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Abstract: In the past decade, plug-in (hybrid) electric vehicles (PHEVs) have been widely

proposed as a viable alternative to internal combustion vehicles to reduce fossil fuel

emissions and dependence on petroleum. Off-peak vehicle charging is frequently proposed

to reduce the stress on the electric power grid by shaping theload curve. Time of use

(TOU) rates have been recommended to incentivize PHEV owners to shift their charging

patterns. Many utilities are not currently equipped to provide real-time use rates to their

customers, but can provide two or three staggered rate levels. To date, an analysis of the

optimal number of levels and rate-duration of TOU rates for agiven consumer demographic

versusutility generation mix has not been performed. In this paper, we propose to use

the U.S. National Household Travel Survey (NHTS) database as a basis to analyze typical

PHEV energy requirements. We use Monte Carlo methods to model the uncertainty inherent

in battery state-of-charge and trip duration. We conclude the paper with an analysis of a

different TOU rate schedule proposed by a mix of U.S. utilities. We introduce a centralized

scheduling strategy for PHEV charging using a genetic algorithm to accommodate the size

and complexity of the optimization.
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1. Introduction

Increasing fuel prices, diminishing fossil fuel reserves,rising greenhouse gas emissions and political

unrest have made plug-in (hybrid) vehicles an attractive alternative to traditional internal combustion

engine vehicles (ICEV). The growth of plug-in (hybrid) electric vehicles (PHEVs) as a clean, safe and

economical transportation option to ICEVs can be promoted by extending driving range, improving

battery health and life, increasing electric grid reliability and promoting acceptance of PHEVs by

the consumer. The degree of penetration of PHEVs as a transportation option depends on a variety

of factors, including charging technology, communicationsecurity, advanced metering infrastructure

(AMI), incentives to customers, electricity pricing structures and standardization. The wide-spread

adoption of electric vehicles will have many multi-facetedsocio-economic impacts. Among these are

increased system load, leading to stressed distribution systems and insufficient generation, power quality

and reliability problems, degrading battery health, scheduling of vehicles as a potential power source

in an ancillary market, costs incurredversusrevenues earned by end user in offering such services,

along-with the dependence on variable consumer behavior have been considered as hurdles to PHEV

implementation [1,2].

Insufficient battery state of charge has been cited as the primary consumer insecurity regarding

PHEVs [3]. In this paper, we interpret this concern as the desire to have a fully-charged battery at

the beginning of the daily commute. This consumer desire fordaily full charge must be balanced against

the desire on the part of the utility to shape its load curve and avoid a load spike due to concurrent

vehicle charging. It is well-accepted that coordinated vehicle charging can be used to minimize the

adverse effects of PHEVs on the electrical distribution grid [4,5]. Coordination can be either centralized

or decentralized. A centralized strategy is one in which a central operator (or aggregator [6]) dictates

precisely when every individual PHEV will charge, but may not be attractive to consumers who prefer

to have complete authority over their transportation availability and/or electricity usage. Typically, the

objective of such strategies is “valley-filling” in which the nighttime drop in load demand is decreased,

resulting in a more level load profile. However, other objectives, such as system loss reduction,

greenhouse emission reduction, battery lifetime extension, etc., can also be optimization factors [7–10].

A centralized control strategy will require a central repository that collects parameter information from

all vehicles to provide an optimal charging profile. It has also been suggested that this might be taxing

on communication channels and computation time [11]. However, we believe that a centralized solution

is the preferred approach under current technological capabilities. Furthermore, since the control signal

is sent by the aggregator, adaptation will be easier. Lastly, it can be contended that consumer confidence

can be won through pricing incentives. Thus, in this paper, we expand on these earlier approaches and

develop a centralized scheduling approach that balances the actual cost of generation, the levelized time

of use rates and load demand.

Specifically, we propose an optimal approach to PHEV charging that:

• provides full charging to the maximum number of vehicles;

• shapes the load curve to avoid demand spikes and accomplishvalley-filling;

• minimizes the cost to the customer; and

• uses the most economic forms of generation available.
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The critical contribution is the selection of the most appropriate fitness function to optimally shape

the load curve.

2. Background

A regional load profile adapted from the California Independent System Operator (ISO) is shown in

Figure1. The top curve is a typical daily load demand; the lower traceis the associated residential load

and is approximately 40% of the total demand. Each residential customer is assumed to have an average

load of 4 kWh per day.

Figure 1. Load demand.
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The 2009 U.S. National Household Travel Survey (NHTS) provides information regarding commuter

behavior. The information pertinent to this paper is summarized in Figures2 and3.

