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Abstract: Small modular reactors (SMRs) could be beneficial in providing electricity 

power safely and also be viable for applications such as seawater desalination and heat 

production. Due to its inherent safety features, the modular high temperature gas-cooled 

reactor (MHTGR) has been seen as one of the best candidates for building SMR-based 

nuclear power plants. Since the MHTGR dynamics display high nonlinearity and parameter 

uncertainty, it is necessary to develop a nonlinear adaptive power-level control law which 

is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR, 

but also easy to implement practically. In this paper, based on the concept of shifted-ectropy 

and the physically-based control design approach, it is proved theoretically that the simple 

proportional-differential (PD) output-feedback power-level control can provide asymptotic 

closed-loop stability. Then, based on the strong approximation capability of the multi-layer 

perceptron (MLP) artificial neural network (ANN), a compensator is established to 

suppress the negative influence caused by system parameter uncertainty. It is also proved 

that the MLP-compensated PD power-level control law constituted by an experientially-tuned 

PD regulator and this MLP-based compensator can guarantee bounded closed-loop stability. 

Numerical simulation results not only verify the theoretical results, but also illustrate the 

high performance of this MLP-compensated PD power-level controller in suppressing the 

oscillation of process variables caused by system parameter uncertainty. 

Keywords: high temperature gas-cooled reactor (HTGR); power-level control; multi-layer 

perceptron (MLP) 
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1. Introduction 

Nowadays, in addition to food and water, electricity is also a major factor that deeply influences 

human economic and social development. The increasing World population certainly results in an 

increased electricity demand. As a crucial type of clean energy, nuclear fission energy can play an 

important role in meeting the World’s increasing energy needs. Small modular reactors (SMRs) are 

those nuclear fission reactors whose electrical output is less than 300 MWe. Due to their passive safety, 

SMRs could be beneficial in providing electricity power to remote areas without transmission and 

distribution infrastructure and also be viable for specific localized applications such as seawater 

desalination and heat production [1,2]. The rated power of a SMR-based nuclear plant can be enlarged 

by adopting the scheme of multiple SMRs driving one turbine. Due to its inherent safety performance, 

the modular high temperature gas-cooled reactor (MHTGR, such as the HTR-MODUL designed in 

Germany and MHTGR designed in the US) has been seen as one of the best candidates for building 

SMR-based nuclear plants. The MHTGR uses helium as coolant and graphite as moderator and 

structural material, and its inherent safety is determined by the low power density, strong negative 

temperature feedback effect and slim reactor shape [3–5]. China began to study the MHTGR at the end 

of 1970s, and HTR-10, a 10 MWth pebble-bed high temperature gas-cooled reactor (HTGR) which was 

designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, 

achieved its criticality in December 2000 and full power (FP)-level in January 2003 [6]. Then, six safety 

demonstration tests were done on the HTR-10, which manifested its inherent safety and self-stabilizing 

performance [7]. Based on the experience of the HTR-10 project, a HTGR pebble-bed module (HTR-PM) 

project was then proposed [8]. The HTR-PM plant consists of two pebble-bed one-zone SMRs with 

combined 2 × 250 MWth power, and adopts the operation scheme of two nuclear steam supplying 

systems (NSSSs) driving one steam turbine [8,9]. As shown in Figure 1, the NSSS is composed of 

an MHTGR, a helical coiled once-through steam generator (OTSG) and some connecting pipes. 

Figure 1. The nuclear steam supplying system (NSSS) of high temperature gas-cooled 

reactor pebble-bed module (HTR-PM) plant. 
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In all kinds of power plants, the power supply and demand must be balanced by either generation or 

load since transmission lines provide negligible energy storage [10], which means that the load 

following ability of a SMR-based plant such as the HTR-PM is quite necessary for balancing power 

supply and demand. Moreover, it is clear that many new energy sources such as wind and solar can 

only supply electricity intermittently. Due to their power supply persistency, SMRs with load 

following performance can be incorporated with new energies to build stronger micro-grids which 

have the virtues of persistent power supply, free refueling of nuclear fission fuels and capability of 

seawater desalination and heat production. Thus, it is necessary to implement SMRs with large-scale 

load-following performance. Up to now, there have been some valuable approaches in designing 

load-following power-level control laws. One approach is to design nonlinear power-level control 

strategies which provide large-range closed-loop asymptotic stability. Shtessel [11] gave a nonlinear 

power-level regulator based on sliding mode control and observation techniques for the space reactor 

