 

Extreme temperatures 

are location specific 

SEBAL v, ha, 

Ts, VI, Rn, G 

dT = cTs + d 

(ET)dry pixel = 0; 

(ET)wet → considered as the surface 

available energy 

Requires minimum Ground 

based measurements; 

Equipped with automatic 

internal calibration; 

Exact atmospheric corrections 

are not required 

Applied over  

plain surfaces; 

Possesses uncertainties 

in the determination of 

anchor pixels 

METRIC v, ha, 

Ts, VI, Rn, G 

(ET)hot pixel = 0 

(LE)wet pixel = 1.05ETr 

Similar to SEBAL, but surface 

slope and aspect can be 

considered 

Possesses uncertainties 

in the determination of 

anchor pixels 

TSM v, ha, Tair, 

Ts, Tc, Fr or 

LAI, Rn, G 

(1) Component fluxes are parallel to 

each other; 

(2) Priestly-Taylor equation is used 

to compute canopy transpiration. 

(1) Includes the view geometry; 

(2) Eliminates the need of 

empirical corrections for 

the “excess resistance”. 

(1) Many ground 

measurements and 

components are 

needed. 

Abbreviations: <T>pbl = Average planetary boundary layer temperature; hpbl = Height of the PBL;  

v = Wind speed; Ts = Surface temperature; Tc = Vegetation canopy temperature; Rn = Surface net radiation;  

G = Soil heat flux density; ha = Measurement height of wind speed and air temperature; VI = Vegetation 

Index; LAI = Leaf Area Index; Fr = Fractional vegetation cover; αs = Surface shortwave albedo; Tair = Air 

temperature measured at a reference height. 

5. Uncertainties Associated with ET Retrieval from Remote Sensing  

5.1. Problems Associated with Surface Temperature Obtained from Remote Sensing 

Most of the remote sensing methods that are adopted to derive surface temperature use Thermal 

Infrared (TIR) radiation data. Surface emissivity and atmospheric corrections affect the retrieval of 

surface temperature and thus affect the quality of the information extracted from remote 

measurements. Two surface temperature correction methods, namely direct and indirect methods, may 

be applied. The direct method uses atmospheric sounding combined with the radiative transfer model, 

while the indirect method uses only satellite observations. Improved estimation is reached by Duel 

angle Along Track Scanning Radiometer (ATSR) observation, which is capable of performing two 

nearly simultaneous measurements of brightness temperature from two different view angels. 
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Atmospheric correction leads to typical uncertainties of about 1–3 K. Emissivity is the other crucial 

parameter, which can lead to significant error. One of the most promising ways for obtaining both 

surface directional infrared temperature and emissivity is based on high spectral resolution [118], 

which can reduce the error to some extent. 

5.2. Limitations of Satellite Coverage Uncertainties in Remotely Sensed Data 

Different spatial and temporal scale ETs at regional and global scales are needed for many relevant 

disciplines. However, simultaneous acquiring of high temporal and spatial resolution imagery is very 

tough as satellites providing high spatial resolution imagery usually possess lower temporal frequency 

and vise versa. Clouds creates impediments in acquiring incessant satellite imagery and land surface 

parameters making the TIR method biased towards clear sky conditions. Larger time in acquiring the 

satellite imagery and ET estimation can make the method impractical in operational applications. Gap 

filling procedures [29,119] and coupling models [120] have shown some promises to resolve this issue.  

5.3. Uncertainties in Solar Parameters Estimation 

Estimation of the individual components of the available energy (Rn − G) leads to errors in the 

estimation of both short and long-wave components and ignores diurnal variation and phase difference 

between the diurnal cycles of each component. Moreover, differentiation has not been made between 

direct and diffuse radiation and total Rn flux is only considered in most SEB models, but not the 

relative fractions of diffuse and direct radiation. The effects of increased diffuse radiation need to be 

considered because of its bulk use in vegetation than direct radiation [121]. A significant difference in 

ET estimation is therefore highly expected if such differences in water use efficiency are neglected. 