The salient details from these data are that:

• 66.5% of commuters have a daily commute of less than 30 mi (Figure2); and

• 67.1% of commuters return home after 17:00 (Figure3).

Figure 2. Number of vehicles per commute range.
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Figure 3. Number of vehicles returning per hour.
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3. Process

Throughout the analysis presented, the following parameters were assigned randomly to each

commuter, and the results presented are the average of a Monte Carlo-based simulation with 1000 trials:

• battery size;

• commute length;

• return time;

• time available before next trip;

• charger type.

The commute length is randomly assigned to each household according to the distribution given in

Figure2. Based on the commute length, an appropriately-sized battery is then assigned.

Table1 summarizes the batteries that are currently commercially available in the U.S. Based on these

battery sizes, driver commute lengths (DCL) can be categorized and battery types associated, as shown

in Table2. Commuters in DCL20 are those that drive less than 20 mi daily, and their commute length

can be adequately met by battery Types A–E, whereas a DCL100 commuter must have battery Type E.

Table 1. Commercially available battery sizes.

Type
Range All electric Battery size Equivalent

(mi) range (mi) (kWh) (mi/kWh)

A 0–20 30 11 3.250

B 20–40 40 12 3.500

C 40–60 70 16 4.375

D 60–80 80 18 4.440

E 80–100 100 24 4.167
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Table 2. Battery and commute length association. DCL, driver commute lengths.

Category Commute length (mi) Battery size (kWh)

DCL20 0–20 (A, B, C, D, E)

DCL40 20–40 (B, C, D, E)

DCL60 40–60 (C, D, E)

DCL80 60–80 (D, E)

DCL100 80–100 (E)

Once the commute length and battery size have been assigned,then the return time is randomly

assigned according to the distribution given in Figure3. The time available before the next trip is also

similarly assigned according to the distribution dictatedby the NHTS. The chargers are assigned based

on energy requirements. If the commute length and battery type require a Type II charger to fully

charge, then a Type II charger is assigned; otherwise, a charger type is randomly assigned. The default

assignment was generated by MATLAB, which uses Bernoulli-distributed random binary numbers and

probability of zero parameterp = 0.5. Two types of chargers were used:

Type I 120 Volts AC, 12 A, 1.44 kW

Type II 240 Volts AC, 32 A, 6.66–7.68 kW

Type III chargers (480 VAC) have not been considered, because they are not intended for residential

use. If the commute length, battery size and the time available before the next trip necessitated a Type II

charger, then it was deterministically assigned; otherwise, the charger type was also randomly assigned.

As a base case, this process was applied to the residential demand curve shown in Figure1, and the

average Monte Carlo simulation result (1000 trials) is shown in Figure4. In this case, each commuter

began the charging process immediately upon returning home. The base case residential load without any

electric vehicle charging is shown as the bold trace. The load increases in all cases when there is electric

vehicle charging. The worst case (highest peak) load occursfor Type II chargers. Since the Type II

charger draws considerably more power than the Type I charger, the peak is higher immediately after the

return home (around 18:00). However, since the vehicle batteries charged from Type II will more rapidly

reach their full state of charge, the Type II load will more rapidly fall off during the valley period from

04:00 to 05:00. The Type I charger load is the lowest demand curve, and the randomly-assigned-charger

load lies between the Type I and Type II curves. Battery charging characteristics play an important

role in the maintenance and lifetime of the battery. However, it is not possible to capture these aspects

in the model used, due to the differences in time scale. It is assumed that a typical charge cycle of

bulk-absorb-float with the proper charger settings is used to avoid overcharging.

As a comparison to time of arrival charging, a delayed charger assignment was also considered. In

these cases, the charger types are assigned randomly (in 1000 Monte Carlo trials) and the vehicles began

charging at a set time (assuming they had already returned home). This is analogous to the situation

of having off-peak pricing with 100% participation from commuters. This case is shown in Figure5.

Note that the resulting peak load is higher than in the variable charging initiation times, even though
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the charger type is assigned randomly. Obviously, a delayedcharging scheme must be implemented

with care.

Figure 4. Residential load as a function of charger type.
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Figure 5. Residential load as a function of charger initiation.
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4. Vehicle Aggregation

As noted previously, a centralized control scheme will mostprobably require the aggregation of

the vehicles to reduce the complexity of calculating the charging schemes of multitudes of individual

vehicles. The aggregation of vehicles is typically accomplished by grouping the vehicles according to

common parameters, such as:

• total charging time required (based on state of charge);

• network topology and physical geography;

• vehicle return time.

