Energies2014 7, 1876-1898; do0i:10.3390/en7041876
gless01s

ISSN 1996-1073
www.mdpi.com/journal/energies

Article

Economic Scheduling of Residential Plug-In (Hybrid) Electic
Vehicle (PHEV) Charging

Maigha and Mariesa L. Crow *

Department of Electrical and Computer Engineering, Missdaiversity of Science & Technology,
301 W. 16th Street, Rolla, MO 65409, USA; E-Mail: mmck6@ redtl

* Author to whom correspondence should be addressed; E-dMaikGmst.edu;
Tel.: +1-573-341-6305; Fax: +1-573-341-6671.

Received: 13 January 2014, in revised form: 19 March 2014defpted: 19 March 2014 /
Published: 25 March 2014

Abstract: In the past decade, plug-in (hybrid) electric vehicles (RdEhave been widely

proposed as a viable alternative to internal combustioncleshto reduce fossil fuel

emissions and dependence on petroleum. Off-peak vehialgicly is frequently proposed
to reduce the stress on the electric power grid by shapindothe curve. Time of use

(TOU) rates have been recommended to incentivize PHEV amveeshift their charging

patterns. Many utilities are not currently equipped to leweal-time use rates to their
customers, but can provide two or three staggered rateslevie date, an analysis of the
optimal number of levels and rate-duration of TOU rates fgiven consumer demographic
versusutility generation mix has not been performed. In this papes propose to use
the U.S. National Household Travel Survey (NHTS) database basis to analyze typical
PHEV energy requirements. We use Monte Carlo methods to Itfteglancertainty inherent

in battery state-of-charge and trip duration. We concludegaper with an analysis of a
different TOU rate schedule proposed by a mix of U.S. uiditiWWe introduce a centralized
scheduling strategy for PHEV charging using a genetic élgorto accommodate the size
and complexity of the optimization.
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1. Introduction

Increasing fuel prices, diminishing fossil fuel reservésing greenhouse gas emissions and political
unrest have made plug-in (hybrid) vehicles an attractiterative to traditional internal combustion
engine vehicles (ICEV). The growth of plug-in (hybrid) diec vehicles (PHEVS) as a clean, safe and
economical transportation option to ICEVs can be promoteeiending driving range, improving
battery health and life, increasing electric grid religpiland promoting acceptance of PHEVs by
the consumer. The degree of penetration of PHEVs as a treaspa option depends on a variety
of factors, including charging technology, communicatgacurity, advanced metering infrastructure
(AMI), incentives to customers, electricity pricing sttues and standardization. The wide-spread
adoption of electric vehicles will have many multi-facetmtio-economic impacts. Among these are
increased system load, leading to stressed distributistesys and insufficient generation, power quality
and reliability problems, degrading battery health, sciied of vehicles as a potential power source
in an ancillary market, costs incurregrsusrevenues earned by end user in offering such services,
along-with the dependence on variable consumer behavia been considered as hurdles to PHEV
implementation1,2].

Insufficient battery state of charge has been cited as thmapyi consumer insecurity regarding
PHEVs [B]. In this paper, we interpret this concern as the desire t@ lafully-charged battery at
the beginning of the daily commute. This consumer desirdé&dy full charge must be balanced against
the desire on the part of the utility to shape its load curvé avoid a load spike due to concurrent
vehicle charging. It is well-accepted that coordinatediclehcharging can be used to minimize the
adverse effects of PHEVs on the electrical distribution ¢4i5]. Coordination can be either centralized
or decentralized. A centralized strategy is one in whichrare¢ operator (or aggregatos]) dictates
precisely when every individual PHEV will charge, but mayt be attractive to consumers who prefer
to have complete authority over their transportation aality and/or electricity usage. Typically, the
objective of such strategies is “valley-filling” in whichegmighttime drop in load demand is decreased,
resulting in a more level load profile. However, other objexd, such as system loss reduction,
greenhouse emission reduction, battery lifetime extensic, can also be optimization factorg{10].