5.4. Uncertainties in Land Surface Variables 

Uncertainties in the radiance measurement caused by atmosphere require the corrections for the 

atmospheric effects. Despite sufficient progress, accuracy of some land surface variables (parameters) 

from remotely sensed data, such as surface temperature, LAI, vegetative coverage, plant height, etc., 

still needs to be improved in order to improve ultimately the accuracy of ET estimation. Temporal and 

spatial observations of air temperature and its spatial representativeness introduce uncertainties in ET 

estimation in some methods, which use (Taero − Tair). Wind speed and aerodynamic surface 

characteristics pose a major challenge. Aerodynamic resistance (ra) estimation requires stability 

corrections as well as suitable values for roughness lengths and zero displacement level. Compared to 

homogeneous dense and well-watered vegetative surfaces, the observational angular effect is more 

prominent and crucial over heterogeneous surfaces in retrieving the surface temperature [118]. 

Differences in received radiances will occur due to the differing amounts of soil and vegetation in the 

field of view when sensor viewing changes from one angle to another [110,122].  

5.5. Inconsistency in Remote Sensing ET Models 

Different models are used for different land surface characteristics. However, till date, there is no 

universal model, which could be used throughout the world irrespective of the changes in land surface 
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characteristics, in the climate and terrain without any modification or improvement to estimate the ET 

from satellite data.  

5.6. Inadequate Near-Surface Meteorological Variables Measurements 

Meteorological data at PBL-height or at near-surface height are frequently needed in most of the ET 

models and are obtained at a satellite pixel by spatial interpolation method using local meteorological 

stations data. Because of big differences in climate and terrain conditions in the study region and 

sparse/irregular presence of meteorological stations, accuracy of the interpolation method needs to 

be improved.  

5.7. Limitations of Empirical Vegetation Index Models 

The empirical vegetation index model is limited to the regions where net radiation is a major 

controlling factor and where large scale advection is not important [123] and useful at time scales of 

weeks to years, but is unable to capture E at time scales of days or shorter [59]. “Such time series 

studies may be confounded by spurious autocorrelations if E and vegetation index independently 

follow the same seasonal trend” [59]. 

5.8. Nocturnal Transpiration and Dew 

Nocturnal transpiration and dew may also affect significantly the ET estimation. Nocturnal 

transpiration has been widely observed using sap-flow and gas exchange measurements with ratios of 

night-time to day-time transpiration as large as 25% being reported [124]. If nocturnal transpiration 

occurs at sites with high LAI, this process could be an important source of error in remote sensing 

based ET estimation because of its association with nocturnal vapor pressure difference and wind 

speed. Adversely, at sites with low LAI, this process will tend to reduce this source of error so that it 

may be ignored when considering daily TIR-based estimates of ET. Pinter [125] showed that  

early-morning dew on the vegetation surface may affect the remotely sensed radiant temperature and 

ultimately the ET estimation if the vegetation was not well-watered. This potential impact would be 

greater for satellite data acquired mid-morning (e.g., Landsat) compared to those commonly acquired 

mid-afternoon (e.g., AVHRR). Recent studies indicate that impact of dew on early-morning passive 

microwave [126] and reflective data [125,127] also needs to be accounted. 

Besides the above mentioned issues, other limitations or uncertainties in remote sensing 

measurements like spatial and temporal scaling effects, lack of the land surface ET at satellite pixel 

scale for the truth validation have been described in details in the literature [62,63].  

6. Results and Discussion 

Liou et al. [86] studied the S-SEBI model to estimate evapotranspiration over a rice paddy in 

Taiwan, and their results showed that the accuracy was not satisfactory. In this paper results obtained 

from a method [22,86] similar to S-SEBI and based on the surface energy balance with atmospheric 

correction using airborne high-resolution multi-spectral images in conjunction with the surface 

meteorological data is presented to determine the evapotranspiration on a rice paddy. In this method, 
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atmospheric correction has been achieved through a numerical iteration method by using the  

Monin-Obukhov length as the threshold of convergence. When convergence is reached, the evaporative 

fraction has been derived from the scatter plot of surface albedo versus temperature [63,85,86]. In 

addition, the sensible heat and latent heat fluxes have been redistributed by the evaporative fraction 

determined by radiation and evaporation controlled lines. However, in order to find a suitable 

evaporation fraction, four different covers have been tested as ground control points and compared 

with in-situ eddy covariance. The results presented in Figures 3 and 4 show that the auto selected 

ground controls, determination of ground control points by using the maximum and minimum value, is 

the best method and, therefore, is used to retrieve the regional latent heat flux (evapotranspiration) over 

a rice paddy. These results, with a bias of evaporation fraction of 6.3%, are better compared with the 

results of SEBAL using in-situ data. 