In this paper, we develop an aggregation scheme based on the total time required for charging, as

illustrated in Figure6. For simplicity, we also assume that the charging window is from 20:00 to 08:00,

since the majority of vehicles are available for residential charging at this time. We assume that there

are 12 possible connection times within the charging time frame (on the hour), but this can be expanded
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to any number of possible connection times without loss of generality (e.g., every 15 min), with added

computational complexity. The vehicles are initially aggregated into equal sets that span the possible

charging times. The illustration of the possible charging sets is shown in Figure7.

Figure 6. Vehicle assignment flow chart.
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Figure 7. Aggregation of vehicles into bins.

20:00 21:00 23:0022:00 24:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

Each possible charging set is called a “bin”: there are twelve one-hour charging bins, eleven two-hour

charging bins,etc., and only one twelve hour charging bin. The charging times are based on the randomly
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assigned vehicle travel data from the NHTS, which specifies the respective anticipated state of charge

for each vehicle. It is assumed that once a vehicle starts charging, it will remain charging until it is fully

charged (i.e., no disconnect and reconnect). The required charging time for each vehicle in the study

set is calculated. The number of vehicles requiring each length of charge time is shown in Figure8.

Because the majority of drivers have a commute length less than 30 mi, there is a large number of

vehicles requiring only 1–5 h of charging (based on battery type and charger type).

Figure 8. Number of cars in each charging window.
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Once the vehicles have been assigned to their initial charging set, then the energy required for each

charging set is calculated. The total energy required at each hour is the summation of all charging sets

in that hour. A genetic algorithm is then used to assign the charging sets to the optimal connection

times. In the genetic algorithm, each chromosome in the population represents a particular charging

scheme in which each of the chromosome’s genes represents the number of vehicles in the charging

set. A fitness function is used to specify which chromosomes are retained in each generation. As

the generations progress, the algorithm will reallocate the charging sets from Figure7 across the time

spectrum to optimize a given fitness function. Figure9 describes the optimization process. The choice

of fitness function can significantly impact the resulting load profile. As an example, a simple fitness

function is chosen:

f1 = min (max (PLoad)) (1)

in which the maximum load at any time is minimized. This serves to reduce the maximum peak load.

The results of these optimizations are shown in Figure10 for 12 possible connection times (charging

may commence once per hour). This approach is shown with respect to the uncoordinated charging

load profile (also shown in Figure4). Note that there is still a fairly sizable peak load around 22:00

hours. This is because there is little flexibility in scheduling the vehicles that require 10 or more hours

of charging. These vehicles must be connected no later than 22:00 hours to be fully charged by 08:00

the following morning; therefore, it is very difficult to significantly reduce the peak. However, it should

be possible to achieve better valley filling by a better choice of fitness function.
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Figure 9. Optimization process.
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Figure 10. Optimized load profiles.
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Several different fitness functions are summarized in Table3. The fitness functions are described:

1. The absolute difference between the system load and the projected average load is minimized.

2. The squared difference between the system load and the projected average load is minimized.

3. The plug-in time for each vehicle is delayed as long as possible based on vehicle state of charge

(SOC) .

4. Total cost is minimized (described later).

Table 3. Fitness functions.

Case Fitness Function Description

(A) min
(

∑

12

i=1
|Pi − Pavg |

)

minimize deviation from system average load

(B) min
(

∑

12

i=1
(Pi − Pavg)

2

)

minimize square of deviation

(C) max
(

∑bins
i=1

tplug

)

move all plug in times to as late as possible

(D) min(cost) minimize system cost

Figures11 and12 show the optimization results for the algorithms in Table3. Note that there is

not one “best” algorithm. Each charging profile is optimal for the fitness function for which it was

defined, but the notion of “best” depends on the user. For example, Profile(A) strives to minimize

the absolute error between the total load and a pre-determined average. From the results shown in

Figure11, Profile(A) decreases more or less monotonically throughout the charging period. Similarly,

Profile (B) minimizes the squared error between the total load and a pre-determined average. This

results in a relatively flat load profile. The drawback to Algorithms(A) and(B) is that the algorithms

require an estimate of an average load. This may not be feasible if the overall load profile is changing

rapidly. The min-max algorithm initially presented was notpursued further, because it performed poorly

when compared with the algorithms presented in Table3. The min-max algorithm considers only the

maximum load for a day, which does not capture the complete behavior of the system during off-peak

hours. The other fitness functions use a collective system behavior rather than a point behavior to address

the problem of load scheduling. The system cost provides fora better fitness function that is capable of

giving better results along with a well justified objective for any real-world problem.