A centralized control strategy will require a central rdpmy that collects parameter information from
all vehicles to provide an optimal charging profile. It hasodbeen suggested that this might be taxing
on communication channels and computation tidf.[However, we believe that a centralized solution
is the preferred approach under current technologicalmbiies. Furthermore, since the control signal
is sent by the aggregator, adaptation will be easier. Lastign be contended that consumer confidence
can be won through pricing incentives. Thus, in this paperewpand on these earlier approaches and
develop a centralized scheduling approach that balaneescthal cost of generation, the levelized time
of use rates and load demand.

Specifically, we propose an optimal approach to PHEV chagrthat:

provides full charging to the maximum number of vehicles;

shapes the load curve to avoid demand spikes and accomaglisig-filling;
* minimizes the cost to the customer; and

uses the most economic forms of generation available.
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The critical contribution is the selection of the most agpiate fitness function to optimally shape
the load curve.

2. Background

A regional load profile adapted from the California IndepamtdSystem Operator (ISO) is shown in
Figurel. The top curve is a typical daily load demand; the lower tiadbe associated residential load

and is approximately 40% of the total demand. Each residlecustomer is assumed to have an average
load of 4 kWh per day.

Figure 1. Load demand.
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The 2009 U.S. National Household Travel Survey (NHTS) pesiinformation regarding commuter
behavior. The information pertinent to this paper is sumrearin Figure and3.
The salient details from these data are that:

* 66.5% of commuters have a daily commute of less than 30 mu(ER); and
* 67.1% of commuters return home after 17:00 (Figgire

Figure 2. Number of vehicles per commute range.
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Figure 3. Number of vehicles returning per hour.
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3. Process

Throughout the analysis presented, the following pararseteere assigned randomly to each
commuter, and the results presented are the average of & @arib-based simulation with 1000 trials:

battery size;

commute length;

return time;

time available before next trip;
charger type.

The commute length is randomly assigned to each househotuiciog to the distribution given in
Figure2. Based on the commute length, an appropriately-sizedrigastéhen assigned.

Tablel summarizes the batteries that are currently commerciadlitable in the U.S. Based on these
battery sizes, driver commute lengths (DCL) can be categdrand battery types associated, as shown
in Table2. Commuters in DCL20 are those that drive less than 20 mi daigl their commute length
can be adequately met by battery Types A-E, whereas a DCldri@hater must have battery Type E.

Table 1. Commercially available battery sizes.

Range Allelectric Battery size Equivalent

Type , : :
(mi) range (mi) (kwh) (mi/kwWh)
A 0-20 30 11 3.250
B 20-40 40 12 3.500
C 40-60 70 16 4.375
D 60-80 80 18 4.440
E 80-100 100 24 4.167
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Table 2. Battery and commute length association. DCL, driver conenterigths.

Category Commute length (mi) Battery size (kWh)

DCL20 0-20 (A, B, C, D, E)
DCL40 20-40 (B, C, D, E)
DCL60 40-60 (C,D, E)
DCLS80 6080 (D, E)
DCL100 80-100 (E)

Once the commute length and battery size have been assithegdthe return time is randomly
assigned according to the distribution given in FigBrelhe time available before the next trip is also
similarly assigned according to the distribution dictatgdthe NHTS. The chargers are assigned based
on energy requirements. If the commute length and battgrg tequire a Type Il charger to fully
charge, then a Type Il charger is assigned; otherwise, @ehgame is randomly assigned. The default
assignment was generated by MATLAB, which uses Bernoulirdbuted random binary numbers and
probability of zero parameter= 0.5. Two types of chargers were used:

Typel 120 Volts AC, 12 A, 1.44 kW
Type Il 240 \Wolts AC, 32 A, 6.66—7.68 kW

Type 1l chargers (480 VAC) have not been considered, becthey are not intended for residential
use. If the commute length, battery size and the time availadfore the next trip necessitated a Type Il
charger, then it was deterministically assigned; otheawise charger type was also randomly assigned.