TOPAZ II. Dong [12] designed a dynamic output feedback dissipation power-level control for 

pressurized water reactors (PWRs) by using the techniques of backstepping [13] and a dissipation-based 

high gain filter (DHGF) [14,15]. However, the above nonlinear controllers are too complex to be 

implemented practically. Control design by retaining the natural dynamics which is beneficial to 

system stabilization, i.e., the physically-based control design approach can lead to simple and 

effective controllers, and is a promising trend of advanced control theory [16–18]. Very recently, 

based upon the physically-based design approach, Dong [19] proposed a nonlinear dynamic 

output-feedback power-level controller for the PWRs. Then, Dong [20] also proved theoretically that 

the simple proportional-differential (PD) controller can guarantee globally asymptotic closed-loop 

stability for the PWRs. The other approach to realize the load-following function is applying the model 

predictive control (MPC) method. Na [21] is the first researcher who applied the MPC to reactor 

power-level control design. Tai [22] also gave a MPC-based power-level control to a movable nuclear 

power plant. Etchepareborda and Eliasi [23–25] proposed nonlinear MPC (NMPC) method for PWR 

power-level control design. 

It is clear that each reactor is a nonlinear complex system whose parameters vary with many factors 

such as fuel burnup, xenon isotope production and control rod amount. Thus, it is also necessary to 

design load-following power-level controllers with parameter adaption capability. Recently, based on 

the physically-based control design approach, Dong [26] proposed a nonlinear adaptive dynamic 

output feedback power-level control for PWR-like reactors. However, this controller not only has 

complicated form but also can only be adaptable to the constant system uncertainty, which limits its 

practically implementation. Since artificial neural networks (ANN) have a very strong approximation 

capability, they have already been applied to reactor control, identification and observation. Ku, Lee 

and Edwards [27] applied the diagonal recurrent neural network (DRNN) to a PWR model for a better 

temperature response, and the DRNNs were trained offline by a linearized model and a well-designed 

optimal temperature controller. Arab-Alibeik and Setayeshi [28] designed a neural inverse controller 

for the power-level of PWRs, and the ANN was also trained offline by a reactor model. 

Boroushaki et al. [29] applied the recurrent neural networks (RNNs) to identify the dynamics of a 

VVER in multi nonlinear autoregressive with exogenous inputs (multi-NARX) structure, and the 

RNNs were trained offline by a three-dimensional core calculation code. The above works in applying 

ANNs to the control and identification of nuclear reactors rely on the offline training. However, it is 
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also very meaningful to develop online training method of ANNs for reactor control and observation. 

Based upon the Lyapunov stability theory, Dong [30] recently developed a multi-layer perceptron 

(MLP) based nonlinear state-observer for PWRs. This observer provides convergent and bounded 

state-observation, and a learning algorithm was also given to train the corresponding MLP online. 

From the above discussions, we can clearly see that current results in reactor power-level control 

mainly focus on the PWRs. Since the MHTGR is one of the best Generation-IV reactor candidates 

with inherent safety features and can also satisfy well the requirements of building SMR-based 

nuclear plants, it is very meaningful to study both the dynamic features and control design method 

of MHTGRs. To date there have been some results on the analysis and design for the power-level 

regulation of MHTGRs. Li [31] studied the regulation characteristics of an experientially designed 

PID-like power-level control of the HTR-PM reactor through numerical simulation. Dong [32] designed 

a nonlinear state-feedback power-level control strategy to the MHTGR based on the technique of 

iterative damping assignment (IDA). Although this IDA-based control can provide globally asymptotic 

closed-loop stability, its mathematical form is too complex to be implemented practically. Based upon 

the physically-based control design approach, Dong [33] also presented a nonlinear dynamic output 

feedback power-level controller for the MHTGR. Then, motivated by the need of dealing with 

system uncertainty, Dong [34] proposed a nonlinear adaptive power-level control for the MHTGR. 

However, this adaptive control is still complicated in its form, and the corresponding adaption law can 

only be utilized to compensate the constant uncertainty. Therefore, it is necessary to design simple 

power-level control laws for the MHTGR with strong adaptation capability. 