Figure 3. Sensible heat and latent heat fluxes over rice paddy field derived by the proposed 

method [22,86]. 

 

Figure 4. Relationship of latent heat fluxes retrieved from MODIS and in-situ eddy 

covariance data.  

 

In order to assess the feasibility of monitoring long-term evapotranspiration with the developed 

model, relatively low-resolution satellite images, such as several MODIS Level 1B data, have been used. 
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Derivative products of the MODIS sensor, such as MODIS/Aqua Land Surface Temperature/Emissivity 

Daily L3 Global 1km SIN Grid (MYD11A1), MODIS/Aqua Surface Reflectance Daily L2G Global 

250m SIN Grid (MYD09GQK), MODIS/Aqua Vegetation Indices 16-Day L3 Global 1km SIN Grid 

(MYD13A2), MODIS/Aqua Leaf Area Index/FPAR 8-day L4 Global 1km SIN Grid (MYD15A2) 

from USGS/NASA, have also been used for comparative study. Input parameter products, which were 

calculated from Level 1B images demonstrated better results compared to the derivative products from 

USGS/NASA. Firstly, the derivative MODIS parameter products from USGS and auto-calculating 

parameter products by the MODIS Level 1B images have been used to study the surface heat fluxes of 

rice agricultural cycles and to test the convenience and accuracy of the results. It shows that the  

auto-calculating parameters produced by MODIS Level 1B images are better than derivative MODIS 

products, with the biases of latent heat flux of 61.10 (W·m−2) and sensible heat flux of −57.97 (W·m−2). 

Finally, combining raw MODIS images in 2006 with the method to retrieve surface heat fluxes are 

performed, and the correlation coefficients of latent heat flux and sensible heat flux with corresponding 

in-situ observations are over 0.60.  

7. Conclusions and Future Prospects 

From the present review of all the algorithms, it is seen that each algorithm has its own advantages 

and disadvantages. Nevertheless, despite their advantages and disadvantages, these algorithms are 

important tools for evapotranspiartion estimation on a regional scale. Except the parameters of the 

surface temperature and reflectance (albedo), no additional ground-based measurement is needed in the 

S-SEBI algorithm if the surface extremes are present in the remotely sensed imagery. The extreme 

temperatures vary with reflectance change for the wet and dry conditions, while in other methods like 

SEBAL it is required to determine a constant temperature for wet and dry conditions. The SEBAL also 

has several advantages like minimum auxiliary ground-based data, automatic internal calibration 

within each analyzed image. However, the accuracy of ET estimation obtained from these methods 

varies from one model to another and from one temporal and spatial scale to another. Accuracy of ET 

value estimated from SEBS could reach 10%–15% of ET estimation obtained from in-situ measurements 

even when evaporative fraction ranged from 0.5 to 0.9 as has been reported by Su et al. [83].  

A maximum relative difference of 8% between the measured and estimated evaporative fraction values 

have been reported when measurements were compared with the S-SEBI derived outputs by  

Roerink et al. [85]. Accuracy for the daily evapotranspiration using the S-SEBI method has been found 

to be lower than 1 mm/d [128]. Sobrino et al. [129] reported a RMSE of 1.4 mm/d in the ET 

estimation when results derived from S-SEBI were checked against the high resolution ET values. 

Under several climatic conditions, SEBAL has been tested with the typical accuracy at a field scale 

being 85% and 95% at daily and seasonal scales, respectively [89,90]. The SEBAL model has been 

widely used to estimate ET across a variety of climates, ecosystems, and land covers (primarily for 

consumptive water use by agricultural crops). This model enriched TIR remote sensing-based 

approaches that also include triangular approaches [130,131], two-source energy balance 

approaches [44,102], and the other one-source approaches [77]. However, application of SEBAL by 