As a base case, this process was applied to the residentiaindecurve shown in Figurk and the
average Monte Carlo simulation result (1000 trials) is smawFigure4. In this case, each commuter
began the charging process immediately upon returning hdheebase case residential load without any
electric vehicle charging is shown as the bold trace. The inereases in all cases when there is electric
vehicle charging. The worst case (highest peak) load odour$ype Il chargers. Since the Type Il
charger draws considerably more power than the Type | chadlgepeak is higher immediately after the
return home (around 18:00). However, since the vehiclebatt charged from Type Il will more rapidly
reach their full state of charge, the Type Il load will moreiddy fall off during the valley period from
04:00 to 05:00. The Type | charger load is the lowest demangecand the randomly-assigned-charger
load lies between the Type | and Type Il curves. Battery dhgrgharacteristics play an important
role in the maintenance and lifetime of the battery. Howeiés not possible to capture these aspects
in the model used, due to the differences in time scale. Issuia@ed that a typical charge cycle of
bulk-absorb-float with the proper charger settings is usex/did overcharging.

As a comparison to time of arrival charging, a delayed chaageignment was also considered. In
these cases, the charger types are assigned randomly 0riMidiie Carlo trials) and the vehicles began
charging at a set time (assuming they had already returnecthoThis is analogous to the situation
of having off-peak pricing with 100% patrticipation from camters. This case is shown in Figuse
Note that the resulting peak load is higher than in the végiabarging initiation times, even though
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the charger type is assigned randomly. Obviously, a delapadging scheme must be implemented
with care.

Figure 4. Residential load as a function of charger type.
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Figure 5. Residential load as a function of charger initiation.
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4. Vehicle Aggregation

As noted previously, a centralized control scheme will mastbably require the aggregation of
the vehicles to reduce the complexity of calculating thergimg schemes of multitudes of individual

vehicles. The aggregation of vehicles is typically accasi@d by grouping the vehicles according to
common parameters, such as:

* total charging time required (based on state of charge);
» network topology and physical geography;
* vehicle return time.

In this paper, we develop an aggregation scheme based oot#iditne required for charging, as
illustrated in Figures. For simplicity, we also assume that the charging windowaaf20:00 to 08:00,
since the majority of vehicles are available for residérdiearging at this time. We assume that there
are 12 possible connection times within the charging tirmef (on the hour), but this can be expanded
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to any number of possible connection times without loss olegality (e.g., every 15 min), with added
computational complexity. The vehicles are initially agggted into equal sets that span the possible
charging times. The illustration of the possible chargiets $s shown in Figuré.

Figure 6. Vehicle assignment flow chart.
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Figure 7. Aggregation of vehicles into bins.
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Each possible charging set is called a “bin”: there are tevelve-hour charging bins, eleven two-hour
charging binsetc, and only one twelve hour charging bin. The charging timesased on the randomly
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assigned vehicle travel data from the NHTS, which specifiesr¢spective anticipated state of charge
for each vehicle. It is assumed that once a vehicle startgicttg it will remain charging until it is fully
charged i(e., no disconnect and reconnect). The required charging tonedch vehicle in the study
set is calculated. The number of vehicles requiring eacbtkenf charge time is shown in Figu&
Because the majority of drivers have a commute length lems 80 mi, there is a large number of
vehicles requiring only 1-5 h of charging (based on battgpe and charger type).

Figure 8. Number of cars in each charging window.
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Once the vehicles have been assigned to their initial chgrggt, then the energy required for each
charging set is calculated. The total energy required dt baar is the summation of all charging sets
in that hour. A genetic algorithm is then used to assign thargihg sets to the optimal connection
times. In the genetic algorithm, each chromosome in the latipa represents a particular charging
scheme in which each of the chromosome’s genes representaithber of vehicles in the charging
set. A fitness function is used to specify which chromosomesretained in each generation. As
the generations progress, the algorithm will reallocagedharging sets from Figurgacross the time
spectrum to optimize a given fitness function. FigQréescribes the optimization process. The choice
of fitness function can significantly impact the resultingdgorofile. As an example, a simple fithess
function is chosen:

