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Abstract: The Lagrange multiplier-based method is an effective network parameter error 

identification method. However, two full matrices with high-dimensions are involved in 

the calculation procedure; these create huge computational burdens for large-scale power 

systems. To solve this problem, a fast solution is proposed in this paper, where special 

treatment techniques for full matrices are used to dramatically improve the calculation 

efficiency. A practical parameter error identification program has been developed and used 

in many electric power control centers. In this paper, the results for test systems and on-site 

applications are given, which show that the proposed approach is very efficient. 
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1. Introduction 

Identifying network parameter errors is important because they can seriously diminish the accuracy 

of various kinds of power system analyses. State estimation (SE) is very helpful for parameter error 

identification (PEI) [1], since the measurement residuals may directly indicate the parameter errors. 

Most existing PEI methods are based on SE results. 

There are two types of traditional PEI methods. The first type is based on sensitivity analysis [2–8]. 

These methods use sensitivity factors between measurements and parameters, along with the measurement 

residuals to find the most suspicious network parameters. An important advantage of these methods is 
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that they are directly based on the SE results; therefore, current SE software can be used without any 

modification. However, the results of sensitivity factor-based PEI methods may be affected by 

artificial threshold values and random measurement errors. An offline application has been recently 

reported in [9]. The second type of PEI methods is based on augmented state estimation (ASE) [10–13]. 

ASE methods augment the parameter errors to the state variables and obtain their estimated values 

through SE calculation. The suspicious parameter set is limited by the numerical condition problem 

and should be obtained before calculation. This type of method is more appropriate for parameter 

estimation (PE) rather than PEI. 

The recently proposed Lagrange multiplier (LM)-based method [14–16] is an effective PEI 

approach, but two high-dimension full matrices are involved during its calculation procedure. This 

represents a very heavy computational burden and requires huge memory. Furthermore, it is well 

known that network parameter error identifications should use multiple measurement scans to increase 

accuracy; the iterative usage of the LM-based PEI method requires a faster calculation speed, even for 

off-line applications. 

The main contribution of this paper is the development of a fast approach for the Lagrange 

Multiplier (LM)-based PEI model. Specifically, the development concerns a treatment technique for 

full matrices. Based on the proposed approach, an efficient PEI program has been implemented, which 

has been used in several power system control centers. Extensive numerical tests on test systems and 

practical systems have been done to verify the performance of the developed PEI program. 

2. Lagrange Multiplier-Based PEI 

The LM-based network PEI procedure is based on the weighted least square (WLS) estimator. The 

procedure was proposed in [14]. The Lagrange Multiplier vector λ  for equality constraints on network 

parameter errors can be calculated from: 

T T
p p= = Δλ H Wr H W z  (1)

where Hp is the m × p Jacobian matrix between measurements and parameters; r and z are m × 1 

residual vectors considering parameter errors and not considering parameter errors; m and p are  

the numbers of measurements and parameters, respectively; and W is the diagonal measurement  

weight matrix. 

To normalize the Lagrange Multiplier vector λ, its covariance matrix Λ = cov(λ) should be  

computed first: 
T
p p=Λ H WSWH  (2)

( ) 11 1T T T
x x x x x x

−− −= − = − ΣS W H H WH H W H H  (3)

where Hx is the m × n Jacobian matrix between measurements and state variables; n is the number of 

state variables; and Σ is the inverse of the information matrix, ( ) 1T
x x

−
=Σ H WH . 

The normalized LM Nλ  can be calculated as: 

( , )/N
i i i i=λ λ Λ  (4)
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In the LM-based network PEI method, the normalized LM vector Nλ  can then be used as the index 

for identifying suspicious network parameters. To identify errors in network parameters (along with 

those of measurements), the LM-based PEI procedure proceeds as follows: 

1. Perform SE, and obtain the normalized measurement residual vector rN. 

2. Calculate Nλ  using Equations (1)–(4). 
3. If the max ,N N < αλ r , where α  is a threshold value that can be taken as 3.0, proceed to step 4. 

Otherwise: 

• If the max maxN Nr≤λ , the measurement corresponding to max Nr should be 

considered as erroneous and be removed from the active measurement set. Return to 

step 1. 

• If the max maxN Nr>λ , the parameter corresponding to max Nλ should be 

considered as erroneous; modify the corresponding parameter by PE and return to step 1. 