In this paper, an MLP-compensated output-feedback power-level control law is established for 

the MHTGR. It is firstly proved theoretically that the output-feedback control with simple PD structure 

can asymptotically stabilize the MHTGR. An MLP is then adopted to compensate the influence caused 

by the system uncertainty, and it is also proved theoretically that this MLP-compensated PD power-level 

control can provide bounded closed-loop stability. Finally, numerical simulation results not only verify 

the theoretic results but also show the high performance of this newly-built MLP-compensated output 

feedback PD power-level controller. 

2. Dynamic Model and Problem Formulation 

In this section, the dynamic model for control design is firstly introduced, and then the theoretical 

problem to be solved in the following sections is formulated. 

2.1. Dynamic Model for Control Design 

As shown in Figure 1, the MHTGR and OTSG of the NSSS are arranged side by side, and are 

connected to each other by a horizontal coaxial hot gas duct. The cold helium enters the main blower 

that is mounted on top of the OTSG, and is pressurized before flowing into the cold gas duct. It enters 

the channels in the reflector of the core, i.e., the riser from bottom to top, and then passes through the 

pebble-bed from top to bottom where it is heated to a high temperature. The hot helium leaves the hot 

gas chamber at the bottom reflector, and then flows into the primary side of the OTSG through the hot 

gas duct. The primary loop of the NSSS can be nodalized as the elements given in Figure 2a [35], 

and the control design results in [32–34] were all given based on this nodalization scheme. Since this 
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nodalization scheme reflects too many internal dynamics of the MHTGR, the power-level controllers 

designed based on this scheme need the values of some unmeasurable internal system variables such as 

the average temperatures of both the fuel elements and the reflector, which then leads to the demand 

for designing proper nonlinear observer [32–34]. Moreover, if we regard the pebble bed and the 

reflector entirely as one node, and also regard all the helium inside the primary-loop as one node, 

then a simpler nodalization can be formed as illustrated by Figure 2b. Since a simpler nodalization scheme 

leads to a simpler dynamic model for control design, which then may result in a simpler control system, 

the dynamic model for control design in this paper is given under this new nodalization scheme. 

Figure 2. Nodalization of the primary loop: (a) old scheme; and (b) new scheme. 

OTSG: once-through steam generator. 

 
(a) (b) 

By adopting the classical point kinetics with one equivalent delayed neutron group and with the 

temperature reactivity feedback effect determined by the pebble-bed/reflector community, the dynamic 

model for control design can be written as: 
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(1)

where nr is the relative neutron power; cr is the relative concentration of delayed neutron precursor; β is 

the fraction of delayed fission neutrons; Λ is the effective prompt neutron life time; ρr is the reactivity 

provided by the control rods; λ is the effective radioactive decay constant of the precursor; TR and αR is 

respectively the temperature and reactivity feedback coefficient of the community constituted by both 

the pebble-bed and reflector; TR,m is the initial equilibrium value of TR; P0 is the rated reactor 
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thermal power; TH is the average helium temperature of the primary side; TS is the average coolant 

temperature of the secondary side of the OTSG; Ωp is the heat transfer coefficient between the helium 

and pebble-bed/reflector community; Ωs is the heat transfer coefficient between the two sides of OTSG; 

μR and μH is respectively the total heat capacities of the pebble-bed/reflector community and the 

helium inside the primary loop; Gr is the total differential reactivity worth of the control rod; and zr is 

the rod speed signal. Here, it is worthy to be noted that αR is guaranteed to be negative by the physical 

design of the MHTGR. 

We define the deviations of the actual values of nr, cr, TR, TH, TS and ρr from their equilibrium values, 

i.e., nr0, cr0, TR0, TH0 and ρr0 as: 

r r r0
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(2)

Here, δTS reflects the influence of the secondary to the primary loop, and can be well suppressed by 

adjusting the feedwater flowrate of the OTSG. Therefore, in this paper, the influence of δTS is omitted. 