f1 = min (max (Preqq)) (1)

in which the maximum load at any time is minimized. This sserieereduce the maximum peak load.
The results of these optimizations are shown in Figl@dor 12 possible connection times (charging
may commence once per hour). This approach is shown witlecesp the uncoordinated charging
load profile (also shown in Figurd). Note that there is still a fairly sizable peak load arou2d0P
hours. This is because there is little flexibility in schedglthe vehicles that require 10 or more hours
of charging. These vehicles must be connected no later tA&9 2ours to be fully charged by 08:00
the following morning; therefore, it is very difficult to sificantly reduce the peak. However, it should
be possible to achieve better valley filling by a better caatfitness function.
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Figure 9. Optimization process.
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Figure 10. Optimized load profiles.
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Several different fithess functions are summarized in Tablkhe fitness functions are described:

1. The absolute difference between the system load and dfecped average load is minimized.

2. The squared difference between the system load and tjexfao average load is minimized.

3. The plug-in time for each vehicle is delayed as long asiplesbased on vehicle state of charge
(SOC).

4. Total cost is minimized (described later).

Table 3. Fitness functions.

Case Fitness Function Description

(A)  min (zﬁl |P; — Pavg\) minimize deviation from system average load
(B)  min (Y;2, (P; — Payg)® minimize square of deviation

() max <ZP:'TStp|ug) move all plug in times to as late as possible
(D) min(cosY minimize system cost

Figures1l1 and 12 show the optimization results for the algorithms in TaBleNote that there is
not one “best” algorithm. Each charging profile is optimal foe fitness function for which it was
defined, but the notion of “best” depends on the user. For pl@nirofile(A) strives to minimize
the absolute error between the total load and a pre-detedhramerage. From the results shown in
Figurel1l, Profile(A) decreases more or less monotonically throughout the afgpgriod. Similarly,
Profile (B) minimizes the squared error between the total load and @e¢termined average. This
results in a relatively flat load profile. The drawback to Aigfams (A) and(B) is that the algorithms
require an estimate of an average load. This may not be featihe overall load profile is changing
rapidly. The min-max algorithm initially presented was patsued further, because it performed poorly
when compared with the algorithms presented in T&l&he min-max algorithm considers only the
maximum load for a day, which does not capture the compldteber of the system during off-peak
hours. The other fithess functions use a collective systdrawer rather than a point behavior to address
the problem of load scheduling. The system cost providea fwgtter fithess function that is capable of
giving better results along with a well justified objectiwe ainy real-world problem.

Profile (C') assigns vehicle charging as late in the charging window asiple and, therefore, skews
all of the load towards 8:00 am. Obviously, this approachas“optimal” in terms of practicality,
since this causes a second (but lower) peak in earlier mgpsuiich, leads to difficult load following
by generation.

One or more of these algorithms may not be considered seitabpractical implementation. Every
utility or aggregator may have their own notion of an optimictical profile. One obvious approach is
to optimize vehicle charging based on cost, but cost is noésearily a straightforward function. The
cost to the customer is not necessarily the cost to theyutliastomers typically want to minimize their
cost of electricity, whereas utilities want to maximizeithgofits.
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Figure 11. Load profiles for Tabl& algorithms.
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Figure 12. Optimized charging profiles for TabRalgorithms.
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To better understand the impact of vehicle charging loadstidity cost, the set of incremental costs
shown in Figurel3 are applied to the load profile. These incremental costsleee scaled and adapted
from [13]. The horizontal lines indicate the incremental costs énatsuperimposed on the load profiles
in Figurel4. The optimization algorithmis then used to identify a védaharging profile that minimizes
the overall cost of generation during the charging windowege results are indicated as Profil¢ in
Figuresll and12 This approach moves the vehicle charging away from the pmsak but since the
incremental cost is constant between 24,000 and 26,000 MWgle is not a significant shifting of load
during the valley period. The minimum cost profile is very gamto Profile(B), which is the minimum
squared error. Therefore, Algorith(®?) could be used as a computationally efficient approximation
for finding the minimum cost. AlgorithnD) is the most computationally-intensive method, because it
requires that the cost be evaluated for every chromosomeeat geration. The other fitness functions
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only require the actual power resulting from the chromosorable 4 summarizes the costs of the
different algorithms with respect to the base load over thbtehour charging period.