4. Output the PEI and SE results. 

Calculating the normalized LM vector Nλ  is critical for the LM-based network PEI method; such 

calculations involve determining Λ. However, two full matrices, S and Σ, are involved in the 

calculation procedure for the covariance matrix Λ. The dimensions of S and Σ are m and 2n−1; 

respectively. For large scale practical power systems, their dimensions may exceed 10,000 or more; 

this necessitates a prohibitive amount of calculation time and memory storage. 

3. Solution 

This section will provide an efficient method for calculating ( , )i iΛ . To simplify the presentation, the 

discussions in this section are based on the decoupled SE method. Similarly, the uncoupled form can 

be derived. In Hx, if Hx(i,j) ≠ 0, measurement i is said to be relative to state variable j. In Hp,  

if Hp(i,c) ≠ 0, then measurement i is said to be relative to parameter c. All the measurements relative to 

parameter c form the relative measurement set of parameter c (expressed by φc). The symmetric 

production of φc is called the relative dual measurement set for parameter c, and is expressed as ψc.  

For an arbitrary set φc = {a b d e}, its symmetric production ψc is defined as: 

( ) ( ) ( ) ( ) ( ) ( ){ }ψ , , , , , , , , , , ,c a b a d a e b d b e d e=  (5)

If one assumes p=H WH , then Equation (2) can be expressed as: 

T=Λ  H SH  (6)

The c-th diagonal elements Λ(c,c) can be calculated by: 

( ) ( )
( )

( , ) (1, ) (1,1) ( , ) ( ,1) (1, ) (1, ) (1,2) ( , ) ( ,2) (2, )

(1, ) (1, ) ( , ) ( , ) ( , )

... .......

... ...

c c c m c m c c m c m c

c m m c m m m c

= + + + + +

+ + + +

Λ      

  

H S H S H H S H S H

H S H S H
 (7)

Since H  is a sparse matrix, only the following elements in the full matrix S have to be calculated to 

determine Λ(c,c): 

{ }( , ) ( , ) ( , )| 0, 0k q k c q c≠ ≠ S H H  (8)
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Therefore, the subscripted set of the necessary elements in S is exactly the relative dual 

measurement set ψc for parameter c. Assume that parameter c belongs to branch l; according to the 

measurement functions, the relative measurement set φc is formed by the branch power and the 

terminal node injection power measurements of branch l. The relative dual measurement set ψc can 

also be derived easily according to φc. 
The necessary subscript set Σψ  for calculating all of the diagonal elements in Λ is: 

Σ 1 2 pψ = ψ ψ .... ψ∪ ∪ ∪  (9)

Therefore, only a few elements in the full matrix S have to be calculated. This significantly reduces 

the calculation burden. However, the calculation of S  in Equation (2) still involves a full matrix Σ. 

According to Equation (2), S(k,q) is calculated by: 

( ) ( )
( )

( , ) ( ,1) (1,1) ( , ) ( ,1) (1, ) ( ,1) (1,2) ( , ) ( ,2) (2, )

,1 1, , , ,

... ...

.... ...

T T
k q x k x k n n x q x k x k n n x q

T
x k n x k n n n x n q

= + + + + +

+ + + +

Σ Σ Σ Σ

Σ Σ（ ）（ ） （ ）（ ） （ ）

S H H H H H H

H H H
 (10)

Using the same idea, by calculating the required S(k,q), the necessary elements in Σ can be expressed as: 

{ }, , ( , )| 0, 0, ( , )i j x k i x q j k q Σ≠ ≠ ∈ ψΣ（ ） （ ）H H  (11)

For a specified branch l, its relative measurements, k and q, include both its branch power and its 

power injection measurements (of l’s terminal nodes). For branch power measurements, the relative 

nodes will only include the terminal nodes of l. For power injection measurements, the relative nodes 

will include their neighbor nodes. In summary, the node indices, i, j, for the elements in Σnecessary to 

calculate Λ(c,c) can be obtained from the symmetric production of the node set formed by the terminal 

node of branch l and their neighbor nodes (if the terminal node has injection measurement). 

Taking the simple branch shown in Figure 1 as an example, the arrows numbered 1 through 5 stand 

for measurements, and B1-B6 represent the six nodes. The necessary element set in matrix S is the 

symmetric production of the measurement set {1, 2, 5}, which can be expressed as {(1, 2), (1, 5), (2, 5)}. 