Profile(C) assigns vehicle charging as late in the charging window as possible and, therefore, skews

all of the load towards 8:00 am. Obviously, this approach is not “optimal” in terms of practicality,

since this causes a second (but lower) peak in earlier morning which, leads to difficult load following

by generation.

One or more of these algorithms may not be considered suitable for practical implementation. Every

utility or aggregator may have their own notion of an optimalpractical profile. One obvious approach is

to optimize vehicle charging based on cost, but cost is not necessarily a straightforward function. The

cost to the customer is not necessarily the cost to the utility. Customers typically want to minimize their

cost of electricity, whereas utilities want to maximize their profits.
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Figure 11. Load profiles for Table3 algorithms.
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Figure 12. Optimized charging profiles for Table3 algorithms.
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To better understand the impact of vehicle charging loads onutility cost, the set of incremental costs

shown in Figure13are applied to the load profile. These incremental costs havebeen scaled and adapted

from [13]. The horizontal lines indicate the incremental costs thatare superimposed on the load profiles

in Figure14. The optimization algorithm is then used to identify a vehicle charging profile that minimizes

the overall cost of generation during the charging window. These results are indicated as Profile(4) in

Figures11 and12. This approach moves the vehicle charging away from the peakload, but since the

incremental cost is constant between 24,000 and 26,000 MWh,there is not a significant shifting of load

during the valley period. The minimum cost profile is very similar to Profile(B), which is the minimum

squared error. Therefore, Algorithm(B) could be used as a computationally efficient approximation

for finding the minimum cost. Algorithm(D) is the most computationally-intensive method, because it

requires that the cost be evaluated for every chromosome at every iteration. The other fitness functions



Energies2014, 7 1887

only require the actual power resulting from the chromosome. Table4 summarizes the costs of the

different algorithms with respect to the base load over the eight-hour charging period.

Figure 13. Incremental costs.
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Table 4. Costs of the algorithms from Table3.

Algorithm Cost ($)

(A) 716,410
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(D) 707,962

Figure 14. Load demand superimposed on incremental cost.
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5. Time of Use Rates

The load shapes presented in the preceding section were developed to minimize the impact on the

utility system. There is, however, currently little or no incentive for vehicle owners to allow the utility

to control their charging times to produce these optimized load shapes, since they are not typically

charged real-time prices that correspond to the actual load. In fact, the most probable situation is one in

which the owners start charging their vehicles immediatelyupon returning home (which results in the

uncoordinated charging profile of Figure4). Many utilities have considered implementing a tiered time

of use (TOU) structure to encourage owners to defer chargingto non-peak times.

Utilities across the U.S. have adopted different time of userates to incentivize customers to better

manage their energy use. Most TOU rates are two (on-peak and off-peak) or three different rates

(on-peak, part-peak, off-peak). Figure15 shows the TOU rates for several U.S. utilities, and Table5

gives representative rates [14–20].

Figure 15. Tiered time of use (TOU) structures for several U.S. utilities.
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Table 5. Time of use rates.

Time of use Rate (¢/kWh)

Off-peak 9.78

Part-peak 17.02

On-peak 27.88

To compare the impact of the various charging profiles on the cost to the customer, these cost

structures are applied to the load profiles of the various charging algorithms and plotted in Figure16.

These rate structures are used for example purposes only; itshould be noted that the actual cost

per kilowatt hour for each utility may be different than the rates given in Table5. An analysis of

Figure16yields several trends. Utility B is the most expensive, since their on-peak rates are the longest.

Utility D has the shortest on-peak hours, but is more expensive than Utility C and Utility E, because

the on-peak rates extend later into the evening and pick up the large load. Utility G is also relatively

expensive, because their off-peak rates are the shortest and their partial peak hours start at 07:00 hours.
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Figure 16. Customer costs associated with load profiles.
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6. Algorithm Integrity

To test the integrity of the optimization algorithm, several benchmarks were analyzed. Since at

the heart of the algorithm is a random assignment of vehicles, a metric was needed to measure the

possible deviation in results and their impact on the load profiles. To measure the statistical deviation,

the algorithm was run 50 times using Algorithm(C). The cumulative results are shown in Figure17.