Figure 13. Incremental costs.
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5. Time of Use Rates

The load shapes presented in the preceding section weréodedeo minimize the impact on the
utility system. There is, however, currently little or naentive for vehicle owners to allow the utility
to control their charging times to produce these optimizeztlishapes, since they are not typically
charged real-time prices that correspond to the actual lloafdct, the most probable situation is one in
which the owners start charging their vehicles immediatglgn returning home (which results in the
uncoordinated charging profile of Figudg Many utilities have considered implementing a tieredetim
of use (TOU) structure to encourage owners to defer chatgingn-peak times.

Utilities across the U.S. have adopted different time of taes to incentivize customers to better
manage their energy use. Most TOU rates are two (on-peak fispkak) or three different rates
(on-peak, part-peak, off-peak). Figut® shows the TOU rates for several U.S. utilities, and Tdble
gives representative rates4-20].

Figure 15. Tiered time of use (TOU) structures for several U.S. udti
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Table 5. Time of use rates.

Time of use Rate (¢/kWh)

Off-peak 9.78
Part-peak 17.02
On-peak 27.88

To compare the impact of the various charging profiles on th& to the customer, these cost
structures are applied to the load profiles of the variousgihg algorithms and plotted in Figuds.
These rate structures are used for example purposes ondyroitld be noted that the actual cost
per kilowatt hour for each utility may be different than treges given in Tablé. An analysis of
Figurel6yields several trends. Utility B is the most expensive, sitheir on-peak rates are the longest.
Utility D has the shortest on-peak hours, but is more expenian Utility C and Utility E, because
the on-peak rates extend later into the evening and pick epatige load. Utility G is also relatively
expensive, because their off-peak rates are the shorteshein partial peak hours start at 07:00 hours.



Energies2014 7 1889

Figure 16. Customer costs associated with load profiles.
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6. Algorithm Integrity

To test the integrity of the optimization algorithm, sevdsanchmarks were analyzed. Since at
the heart of the algorithm is a random assignment of vehicdesetric was needed to measure the
possible deviation in results and their impact on the loadiles. To measure the statistical deviation,
the algorithm was run 50 times using Algorithi@'). The cumulative results are shown in Figure
The horizontal line represents the mean value of the datarddtangles (when included) give the 25%
and 75% percentiles with the upper and lower bars giving thgimum and minimum values. The
stars ) indicate statistical outliers. Note that at the beginmafithe charging interval, the load values
across all runs are tightly coupled. This is due to lack ofifflgity in scheduling the long charge/low
state-of-charge vehicles. However, as the charging winpikmgresses, there is more possibilities for
scheduling the one- and two-hour charging vehicles; thhevetis greater deviation. However, even
considering the spread of values obtained, the load shdpeestains relatively consistent; thus, the
algorithm produces statistically similar results from tamun. This validates the optimization approach
and algorithm.

Another method of testing algorithm integrity is to apply to other load profiles.
Figures18 and 19 are two seasonal profiles adapted from ERCOT (Electric Riitia Council of
Texas). Figurel8 represents a typical work day in January, and Figilfeepresents a typical work
day in June. The January profile is similar to the Califorri8®1(CAISO) load profile, but with a
higher load factor (the ratio of the average load to the makrimioad). The charging profiles are
gualitatively similar to those obtained in Figufel. As with the CAISO load profile, Algorithm
(C) (scheduling charging as late as possible in the charginglavifi gives poor results and, in this
case, actually causes an early morning peak. Algoritfim (minimum cost) once again provides
the best outcome, but still results in a second, late evepgadk. One possible method of improving
the load characteristics is to allow charging to start eaifat 17:00 instead of 20:00, as is currently
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used). The ERCOT June profile is quite interesting. The denfaator is very high; therefore,
there is little valley to “fill”, nor is the cost differentiddetween minimum and maximum significant.
The minimum cost algorithm still provides the best resulist the resulting charging load is still
unwieldy. In this case, a different charging policy wouldveethe ERCOT region better, such
as providing charging access during the day at places of gmant, shopping centers, parking
garagesetc.