Let: 

[ ] [ ]T T

1 2 3 4 r r R Hδ δ δ δx x x x n c T T= =x  (3)

rξ δρ=  (4)

and: 

r ru G z=  (5)

Here, x is the reactor state-vector of the MHTGR. Then, the nonlinear state-space model for 

controller design can be written as: 
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1 4x x=h x  (9)

2.2. Theoretical Problem 

Usually, in practical engineering it is nearly impossible to obtain reactor parameters such as Ωs, μR 

and μH accurately. It is necessary to provide acceptable control performance if there exists parameter 

uncertainty. Thus, the theoretical problem to be solved in the next section is summarized as follows: 

Problem. How to design an output-feedback control law of nonlinear system in Equation (6) so that 

the reactor state are bounded stable, i.e., x ∈ Ξ as t → ∞ when there exists bounded parameter uncertainty? 

Here, Ξ is a bounded set. 

3. Output Feedback Control Design 

In this section, we firstly prove that the output feedback power-level control [20] with the simple 

PD structure can provide globally asymptotic closed-loop stability for MHTGRs. However, since some 

feedback gains of this PD controller is tightly related with system parameters, an MLP network 

(MLPN) was utilized to compensate for the influence of system parameter uncertainty. Then, it is 

proved theoretically that bounded closed-loop stability can be provided with the existence of system 

parameter uncertainty. 

3.1. PD Power-Level Control Design without the Existence of Parameter Uncertainty 

The following Theorem 1, which is the first main result of this paper, shows that simple static 

output-feedback PD power-level control law can guarantee asymptotic closed-loop stability of reactor 

state-variables in case of no system parameter uncertainty. 

Theorem 1. Suppose that there is no system parameter uncertainty. Then, there always exists a PD 

power-level control law which can provide the asymptotic closed-loop stability for the reactor state of 

the MHTGR, i.e., x → O as t → ∞. 

Proof. Based on the idea of backstepping [13], a virtual control input ξr for the following subsystem: 

( ) ( )
( )

rξ= +


=

x f x g x

y h x  (10)

is firstly designed. 

From [20], the shifted-ectropy of neutron kinetics is: 
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 (11)

Based on Equation (11), choose the Lyapunov function for the neutron kinetics as: 

( ) ( ) ( )
2
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2
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 
  (12)

where the objective of adding the second term of VN is to minimize the steady error of nr by 

feedback control. Then, differentiate VN along the trajectory given by neutron kinetics, and we have: 
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Moreover, it is clear that the shifted-ectropy of reactor thermal-hydraulics can be written as: 

( ) ( )2 2
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Then, based on Equation (14), choose the Lyapunov function for the thermal-hydraulic loop as: 
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denotes the energy variation of the thermal-hydraulic loops. Then, differentiate Equation (15) along the 

trajectory given by the reactor thermal-hydraulics: 
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(17)

where η is given positive constant satisfying 0 < η < 1. 

Choose the Lyapunov function for subsystem in Equation (10) as: 

( ) ( ) ( )R
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where qR is a given positive constant; VN and VT is determined by Equations (12) and (15), respectively. 

Then, differentiate Equation (18) along the trajectory given by subsystem dynamics in Equation (10), 

and we can derive that: 
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From Equation (19), it is clear that if we design virtual control ξr as: 
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then the closed-loop subsystem constituted by Equations (10) and (20) is asymptotically stable. 
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Now, we focus on designing the control law for entire system in Equation (6). Choose the 

Lyapunov function of the entire system as: 
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where kξ is a given positive constant, and: 
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Differentiate Equation (22) along the trajectory given by entire system dynamics in Equation (6), 
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From Equation (24), if we design feedback control u as: 
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Based on Equation (30), it is clear that there always exists a PD power-level controller in Equation (26), 

so that reactor state x of MHTGR dynamics in Equation (6) is asymptotically stable. This completes 

the proof of this theorem. 
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Remark 1. From Equations (12) and (27), it is clear that we can suppressing the steady error of 

nuclear power through enlarging the proportional feedback gain kNP corresponding to δnr. 

Moreover, from Equation (18), we can also strengthen the dynamic performance of the thermal-hydraulic 

loop through enlarging qR, which certainly leads to larger values of feedback gains kND, kTP and kTD. 

Remark 2. Since positive constants γ and η can be arbitrarily chosen between 0 and 1, inequality in 

Equation (21) is easy to satisfy by choosing γ to be close enough to 1 and η to be close enough to 0. 

However, larger γ also leads to larger kTP and kTD. 