The necessary element set in matrix Σ  is the symmetric production of nodes B1, B2 (terminal nodes), and 

B3, B4 (neighbor nodes of B1, since B1 has injection measurements). The elements with rows or columns 

corresponding to nodes B5 and B6 are unnecessary to calculate, since no injection measurements exist in 

node B2. The necessary element set in matrix Σ is {(B1, B2), (B1, B3), (B1, B4), (B2, B3), (B2, B4), (B3, B4)}. 

Figure 1. An example branch. 

 

In summary, the necessary elements in S, as well as in Σ, can be conveniently selected according to 

the node-branch relationship, and the calculation burden of the diagonal elements of matrix Λ can be 

greatly reduced. 
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After the necessary elements in Σ  and S are known, we can use Equations (7) and (10) to calculate 

these elements. Furthermore, it can be concluded that if the branches with small measurement residuals 

can be pre-filtered, only a part of the branch parameters will participate in the PEI calculation, and the 

necessary elements of S and Σ  can be decreased even more significantly, thereby increasing the 

calculation efficiency even more. 

4. Numerical Tests 

4.1. Measurement Pre-Processing 

Gross errors in measurements can deteriorate the results of any PEI method. An SE program with  

a bad data identification function will distinguish all measurements into two groups: good data (G) and 

bad data (B). Notably, some measurements are surely erroneous in the set B, while the other 

measurements may be correct, but are infected by parameter errors. Distinguishing between erroneous 

measurements and measurements infected by parameter errors is very important. The former will 

deteriorate the PEI results and should be excluded in PEI calculations while the latter is very important 

evidence of parameter errors. 

To maintain calculation efficiency, a simplified method of consistency checking is used. A simple 

branch is shown in Figure 1 as an example. 

1. For a branch power measurement in set B (such as measurement 1 in Figure 1): if 

( )1 2 1 2max ,z z c z z− < , it is justified that measurement 1 is correct but infected by 

parameter errors. Otherwise, it is justified that measurement 1 is erroneous. Here, c is a 

constant that equals 0.1 in this paper. 

2. For an injection measurement in set B (such as measurement 5 in Figure 1): if 

( )1 3 4 5 1 3 4 5max , , ,z z z z c z z z z+ + + < , it is justified that measurement 5 is correct but 

infected by parameter errors. Otherwise, it is justified that measurement 5 is erroneous. 

This method is based on a physical concept: when measurement errors occur simultaneously with 

high relative and consistent values, it is more reasonable that they originate from parameter errors 

(rather than from bad measurements). Then, a simplified PEI procedure can be obtained: 

1. SE with bad data identification function. All measurements will be divided into the groups G and B. 

2. Distinguish between erroneous measurements and measurements infected by parameter errors 

3. Pre-filter the branches with small measurement residuals that will not take part in the PEI. In this 

paper, the branches are excluded from the PEI when the largest residual is smaller than 0.01 p.u. 

4. Calculate the LM using normal measurements and measurements infected by parameter errors. 

5. Calculate the diagonal elements in Λ based on the method proposed in Section 3. 

6. Calculate the normalized LM. 

This simplified PEI procedure no longer needs iterative SE, PEI or PE, and is thus very efficient. 

The PEI can be carried out based on the SE results directly, and the existing SE codes can be kept 

unchanged. A PEI program has been developed based on this simplified procedure and the efficient 
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calculation method concerning the diagonal elements in the covariance matrix. This program is very 

efficient. Its performances on test systems and on-site test results are introduced as follows. 

4.2. 9-Node System 

Figure 2 shows the 9-node system in which the PEI procedure is illustrated. The SE is carried out 

based on commercial decoupled SE software and no modification has been made to the existing code. 

A single measurement scan is used in this example. 

Figure 2. 9-node system. 

 

White noise, based on the real-load flow distribution of the 9-node system, is added to generate the 

measurement values. The standard deviations of the errors are taken as 0.01 for the power and 0.001 

for the voltage measurements, respectively. The reactance of branch 9-8 has been changed manually 

from 0.1008 p.u. to 0.2016 p.u. as a parameter error, and the active power measurement of branch 4-6 

has been changed manually from −30.57 MW to −60.57 MW to create a gross error. The PEI can be 

carried out step by step as described in subsection 4.1: 

1. Perform SE: the suspicious measurements identified by bad data identification function are 

listed in Table 1, and the gross errors are in bold. 