Figure 17. Data deviation in Algorithn{C).
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Figure 18. ERCOT January profile.
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Figure 19. ERCOT June profile.
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7. Test System Formulation and Algorithm Application

L
18:00

The coordination scheme is applied to a test system, ancethets are thus quantified by means of

load profile and voltage variations of the system.

7.1. System Specification

A three-phase balanced system, modified from the Instituidextrical and Electronics Engineers
(IEEE) 34 bus systen?fl], was formulated to test the impact of the algorithm (Fig2@ A daily load
profile for the test system and also for the individual nodes wade to match the initial load profile
studied. The approximate number of houses at each node \eatated assuming 4 kW of maximum
load per house. Considering one electric vehicle per haldets a 100% penetration on the system for
the worst case scenario, the number of vehicles equals theenof houses at each node.

Figure 20. System specification.
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7.2. Vehicle Load on the Test System

A total of 147 houses, and, thus, vehicles, were selectethéotest system. A set of vehicles was
randomly selected from the NHTS dataset, which were rang@ssgigned to 11 nodes. Only eleven
nodes of the test system had loads. The total number of hauwsése system is 147. Since 100%
penetration of vehicles is considered, each house is as$igme electric vehicle randomly from a pool
of vehicles selected from the NHTS database. The vehickesdliatributed in proportion to the load at
each node. The vehicles were selected in the same ratio ke NHTS database with regards to the
time required for charging. This selection is attributedtte general driving patterns from the NHTS
database. Once assigned to a node, it is assumed that tleéeMeld would be observed at the same
node, which is representative of the ownership of a vehiate®ype | charging at home.

7.3. Load Profiles

Having obtained the vehicle characteristics at each nbdeg tother profiles were obtained, namely:

» Load under uncoordinated vehicle connection: The vebialke connected whenever the driver
arrives home. Charging is completely under the control efdlsstomer.

» Load under global coordinated vehicle connection: Theiclet are assigned charging times
between 20:00 and 08:00, depending on the SOC of the baftes/control is at the substation
(Node 800), which coordinates all the 147 vehicles together

» Load under local coordinated vehicle connection: Thisag/\similar to the global scheme with
the exception that each node uses its respective load ptofieordinate the vehicles connected
to that node.

The coordination schemes were run 50 times each, in orddatémoa range of load profiles.

7.4. Fitness Function

Minimizing the total sum of the deviation of instantanecowsd from the average residential load was
used as the optimization objective. It was found that thexage value when varied over a range gives
slight changes in the profile. The,,, of the total load profile (residential + vehicle) gives bettsults
than theF,,, of the residential load profile alone. This signifies the im@oce of the prediction of the
vehicle load in the efficacy of the algorithm.

7.5. Results for the Test System

» The load (Figure2l) and voltage profiles (Figur22) show significant improvement from the
uncoordinated profiles. The high voltage in the uncoore@idaiase during hours 01:00-08:00 is
due to fewer loads on the system. The global and local loafllggajive similar load profiles.
These profiles are similar for all nodes in the system.

* In addition to differences in load, the impact on feedetagé is also an important consideration.
It can be observed in Figu8 that uncoordinated charging leads to large deviations fages,
but global and local coordination results in far less deerain voltage.
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» The analysis of variance (ANOVA) on the deviation of theglaoltage shows that the coordinated
cases have a total deviation much lower than the deviatitairedd for the uncoordinated case and
are, thus, a better choice of coordination scheme. Figdrghows the mean deviation of daily
voltage in case the coordinated load is less than that faiefidential and the uncoordinated load
profile cases. The voltage variation at each node for thedowation schemes (100 runs) is also
shown in the box plot in Figur25. The nodes closer to the substation (Node 800) show far less
variation than the nodes further along the feeder.