3.2. MLP-Compensated PD Power-Level Control Design with the Existence of Parameter Uncertainty 

Based upon the analysis given in Remarks 1 and 2, although inequality in Equation (21) is easy to 

be satisfied. There is still tight relationship between feedback gains kTP and kTD and system parameters 

Ωs, μR and μH. Applying PD control law in Equation (26) requires the precise values of parameters 

Ωs, μR and μH which are all very difficult to obtain accurately. Therefore, there must exists uncertainty 

in of parameters Ωs, μR and μH, and the practically implemented of PD power-level controller may be: 

 (31)

where feedback gains kNP and kND satisfies Equations (27) and (21), respectively; and both feedback 

gains kTPA and kTDA are positive scalars chosen experientially. Then, define: 

 (32)

where u is defined in Equation (26), and: 

TPe TPA TP

TDe TDA TD

k k k

k k k

= −
 = −  (33)

It is clear that the uncertainty of system parameters Ωs, μR and μH results in nonzero kTPe or kTDe, 

which then leads to the existence of nonzero ue determined by Equation (32). In practical engineering, 

we should design another term v in the power-level controller to compensate the influence of ue so that 

the closed-loop system is bounded stable. 

Due to the strong capability of MLPN in function approximation, an MLPN is utilized to build the 

compensating term v in this section. Before giving the design result, we firstly introduce the MLPN. 

The mutli-input-single-output MLPN can be expressed as [36]: 

( ) ( )T T
MLPG =z W S V z  (34)

where z ∈ Rn is the input vector, V ∈ R(n+1)×l and W ∈ Rl is respectively the first-to-second layer and 

second-to-third layer interconnection matrices, l is the number of neurons in the hidden layer, n is the 

number of input: 
TT 1 =  z z  (35)

and: 

( ) ( ) ( ) ( ) T
T T T T

1 2 ls s s… =  S V z v z v z v z  (36)
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here, vector vi (i = 1, …, l) is the ith column of interconnection matrix V; and activation function s is 

chosen as the hyperbolic tangent function, i.e., 

( ) , R
t t

t t

e e
s t t

e e

−

−

−= ∀ ∈
+  (37)

in this paper. 

It has been proved in [37] that if the node number l of the hidden layer is large enough, then MLPN 

in Equation (34) can approximate an arbitrarily given continuous function h: Rn → R to arbitrary 

accuracy on a compact set, i.e., 

( ) ( )MLP e , Π Rnh d= + ∀ ∈ ⊂zz G z z  (38)

here, de is the approximation error, and Πz is a compact set on which W and V are bounded, i.e., 

m2
w≤W  (39)

and: 

mF
v≤V  (40)

where: 

( )T

F
tr=V V V  (41)

In general, the ideal weights W and V are unknown and need to be estimated in control design. 

Let Ŵ  and V̂  be the estimates of W and V respectively, and also define the weight estimation error as: 

ˆ

ˆ

 = −


= −




W W W

V V V
 (42)

Now, an important property of the estimation error of MLPN in Equation (34) is introduced as the 

following lemma. 

Lemma 1 [38]. The corresponding approximation error χ of MLPN in Equation (34) can be 

expressed as: 

 (43)

where: 

( ) ( )T T
MLP

ˆ ˆ ˆG =z W S V z  (44)

( )Tˆ ˆ=S S V z  (45)

[ ]( )T

1 2
ˆ ˆ ˆ ˆdiag ls s s′ ′ ′ ′=S   (46)

( ) ( ) ( )
T

T

ˆ

d
ˆˆ 1,2, ,

d
i

i i

t

s t
s s i l

t
=

′ ′= = = …
v z

v z  (47)

ˆ
iv  is the ith column of interconnection matrix V̂ . Moreover, the residual term du is bounded by: 

T T
u F 2 1F 2

ˆ ˆˆ ˆd ′ ′≤ + +V zW S W S V z W  (48)

where:  
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1
1

l

i
i

w
=

=W  (49)

and wi is the ith element of network weighting W. 

Remark 3. From Equation (34), it is clear that the MLPN is essentially a nonlinearly parameterized 

function approximator, i.e., the hidden layer weight V appears in a nonlinear fashion. Thus, when applying 

M LPĜ  for solving approximation problem, it is highly desirable to have a linearly parameter-ization of 

approximation error χ. The value of Lemma 1 is giving a linearly parameterized form of χ in terms of 

 and , which is very useful in designing learning algorithms of the MLPN weighting matrices. 

