
 

 

Energies 2014, 7, 1706-1720; doi:10.3390/en7031706 
 

energies 
ISSN 1996-1073 

www.mdpi.com/journal/energies 

Article 

Design and Study on Sliding Mode Extremum Seeking Control 
of the Chaos Embedded Particle Swarm Optimization for 
Maximum Power Point Tracking in Wind Power Systems 

Jui-Ho Chen, Her-Terng Yau * and Weir Hung 

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, 

Taiwan; E-Mails: chenjh@ncut.edu.tw (J.-H.C.); ihhung2433@yahoo.com.tw (W.H.) 

* Author to whom correspondence should be addressed; E-Mail: pan1012@ms52.hinet.net or 

htyau@ncut.edu.tw; Tel.: +886-4-2392-4505 (ext. 7229); Fax: +886-4-2392-4419. 

Received: 26 January 2014; in revised form: 23 February 2014 / Accepted: 4 March 2014 / 

Published: 21 March 2014 

 

Abstract: This paper proposes a sliding mode extremum seeking control (SMESC) of 

chaos embedded particle swarm optimization (CEPSO) Algorithm, applied to the design of 

maximum power point tracking in wind power systems. Its features are that the control 

parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output 

power of different wind turbines, the designed in-repetition rate is reduced, and the system 

control efficiency is increased. The wind power system control is designed by simulation, 

in comparison with the traditional wind power control method, and the simulated dynamic 

response obtained by the SMESC algorithm proposed in this paper is better than the 

traditional hill-climbing search (HCS) and extremum seeking control (ESC) algorithms in 

the transient or steady states, validating the advantages and practicability of the method 

proposed in this paper. 

Keywords: extremum seeking control (ESC); sliding mode extremum seeking control 

(SMESC); maximum power point tracking (MPPT); particle swarm optimization (PSO); 

chaos; wind power 

 

1. Introduction 

Due to the nonlinear characteristics of wind power generation, the output power point is usually not 

at the maximum power point. This paper uses maximum power point tracking (MPPT) to track the 
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maximum power point so as to increase the output efficiency of the wind power [1]. There are multiple 

algorithms for increasing the MPPT efficiency of wind turbines, such as perturbation and observation 

(P&O) [2–4], the hill-climbing search (HCS) algorithm [5,6], tip speed ratio control (TSR) [7,8], 

and so on. Zou et al. [9] mentioned wind power system stability analysis, using the Optimal Reference 

Power Curve for MPPT, and developed small signal analysis MPPT for nonlinear turbine systems. 

The control of most wind power systems depends on the measurement of wind speed, and this type 

of system must be equipped with wind speed sensors, which are limited by the cost and complexity of 

the sensors [10]. Dalala et al. [11] gave experimental examples. The wind power system structure 

consists of an alternating current (AC) motor connected to the generator. The motor speed is controlled 

to simulate the onsite height and higher wind speed. This experiment is conducted for large-scale wind 

power systems with high output power. Bharanikumar et al. [12] and Zou et al. [13] expounded the 

MPPT of different turbine types of generator. Wind turbines mostly use a double fed induction 

generator (DFIG) [14] and permanent magnet synchronous generator (PMSG) [15]. Pan et al. [16] 

used MPPT simulation of DFIG wind power system parameters based on SMESC, but the SMESC 

given U0 is a fixed value, not the optimized parameter, and the DFIG is controlled by multiple converters, 

meaning that the cost is certainly higher than PMSG, and it is also more complicated than PMSG. 

General control systems such as the proportion & integration (PI) control system use the parameters 

Kp and KI [17,18], which are usually fixed parameters, to control the systems. Those parameters must 

be obtained in accordance with the rule of thumb, so that the systems cannot get the optimal values. 

In terms of the control parameter U0 and integrated absolute error (IAE) in the SMESC proposed 

in this paper, the CEPSO [19,20] is used to adjust the system required U0 and IAE appropriately, 

to optimize the control parameters, and to validate the reliability and robustness of the control algorithm 

proposed in this paper. The simulation results are compared by using HCS, extremum seeking 

control (ESC) [21–23] and sliding mode ESC (SMESC) [24,25]. The dynamic response of the 

system is analyzed by the output power of the three algorithms. Chen et al. [26] used the ESC application 

combined with fuzzy theory to achieve maximum power point tracking. This method needs to build a 

set of fuzzy rules, and creates the library by rule of thumb, but also needs a longer calculation. 