Table 1. Suspicious measurements in a 9-node system. 

Index 
Measurement 

name 
Measurement value 

(MW/MVar) 
Estimation value 

(MW/Mvar) 
Residual 

(MW/MVar) 
Normalized 

residual 

1 P9-8 24.16 20.28 3.88 3.88 
2 P8-9 −24.10 −20.21 −3.89 3.88 
3 P4-6 −60.57 −27.42 −33.15 32.28 

2. From Table 1, it can be concluded that the first two measurements are infected by parameter 

errors, as their measurement values are consistent (24.16 MW & −24.10 MW). In contrast, the 

measurement P4-6 is an erroneous measurement, since its measurement value significantly 

mismatches with the measurement P6-4. 
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3. Pre-filter the branch with small measurement residuals. In this example, branches 9-8, 9-6,  

and 4-6 should take part in the PEI calculation. In fact, as the measurement and parameter 

errors are manually set, it can be concluded that the branch 8-9 has erroneous parameters; the 

branch 4-6 has no erroneous parameters but gross error measurement; and the branch 9-6 is 

infected by erroneous parameters and measurements. 

4. LM values are listed in the 3rd column of Table 2. 

Table 2. Detail results of the PEI in a 9-node system. 

Index Parameter name LM Diagonal element of covariance matrix Normalized LM 

1 R9-8 0.2464 532.0597 0.0106 
2 X9-8 −11.6343 577.0581 0.4843 
3 R9-6 18.3963 6832.8302 0.2225 
4 X9-6 26.3575 4000.9433 0.4167 
5 R4-6 −1.8738 4305.6817 0.0285 
6 X4-6 −8.0983 1703.2123 0.1962 

5. The necessary elements in matrix S are drawn in Equation (12), where the measurement index 

1 4M −  is a simplified expression of four measurements including P1-4, Q1-4, P4-1, and Q4-1, 

and 1M  is a simplified expression of P1 and Q1. 
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(12)

6. The necessary elements in the calculation of diagonal elements in matrix Λ, which correspond 

to the parameters of branches 9-8, 9-6, and 4-6, are highlighted by signals “× ”, “•” and “⊗”, 

respectively. The signal “.” is used to show the position of the necessary elements more clearly 

and has no physical meaning. Taking branch 9-8 as an example, its relative measurements 

include 8 9M − (branch power measurements), and 8M  and 9M (injection power measurements for 

terminal nodes); the necessary measurements in S are the diagonal and cross elements of these 
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three groups of measurements (expressed by × ). Similarly, the necessary elements in Σ  are 

shown in Equation (13): 

1 2 3      4      5        6      7      8        9

1

2

3

4

5

6

7

8

9

                      
⊗ ⊗ ⊗ ⊗ ⊗ 
 
 
 ×• • ×• × ×• ×•
 ⊗ • • ⊗ ⊗ • ⊗ • • ⊗ 
 = ⊗ ⊗ ⊗ ⊗ ⊗
 
⊗ ×• • ⊗ ⊗ ×• ⊗ × ×• ×• ⊗ 
 × × × × ×
 

×• • ×• × ×• ×• 
 ⊗ ×• • ⊗ ⊗ ×• ⊗ × ×• ×• ⊗ 

Σ

 

(13)

Taking branch 9-8 as an example, the terminal nodes 9 and 8 both have injection measurements 

(node 9 has zero injection measurements), and the necessary elements in Σ  include the terminal  

nodes (8, 9) and their neighbor nodes (3, 6, 7). The diagonal and cross elements corresponding to these 

five nodes are necessary and highlighted by “× ”: 

7. The normalized LM values are listed in the last column of Table 2. The reactance of branch 9-8 

has the largest normalized LM, and has been correctly identified as a parameter error. 

From the above example of the 9-node system, it can be concluded that only a few elements are 

necessary to the calculation. The simplified PEI procedure is very efficient, and is based directly on the 

SE results. 