The horizontal line represents the mean value of the data. The rectangles (when included) give the 25%

and 75% percentiles with the upper and lower bars giving the maximum and minimum values. The

stars (∗) indicate statistical outliers. Note that at the beginningof the charging interval, the load values

across all runs are tightly coupled. This is due to lack of flexibility in scheduling the long charge/low

state-of-charge vehicles. However, as the charging windowprogresses, there is more possibilities for

scheduling the one- and two-hour charging vehicles; thus, there is greater deviation. However, even

considering the spread of values obtained, the load shape still remains relatively consistent; thus, the

algorithm produces statistically similar results from runto run. This validates the optimization approach

and algorithm.

Another method of testing algorithm integrity is to apply itto other load profiles.

Figures18 and 19 are two seasonal profiles adapted from ERCOT (Electric Reliability Council of

Texas). Figure18 represents a typical work day in January, and Figure19 represents a typical work

day in June. The January profile is similar to the California ISO (CAISO) load profile, but with a

higher load factor (the ratio of the average load to the maximum load). The charging profiles are

qualitatively similar to those obtained in Figure11. As with the CAISO load profile, Algorithm

(C) (scheduling charging as late as possible in the charging window) gives poor results and, in this

case, actually causes an early morning peak. Algorithm(D) (minimum cost) once again provides

the best outcome, but still results in a second, late eveningpeak. One possible method of improving

the load characteristics is to allow charging to start earlier (at 17:00 instead of 20:00, as is currently
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used). The ERCOT June profile is quite interesting. The demand factor is very high; therefore,

there is little valley to “fill”, nor is the cost differentialbetween minimum and maximum significant.

The minimum cost algorithm still provides the best results,but the resulting charging load is still

unwieldy. In this case, a different charging policy would serve the ERCOT region better, such

as providing charging access during the day at places of employment, shopping centers, parking

garages,etc.

Figure 17. Data deviation in Algorithm(C).
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Figure 18. ERCOT January profile.
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Figure 19. ERCOT June profile.
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7. Test System Formulation and Algorithm Application

The coordination scheme is applied to a test system, and the results are thus quantified by means of

load profile and voltage variations of the system.

7.1. System Specification

A three-phase balanced system, modified from the Institute of Electrical and Electronics Engineers

(IEEE) 34 bus system [21], was formulated to test the impact of the algorithm (Figure20). A daily load

profile for the test system and also for the individual nodes was made to match the initial load profile

studied. The approximate number of houses at each node was calculated assuming 4 kW of maximum

load per house. Considering one electric vehicle per household as a 100% penetration on the system for

the worst case scenario, the number of vehicles equals the number of houses at each node.

Figure 20. System specification.
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7.2. Vehicle Load on the Test System

A total of 147 houses, and, thus, vehicles, were selected forthe test system. A set of vehicles was

randomly selected from the NHTS dataset, which were randomly assigned to 11 nodes. Only eleven

nodes of the test system had loads. The total number of houseson the system is 147. Since 100%

penetration of vehicles is considered, each house is assigned one electric vehicle randomly from a pool

of vehicles selected from the NHTS database. The vehicles are distributed in proportion to the load at

each node. The vehicles were selected in the same ratio as in the NHTS database with regards to the

time required for charging. This selection is attributed tothe general driving patterns from the NHTS

database. Once assigned to a node, it is assumed that the vehicle load would be observed at the same

node, which is representative of the ownership of a vehicle and Type I charging at home.

7.3. Load Profiles

Having obtained the vehicle characteristics at each node, three other profiles were obtained, namely:

• Load under uncoordinated vehicle connection: The vehicles are connected whenever the driver

arrives home. Charging is completely under the control of the customer.

• Load under global coordinated vehicle connection: The vehicles are assigned charging times

between 20:00 and 08:00, depending on the SOC of the battery.The control is at the substation

(Node 800), which coordinates all the 147 vehicles together.

• Load under local coordinated vehicle connection: This is very similar to the global scheme with

the exception that each node uses its respective load profileto coordinate the vehicles connected

to that node.

The coordination schemes were run 50 times each, in order to obtain a range of load profiles.

7.4. Fitness Function

Minimizing the total sum of the deviation of instantaneous load from the average residential load was

used as the optimization objective. It was found that this average value when varied over a range gives

slight changes in the profile. ThePavg of the total load profile (residential + vehicle) gives better results

than thePavg of the residential load profile alone. This signifies the importance of the prediction of the

vehicle load in the efficacy of the algorithm.