Trezza [132] for a variety of crops in Kimberly, ID resulted in ET estimation errors ranging from 2.7% 

to 35% with an average error of 18.2%, while the results presented from our present study show a bias 
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of evaporation fraction of 6.3% compared with the results of SEBAL using in-situ eddy covariance 

data. Moreover, over mountainous areas, SEBAL shows some limitations [95,96]. These limitations 

are solved in the METRIC model. From the above review, it is found that SEBAL/METRIC models 

had high potential for successful ET estimates in the semi-arid US by comparing the derived ET with 

lysimeter observations [99]. Nevertheless, in the recently conducted study, the context-dependency of 

SEBAL, METRIC, and triangular models has been noticed [92], which has already been discussed in 

details in earlier section. Although the reviewed methods show an enough potential and viability for 

evapotranspiartion estimation on a regional scale, these methods have several drawbacks as well, 

which limit their applicability and accuracy to some extent. Also, the method [22,86], mentioned here, 

is not free from all these limitations. Careful calculation or geospatial technique can further enhance 

the radio geometry, and the ground truth data of the presented method. Therefore, new innovated 

methods in acquisition of remotely sensed data and meteorological variables or newly-developed ET 

models are required to solve the addressed limitations. The main restricting factors in the estimates of 

instantaneous ET or daily, weekly, and monthly values, over a regional scale from remote sensing 

techniques are retrieval accuracy, physical interpretation of different surface variables, parameterization 

of regional land surface fluxes, temporal and spatial data/model scaling among various scales, 

validation of model generated latent heat flux at regional scale, and acquisition of near-surface 

meteorological data over various satellite pixel scales. 

LST is one of the most critical factors affecting the accuracy of the ET estimates. It directly 

indicates how much energy and water may be available over the land surface. LST and other allied 

surface variables like surface albedo, soil moisture, emissivity, fractional vegetation cover, NDVI, and 

LAI affect the precise partition of energy components significantly and consequently the accuracy of 

the retrieved regional ET. Despite considerable progress in the quantitative retrieval of the land surface 

variables from remote sensing data [65,133–135], the accuracy of some surface variables, essential in 

remote sensing ET algorithms, still needs to be improved. Therefore, special attention must be given to 

the physical interpretation of these surface variables retrieved directly or indirectly from satellite data. 

Although remote sensing ET models can provide relatively accurate spatial distributions of 

instantaneous ET, it is usually only employed under clear sky conditions and at an instantaneous scale. 

On the other hand, land surface process models are suitable for simulating long-term development 

trend of the soil water content, turbulent heat fluxes, and other related processes [136,137]. However, 

it is worth mentioning that due to low spatial resolution and uncertainties in the model inputs, it is 

sometimes impossible to estimate correctly the latent heat flux with land surface process models at a 

large scale without additional information obtained from satellite data. Therefore, integration of energy 

based land surface process models [136,137] may substantially improve the limitations of the current 

remote sensing ET algorithms. Moreover, data assimilation is supposed to be another effective way to 

estimate temporal and spatial ET continuously by integrating the models, data, and optimization 

methods together because of rapid improvement of multi-spectral, multi-spatial, and multi-temporal 

satellite technology, computer processing technique, and optimization algorithms. The link between 

remote sensing and distributed hydrological modelling will be vital for most future applications and 

possibly improve the possibilities for making a more spatially detailed evaluation. 

Accuracy of the available energy at the land surface into turbulent fluxes is greatly affected by 

advection. It directly causes the imbalance of surface energy particularly over small spatial scales and 
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enhances evaporation from the land surface. Our present understanding is limited on what scale 

advection will have to be considered and how energy exchange takes place between adjacent pixels in 

the horizontal direction. This issue must be addressed properly and further research is required to 

resolve this issue. 

Among various problems in ET estimation, validation is one of the most troublesome problems, 

particularly because of both the scaling and the advection effects. Such issues may be resolved by 

developing various validation methods, which may include comparison of ET derived from remote 

sensing and ground-based measurements over same location, verification of ET derived from satellite 

data at different spatial resolution or obtained by integrating various data sources in land surface 

process models, and trend verification between remote sensing data and independently obtained 

reference data, which are either driven or constrained by ET or remotely sensed data. However, it is 

worth mentioning in this context that the validation of turbulent heat fluxes at a satellite pixel scale 

with the “point” scale measurements obtained with Bowen ratio, lysimeter or eddy correlation systems 

may again raise some questions because of surface heterogeneity and scaling effects.  
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