Zazo et al. [27] proposed an effective solution called NLESC for ESC transient derivative applications 

of photovoltaic modules’ transient response. This method explored how to make the transient response 

of the system more stable, reducing the vibration, and does not discuss how to eliminate the vibration of 

steady response. The SMESC algorithm derived from the ESC and sliding mode control (SMC) [28,29] 

implements wind power system MPPT simulation analysis. According to the above references,  

the ESC has a perfect steady-state response, and the SMCs the power to reduce the oscillation of the 

output waveform. In a real environment, the component lifetime loss resulting from power waveform 

oscillation can be reduced, so as to increase the output efficiency of the wind turbines while also reducing 

the cost. 

The simulation system uses a rectifier to convert the AC power generated by the generator into 

direct current (DC) power. The controller extracts the voltage and current, and a boost circuit is used. 

The switching pulse width duty cycle of the conversion circuit is adjusted by the algorithm, so as to 

maximize the output power, exert good system performance, and increase and improve the efficiency. 

The SMESC not only shortens the instantaneous time, but also improves the oscillation of the 

output power, implementing MPPT rapidly. 
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2. Brief Introduction to Wind Power Systems 

As the real environment has different wind speed conditions, wind turbines have different power 

characteristic curves, so the control is required to obtain maximum power under different wind 

speed conditions, i.e., MPPT. As the power output of wind turbines (please refer to [30] for details of 

wind turbines) is related to wind speed, the power Pωm generated by the wind turbines can be expressed 

as Equation (1): 

னܲ୫ = 12πρܥ୮ܴଶ னܸଷ (1)

where ρ is the air density; R is the radius of blades; Vωm is the wind speed; and Cp is the performance 

coefficient of the wind turbine. Cp includes the blade tip speed ratio λ, as shown in Figure 1. β is the 

pitch angle of the blades. 

Figure 1. Performance coefficient curves. 

 

The tip speed ratio λ is defined as the relationship between the blade tip speed and the wind speed, 

expressed as Equation (2): 

λ = ܴω୫
ωܸ

 (2)

where ωm is therotational speed of the blades. Figure 2 shows the power characteristic curves at different 

wind speeds. 

Figure 2. Power characteristic curves. 
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The wind power system structure proposed in this paper is shown in Figure 3. The wind turbine is 

coupled to the PMSG directly, connected to a rectifier, converting the AC output of the generator into 

DC to obtain DC voltage and current signals, and the DC is delivered to the DC-DC boost converter. 

The MPPT control signal is designed to control the duty cycle of switching the pulse width 

modulation (PWM) of the booster. Finally, the boost converter is connected to the load to measure the 

system output power. 

Figure 3. Wind power system structure. PMSG: permanent magnet synchronous 

generator; DC: direct current; PWM: pulse width modulation; and MPPT: maximum power 

point tracking. 

 

3. Algorithms and Controller Design 

This paper uses MATLAB R2010a Simulink to build the simulated wind power system structure 

and to design the controller based on the output power of different algorithmic control systems. 

Figure 4 shows the wind power system simulation built in this paper. The module SMESC can replace 

different algorithms to give different switching pulse adjustment duty cycles. 

Figure 4. Wind power system simulation built in this paper. 
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compare the present wind power P(ω) with P(ω − 1). If the power increases, as shown in Figure 5, 

∆ω will continuously move to the optimal rotation speed; otherwise, the power decreases. 

Therefore, this algorithm looks for the optimum speed of the wind turbines according to the perturbation 

of wind speed to complete MPPT. Although it achieves better stability, the calculation time is too long, 

and requires setting additional wind speed sensors. An improved HCS can be derived from this algorithm 

(please refer to [31] for the detailed algorithm flowchart and content). 

Figure 5. Curve of diagram hill-climbing search (HCS) on the characteristics of wind power. 

 

3.2. ESC 

There have been many ESC methods proposed for solar power generation or wind power control, 

for which the principles are basically identical. The goal is to find the maximum value of the X-Y curve 

in Figure 6, mainly to establish a feedback system, making the nonlinear system with slight oscillation 

to remain at the maximum power point, in order to achieve maximum power point tracking control. 