7.5. Results for the Test System

• The load (Figure21) and voltage profiles (Figure22) show significant improvement from the

uncoordinated profiles. The high voltage in the uncoordinated case during hours 01:00–08:00 is

due to fewer loads on the system. The global and local load profiles give similar load profiles.

These profiles are similar for all nodes in the system.

• In addition to differences in load, the impact on feeder voltage is also an important consideration.

It can be observed in Figure23 that uncoordinated charging leads to large deviations in voltages,

but global and local coordination results in far less deviation in voltage.
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• The analysis of variance (ANOVA) on the deviation of the daily voltage shows that the coordinated

cases have a total deviation much lower than the deviation obtained for the uncoordinated case and

are, thus, a better choice of coordination scheme. Figure24 shows the mean deviation of daily

voltage in case the coordinated load is less than that for theresidential and the uncoordinated load

profile cases. The voltage variation at each node for the coordination schemes (100 runs) is also

shown in the box plot in Figure25. The nodes closer to the substation (Node 800) show far less

variation than the nodes further along the feeder.

• Given that voltages were obtained from 50 runs each of global and local coordination schemes, a

probability density function (pdf) of the voltage variation along with a box plot was obtained for

each node. The pdf at each node is similar to that obtained fornode 840 (Figure26). This gives

us a range within which voltage at that node will vary given the vehicle set connected according to

either the local or global coordination schemes. Thex-axis gives the node voltage and they-axis

indicates the percentage of time that particular voltage was obtained.

Figure 21. Load with coordinated charging.
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Figure 22. Voltage profiles for Node 840 under coordinated and uncoordinated charging.
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Figure 23. Deviation of voltage from average voltage.
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Figure 26. Probability density function of coordinated voltage on Node 840.
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The improvement and minimal deviation in voltage is the motivation behind the application of the

algorithm for vehicle connection.

8. Global versus Local Coordination

The global and local schemes differ in decision-making policies with regards to responsibility and

authority. The global scheme works with a central authoritythat makes the decision for the system,

given the system condition. The local scheduling scheme provides greater autonomy to the nodes to

handle their individual loads, hence a decentralized responsibility structure and a probable less overhead

on the central unit. The idea behind global optimization is to use the complete system information, while

the local scheme uses the local load profiles and informationspecific to the respective nodes. The lack

of system information might lead to erroneous results in case of faults or unforeseen load deviations

that might change the shape of the local load profiles, which are the basis of the proposed optimization

schemes. The global scheme might turn out to be more resilient in such situations. Communication is

much higher in the case of a global scheme than in that of a local scheme. Each node sends a ‘tuple’

of information to the central unit, which is then processed at the central unit, and the resulting control

signals are sent back to the nodes for optimal scheduling. The local scheme, on the other hand, makes

decisions using the local information, thus reducing the communication overhead. Here, the increased

cost of communication in the case of the global scheme would have to be compared with that of the

installation cost of the smart control capability at each node in the case of the local scheme. Secure

transfer of information is also of crucial importance in either scheme, which would incur extra costs.

Given the pros and cons of either scheme, different structural and functional decision policies can

be proposed:

• A hybrid, two-tiered structure can be implemented, where the authority and the responsibilities

can be shared at the global and local levels. Probably, a local optimal scenario can be generated

and sent to the central unit, which can then finally approve the schedule in view of the system



Energies2014, 7 1896

condition. In case of a communication break between any nodeand the central unit, the local

scheme can be implemented at the node.

• The local structure proposed in the paper provides complete autonomy to the nodes in a complete

non-cooperative environment. A cooperative scheme can be discussed wherein the neighboring

nodes share local information and cooperatively decide on their scheduling schemes. This would

be classified as a cooperative decentralized scheme.

• A distributed scheme can also be implemented, where the central authority designates the

responsibility of scheduling to the nodes. This can be done in a cooperative or non-cooperative

manner at the nodes. A cooperative dynamic structure might be the best fit in a real-time scenario.

The above discussion is focused on static scheduling schemes. Dynamic scheduling or real-time

scheduling would be the next step in this direction, due to the additional complexities of individual

driving patterns.

9. Conclusions

This paper describes an aggregation method that can be used for scheduling plug-in vehicles for

charging. A series of fitness functions are proposed and tested to illustrate the effect of different charging

schemes on the total load as a function of charging load. Time-of-use rates are also analyzed to indicate

which scenarios lead to the least customer and utility cost.Better voltage profiles and lower voltage

deviations were obtained for the test system, followed by ANOVA analysis, showing the effectiveness of

the coordination scheme. Future work will consider different charging policies, different rate structures

and load demand profiles.
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