Based upon the above introduction, we summarize the second main result of this paper in the following 

Theorem 2, which guarantees reactor state x to be bounded closed-loop stable with the existence of 

uncertainty of parameters Ωs, μR and μH. 

Theorem 2. Consider the existence of uncertainty in parameters Ωs, μR and μH. Define: 

( )TDe 4 TPe 4

0

θ d
t

k x k x s s= +   (50)

and suppose that uncertainty θ can be approximated by a MLPN, i.e., 

( )T T
eθ d= +W S V z  (51)

where z and S satisfy Equations (35) and (36), respectively, approximation error de is bounded, and 

both weighting vector W and weighting matrix V are bounded and constant, i.e.,  and . 

Design the control input as: 

Au u v= +  (52)

where: 

( ) ( )T T
MLP

d d ˆ ˆ
d d

v G
t t

 = =    z W S V z  (53)

=z Uy  (54)

 (55)

uA, z  and S satisfy Equations (31), (35) and (36), respectively; and U ∈ R6×6 is a given diagonally 

positive-definite matrix. Here, the learning algorithms of weighting matrices Ŵ  and V̂  in Equation (53) 

are designed respectively as: 

 (56)

 (57)

where both δW and δV are given positive scalars, and both ΓW and ΓV are given positive-definite matrices. 

Then, the power-level control law constituted by Equations (31), (52), (53), (56) and (57) guarantees 

closed-loop bounded stability of reactor state x if: 
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( )
( )

2

R 0 P S R
ND

P R

Ω Ω α ε
1 0

2 1 γ ηΩ Ω 2S

q P
k

q

+  
− + − > −  

 (58)

where ε is an arbitrarily given positive scalar. 

Proof. Similarly to the poof of Theorem 1, we also study firstly the stabilization of subsystem in 

Equation (10) with the existence of system parameter uncertainty. Based on the idea of incorporating 

MLPN to compensate the parameter uncertainty, we design virtual control ξr of subsystem in 

Equation (10) as: 

r rA rCξ ξ ξ= +  (59)

where: 

( ) ( )rA ND 1 I 1 TDA 4 TPA 4

0 0

ξ d d
t t

k x k x s s k x k x s s
 

= − + + + 
 

   (60)

( )T T
rC

ˆ ˆξ = W S V z (61)

z  and S satisfies Equations (35) and (36), respectively. 

Moreover, choose the Lyapunov function of subsystem in Equation (10) as: 

( ) ( ) ( )T 1 T 1
3 1 W V

1 1
, , Γ tr Γ

2 2
V V − −= + +     x W V x W W V V  (62)

Differentiate V3 given by Equation (62) along the trajectory determined by subsystem dynamics in 

Equation (10) and control input in Equation (59), and we can derive that: 

( ) ( ) ( )
( )

( )( ) ( )( ) ( ) ( )

( )
( )

( )
( )

T 1 T 1
3 1 W V

22
2 p s p1 2 2R

p 3 4 s 4 R 4 3
r0 1 r0 2 0 0 p s

2

p s 0R p s 2 R
3 3 1

p s R0 p s

, , Γ tr Γ

Ω Ω Ωβ
1 γ 1 η Ω Ω 1 γ η

Ω Ω

Ω Ω1 γ ηΩ Ω α
1

1 γ ηΩ Ω2 Ω Ω

V V

x x q
x x x q x x

n x n x P P

Pq
x x x

qP

− −= + +

 +−  = − − − − − + − − − −    + + + 
  +−    + − + −  −+      

        



x W V x W W V V

( ) ( )

( )

2 T T T T
ND 1 1 e

T 1 T 1
W V

垐

Γ tr Γ

k x x d

− −

 + − − + 

+    

W S V z W S V z

W W V V  

(63)

Based on Lemma 1, it is easy to see that: 

 (64)

where: 

u ed d d= −  (65)

is bounded. 