The SMESC proposed in this paper is derived from this control (please refer to [32] for detailed ESC). 

Figure 6. Extremum seeking control (ESC) diagram. 
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In conventional ESC, the switching function sign(α) normally induce the infinite switching 

frequency to achieve ideal switching. The ideal frequency cannot be realized in real systems. If using 

an extremely high speed switching component to replace it, much high frequency noise will be created; 

therefore, using the concept of a sliding layer effectively inhibits the phenomenon of continuous jumping. 

Therefore, we use this theory to replace the sign(α) function with the following Equation (3): 

optP

optω1ωΔ

2ωΔ
1ωΔ

1ωΔ

PΔ
V

 

S

1

ε

x y
dt

d



Energies 2014, 7 1711 

 

 

sat(ݏ, α) = ൞ 1 , ݏ > αݏα , |ݏ| ≤ α−1 , ݏ < −α = ൝sign(α), |ݏ| > αݏ
α
, |ݏ| ≤ α

 (3)

Thus, the function of the following can obtain the concept of a sliding layer. As shown, Figure 7 is 

divided into three regions, which include α = 0 in the middle area −α < s < α, called the sliding layer, 

where α represents the thickness of the sliding layer. SMESC uses this concept of the sliding layer to 

replace the ESC and obtain a better inhibition effect of high frequency oscillation. 

Figure 7. Concept of the sliding layer. 

 

Figure 8 is the block diagram of wind power based on SMESC [33]; the control parameters in the 

block diagram are detailed in [34]. 

Figure 8. Wind power sliding mode extremum seeking control (SMESC) block diagram. 
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where x is the wind power system input; y is the wind power system output; and z and U0 are constants, 
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3.3.1. Particle Swarm Optimization (PSO) 

The PSO finds out the optimal value of particles by repeated iterations, and the most important 

influence is the position updating and velocity updating of particles. The velocity updating equation is 

expressed as Equation (10), and the position updating equation is expressed as Equation (11): 

 ܸ ௜[ݐ + 1] = ௜ܸ[ݐ] × ݓ + ܿଵ × ݀݊ܽݎ × ( ୠܲୣୱ୲ − ௜ܺ) + ܿଶ × ݀݊ܽݎ × ୠୣୱ୲ܩ) − ௜ܺ)	 (10)

 ܺ ௜[ݐ + 1] = ௜ܺ[ݐ] + ௜ܸ[ݐ + 1] (11)

where Vi = [vi,1, vi,2, …, vi,n] is the particle velocity; i is the particle number; Xi = [xi,1, xi,2, …, xi,n] is the 

position of each particle; w is the inertia weight; c1 and c2 are positive learning constants; rand is a 

random number between 0 and 1; Pbest denotes the optimal value of each particle; and Gbest denotes the 

optimal value of all particles. 

The computing process of PSO is shown in Figure 9, where fi denotes No. i particle (please refer to [35] 

for detailed information about PSO). 

Figure 9. Particle swarm optimization (PSO) flowchart. 
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 IAE = ׬ |݁(τ)|݀τ∞଴ (12)

The improved PSO and Chaos Logistic Maps are used for the two parameters, so that the control 

parameter obtained by the algorithm further approaches the optimal value. The Random function in 

velocity updating of PSO is replaced by Logistic Maps, and the errors in composing software for changing 

different system capacities are reduced. The new CEPSO is developed for enhancing system stability. 

This algorithm is detailed in [36,37]. 

In dynamic systems of discrete time, the Chaos Maps can be expressed as Equation(13): 

௜ݔ  = ,௜ݔ)ܨ (ܥ (13)

where F:S → S and ܵ ∈ ܴ, S = [0, 1] or S = [−1, 1]; C is the chaos; x is a vector; and F is the nonlinear 

transfer function. The commonest Chaos Map is the Logistic Map, usually combined with PSO for 

application, expressed as Equation (14): 

(݇)௜ାଵݔ  = ௜[݇](1ݔ4 − ([݇]௜ݔ (14)

The system proposed in this paper uses the MATLAB R2010a program to compose the 

convergence curve, the obtained U0 is about 0.01, and the IAE is about the optimal value of 350. 