4.3. 118-Node System 

To comprehensively evaluate the efficiency of the proposed method, extensive numerical tests have 

been done on the IEEE 118-node system. The measurements construction is same as the 9-node system 

tests’. To test the performance of the PEI program with different rates of gross errors, three classes of 

tests with 0, 1, and 2% bad measurement rates are produced, where the standard error of bad 

measurements is of 100 times that of normal measurements. In each class, 10 groups of tests with  

1, 2, …, 10 parameter errors are produced. The error parameter fell between 2–10 times the true value 

50% of the time, and between 0.1–0.5 times the true value the rest of the time. A total of 900 tests 

(with 30 samples each) have been selected. To evaluate the effectiveness of the proposed Λ  matrix 

calculation method, the following two indices were counted: 

1. Average necessary element rates in S: S is a 1098 × 1098 full matrix in this test. The necessary 

element rates are calculated in Figure 3; their values are all less than 0.1%. 

2. Average necessary element rates in Σ: since decoupled SE software is used, Σ is a 118 × 118 

full matrix in both the P-sub and Q-sub iterations. The necessary element rates are calculated in 

Figure 4; their values are all less than 6.5%. 

From Figures 3 and 4, it can be concluded that the proposed calculation method for the diagonal 

elements of Λ is very effective. Less than 6.5% of the elements of Σ and 0.1% of the elements of S 
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need to be calculated. Therefore, the proposed method can significantly increase the efficiency of the 

PEI and can make practical the LM-based PEI for real-world applications. 

Figure 3. Average necessary element rates in the S matrix. 

 

Figure 4. Average necessary element rates in the Σ matrix. 

 

4.4. Practical Application 

In practical application, multiple measurement scans are used to increase the accuracy [16]. 

Employing LM for PEI and ASE for PE, this program has been used in several electric power control 

centers in China. As an example, the results of a provincial power system with 500 buses in Central 

China are shown. To this end, 96 continuous scans with 15-minutes intervals are realized and the 

results are presented in Table 3. The reactance of the “Luoanjia line” has the largest normalized (LM). 

The PE results also indicate that this parameter is erroneous (the estimated value of 1.3928 p.u. is far 

from its initial 3.2600 p.u.). The relative measurement residuals before and after parameter 

modification are listed in Table 4. Before parameter modification, the relative measurements have 

significant residuals (4th column), which indicates the existence of parameter errors. However, after 

modifying X of the Luoanjia line (from the initial value 3.2600 p.u. to the estimated value 1.3928 p.u.), 
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these measurement residuals decreased significantly (6th column), leading to the conclusion that these 

parameter identifications and estimation system results are reasonable. 

Table 3. PEI and PE results for a provincial system. 

Index Parameter name Normalized multipliers 
Initial parameter 

(p.u.) 
Estimated parameter 

(p.u.) 

1 X of Luoanjia line 2.4995 3.2600 1.3928 
2 X of Luoanyi line 1.3589 1.3590 1.3613 
3 X of Anquanjia line 1.2064 0.7880 0.8059 
4 X of Anquanyi line 1.0687 1.0230 0.9523 
5 R of Luoanjia line 0.8023 0.0960 0.1122 

Table 4. Relative measurement residuals before and after modifying X of Luoanjia line. 

Measurement 
name 

Measurement 
value  

(MW/MVar) 

Before parameter modification After parameter modification 

Estimated value 
(MW/MVar) 

Residual 
(MW/MVar) 

Estimated value 
(MW/MVar) 

Residual 
(MW/MVar) 

P on the head of 
Luoanjia line  

204.1810 111.6740 92.5068 204.1610 0.0194 

Q on the head of 
Luoanjia line  

33.9729 41.3437 −7.3708 37.1494 −3.1764 

P on the head of 
Luoanyi line 

204.9290 271.3250 −66.3960 204.8880 0.0409 

Q on the head of 
Luoanyi line  

33.7133 87.2995 −53.5862 36.8434 −3.1300 

Figure 5 shows the computation times of PEI and decoupled SE. In this practical system, the 

computation time of the PEI procedure is less than 0.7 seconds for each measurement scan; this is only 

about twice SE’s computational time. The developed LM-based PEI program is very efficient and is 

absolutely acceptable for on-site application. 

Figure 5. Comparison of calculation speeds between PEI and SE. 
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5. Conclusions 

It is very important to maintain network parameter accuracy with high efficiency in power systems. 

In this paper, an efficient solution for the Lagrange multiplier-based parameter error identification 

method is proposed. A parameter error identification program based on the Lagrange multiplier  

has been developed and put into real practice at several electric power control centers in China. The 

results of test systems and practical systems demonstrate the effectiveness and efficiency of the  

proposed solution. 
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