» Given that voltages were obtained from 50 runs each of ¢jlmhe local coordination schemes, a
probability density function (pdf) of the voltage variatialong with a box plot was obtained for
each node. The pdf at each node is similar to that obtaineddde 840 (Figur6). This gives
us a range within which voltage at that node will vary giveaWiehicle set connected according to
either the local or global coordination schemes. Tkexis gives the node voltage and th@xis
indicates the percentage of time that particular voltage etdained.

Figure 21. Load with coordinated charging.
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Figure 22. \oltage profiles for Node 840 under coordinated and uncoatdd charging.
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Figure 23. Deviation of voltage from average voltage.
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Figure 26. Probability density function of coordinated voltage on NH@#0.
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The improvement and minimal deviation in voltage is the waiton behind the application of the
algorithm for vehicle connection.

8. Global versus Local Coordination

The global and local schemes differ in decision-makingqes with regards to responsibility and
authority. The global scheme works with a central authdhigt makes the decision for the system,
given the system condition. The local scheduling schemeighes greater autonomy to the nodes to
handle their individual loads, hence a decentralized mnesipdity structure and a probable less overhead
on the central unit. The idea behind global optimizatiomigge the complete system information, while
the local scheme uses the local load profiles and informagecific to the respective nodes. The lack
of system information might lead to erroneous results ireaafsfaults or unforeseen load deviations
that might change the shape of the local load profiles, whielttee basis of the proposed optimization
schemes. The global scheme might turn out to be more rasifiesuch situations. Communication is
much higher in the case of a global scheme than in that of 4 $oteeme. Each node sends a ‘tuple’
of information to the central unit, which is then processetha central unit, and the resulting control
signals are sent back to the nodes for optimal scheduling.|ddal scheme, on the other hand, makes
decisions using the local information, thus reducing therwnication overhead. Here, the increased
cost of communication in the case of the global scheme woale to be compared with that of the
installation cost of the smart control capability at eacldaan the case of the local scheme. Secure
transfer of information is also of crucial importance irheit scheme, which would incur extra costs.

Given the pros and cons of either scheme, different stracand functional decision policies can
be proposed:

» A hybrid, two-tiered structure can be implemented, whéee duthority and the responsibilities
can be shared at the global and local levels. Probably, & égtenal scenario can be generated
and sent to the central unit, which can then finally approeesithedule in view of the system
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condition. In case of a communication break between any aodethe central unit, the local
scheme can be implemented at the node.

» The local structure proposed in the paper provides completonomy to the nodes in a complete
non-cooperative environment. A cooperative scheme candeeissed wherein the neighboring
nodes share local information and cooperatively decidénein scheduling schemes. This would
be classified as a cooperative decentralized scheme.

» A distributed scheme can also be implemented, where th&ateauthority designates the
responsibility of scheduling to the nodes. This can be daree ¢ooperative or non-cooperative
manner at the nodes. A cooperative dynamic structure migttidbest fit in a real-time scenario.

The above discussion is focused on static scheduling sahemgnamic scheduling or real-time
scheduling would be the next step in this direction, due wdldditional complexities of individual
driving patterns.

9. Conclusions

This paper describes an aggregation method that can be asasdheduling plug-in vehicles for
charging. A series of fitness functions are proposed anedégtllustrate the effect of different charging
schemes on the total load as a function of charging load. -Gfnese rates are also analyzed to indicate
which scenarios lead to the least customer and utility cBgttter voltage profiles and lower voltage
deviations were obtained for the test system, followed byDMN analysis, showing the effectiveness of
the coordination scheme. Future work will consider differeharging policies, different rate structures
and load demand profiles.
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