Figures 10 and 11 show the convergence curves calculated five times, respectively. 

Figure 10. U0 convergence curves using chaos embedded particle swarm  

optimization (CEPSO). 

 

Figure 11. Integrated absolute error (IAE) convergence curves using CEPSO. 
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4. MPPT Simulation Analysis Result 

According to the turbine parameters in [38,39], and with the wind turbine blades pitch angle β 

set as zero, the 400 W wind power system based on PMSG is proposed. The maximum power dynamic 

response of the system at constant wind speed and variable wind speed under different algorithm 

conditions is compared, and the merits and demerits in transient and steady-state responses are observed. 

Figure 12 shows the proposed maximum power point tracking flowchart. According to the 

simulation results, in the future wind power control development, different wind speeds can be given 

in real wind turbine control experiments to test the output dynamic response of real wind turbines, so as 

to validate the practicability of the SMESC algorithm used in this paper for the wind energy industry. 

Figure 12. Proposal based on SMESC of CEPSO for the MPPT flowchart. 

 

This paper simulates two wind speed input conditions. Figure 13 shows the constant wind speed 

condition of 12.5 m/s, while the other wind speed condition is shown in Figure 14. The wind speed of 

12.5 m/s is reduced to 10.5 m/s in about 10 s, and then is returned to 12.5 m/s, so as to observe the 

MPPT of the wind power system under variable wind speed conditions within 50 s. 

Figure 13. Step input constant wind speed 12 m/s. 
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Figure 14. Changes within step input variable wind speed of 10.5–12.5 m/s. 

 
As shown in Figure 15, it is observed in the transient state that the tracking time of ESC is longer 

than the other two control methods, the dynamic response of HCS is similar to SMESC, but the 

response in the steady state is worse than the SMESC used in this paper. 

Figure 15. Output dynamic response of HCS, ESC and SMESC algorithms, respectively 

(constant wind speed). 

 

It is observed in Figure 16 that the oscillation amplitude of SMESC is better than the other two 

control methods. Therefore, the simulation result of this paper proves that the SMESC algorithm used 

in this paper has good dynamic response under constant wind speed conditions. 

Figure 16. Output dynamic response of HCS, ESC and SMESC algorithms, respectively 

(constant wind speed) (24–24.5 s). 
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The second simulated condition is to test the system output dynamic response of the SMESC 

algorithm used in this paper under variable wind speed conditions. Figure 14 shows the step input 

variable wind speed condition. So that the wind speed is similar to the input of the square-wave pattern, 

it changes between 10.5 m/s and 12.5 m/s. 

According to the system simulation result in Figure 17, it is more obvious that although the 

amplitude of general ESC at variable wind speed is small, as shown in Figures 18 and 19, the MPPT 

has more harmonics. Then the HCS tracks the maximum power point slowly, and the amplitude is 

larger than SMESC. This simulation proves that the SMESC has better transient and steady-state 

responses in the wind power systems at variable wind speed conditions. It contributes not only to 

extending the component lifetime, but also to shortening the simulation time. According to the 

simulation results, in the future real machine experiment, this algorithm can be applied to wind 

power systems, to help the system perform more efficiently, and this application result can be used better, 

further developing the renewable energy industry. 

Figure 17. Output dynamic response of HCS, ESC and SMESC algorithms, respectively 
(variable wind speed, 10.5–12.5 m/s). 

 

Figure 18. Output dynamic response of HCS, ESC and SMESC algorithms, respectively 

(variable wind speed, 10.5–12.5 m/s) (20–21 s). 
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Figure 19. Output dynamic response of HCS, ESC and SMESC algorithms respectively 

(variable wind speed, 10.5–12.5 m/s) (34–36 s). 

 

5. Conclusions 

This study used the SMESC of CEPSO for wind power system control. It is unnecessary to adjust 

the control parameter according to different control system output powers, not only to optimize the 

control parameter in SMESC, but also to reduce the designed in-repetition. According to the simulation 

results of the algorithm, the control response of the system is stable compared with other methods, 

it prolongs the component lifetime effectively, and the transient response and steady-state response of 

SMESC are better than those of ESC and HCS, making the system implement MPPT faster to reach 

the required output power. It can also be applied to real machine system experiments in the future. 
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