Substituting Equation (64) into Equation (63), we have: 

( ) ( )
( )( ) ( )( ) ( ) ( )

( )
( )

( )
( ) ( )

22
2 p s p1 2 2R

3 p 3 4 s 4 R 4 3
r0 1 r0 2 0 0 p s

2

p s 0R p s2 2 T TR
ND 1 3 3 1 1 1 W

p s R0 p s

Ω Ω Ωβ
, , 1 γ 1 η Ω Ω 1 γ η

Ω Ω

Ω Ω1 γ ηΩ Ω α 垐 ˆ1 Γ
1 γ ηΩ Ω2 Ω Ω

x x q
V x x x q x x

n x n x P P

Pq
k x x x x x d x

qP

 +−  = − − − − − + − − − −    + + + 
  +−    ′ − + − + + + − +  −+      

  

 

x W V

W S S V z

( )

1

T T 1
1 V

ˆˆtr Γx

−

−

  +  

′ +



 

W

V z W S V  

(66)
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From the assumption  and , and by choosing the learning algorithms of weights Ŵ  

and V̂  as Equations (56) and (57), we have: 

( )
( )( ) ( )( ) ( ) ( )

( )
( )

( )
( )

22
2 p s p1 2 2 2R

3 p 3 4 s 4 R 4 3 ND 1
r0 1 r0 2 0 0 p s

2
2

2 2p s 0 2R p s 2 W V W VR
3 3 1 22 F

p s R0 p s

Ω Ω Ωβ
1 γ 1 η Ω Ω 1 γ η

Ω Ω

Ω Ω1 γ ηΩ Ω δ δ δ δα
1

1 γ ηΩ Ω 2 2 2ε 22 Ω Ω

x x q
V x x x q x x k x

n x n x P P

Pq d
x x x

qP

 +−  ≤ − − − − − + − − − − −    + + + 
  +−    + − + − − + + +  −+      



 W V W 2

F2
V

(67)

where: 

( )
( )

2

R 0 P S R
ND ND ND

P R

Ω Ω αε ε
1

2 2 1 γ ηΩ Ω 2S

q P
k k k

q

+  
= − = − + − −  
  (68)

Now, we focus on the stabilization of entire system in Equation (6). Choose the corresponding 

Lyapunov function as: 

( ) ( )
2
ξ

4 ξ 3
ξ

, , , , ,
2

e
V e V

k
= +   x W V x W V  (69)

and design control input as: 

ξ 1 r A rCξ ξu k x u= − + = +   (70)

where ξr, uA and ξrC is given by Equations (59), (31) and (61), respectively. Then, differentiate V4 

along the trajectory given by system dynamics in Equation (6) and control input Equation (70):  

( )

( )
( )( ) ( )( ) ( ) ( )

( )
( )

( )
( )

4 3 ξ r
ξ

22
2 p s p1 2 2R

p 3 4 s 4 R 4 3
r0 1 r0 2 0 0 p s

2

2 2p s 0R p s2 2 W VR
ND 1 3 3 1 2 F

p s R0 p s

1
ξ

Ω Ω Ωβ
1 γ 1 η Ω Ω 1 γ η

Ω Ω

Ω Ω1 γ ηΩ Ω δ δα
1

1 γ ηΩ Ω 2 22 Ω Ω

V V e u
k

x x q
x x x q x x

n x n x P P

Pq
k x x x x

qP

= + −

 +−  ≤ − − − − − + − − − −    + + + 
  +−    − + − + − −  −+      

 

 W V
2

2 2W V
2 F

δ δ

2ε 2 2

d+ + +W V

(71)

From the boundness of d, W and V and inequalities in Equations (58) and (71), reactor state x and 

weight estimation error  and  converges to bounded set Ξ determined by: 

( )
2

2 2 2 2W V W V
2 F2 F

δ δ δ δ
Ξ , , Ψ

2 2 2ε 2 2

d 
= + + ≤ + + 
 

   x W V x W V W V  (72)

where: 

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
( )

( )
( )

2
21 22 2R

ND 1 p 3 4 s 4
r0 1 r0 2 0

22

p s 0p s p R p s 2 R
R 4 3 3 3 1

0 p s p s R0 p s

β
Ψ 1 γ 1 η Ω Ω

Ω ΩΩ Ω Ω 1 γ ηΩ Ω α
1 γ η 1

Ω Ω 1 γ ηΩ Ω2 Ω Ω

x x q
k x x x x

n x n x P

Pq
q x x x x x

P qP

−  = + + − − − + + + +

  + + −    − − + + − +     + −+        

x

(73)

Therefore, from Equations (71) and (72), it is clear that reactor state x is closed-loop bounded 

stable, which completes the proof of Theorem 2 and solves Problem raised in Section 2.2. 
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Remark 4. The basic idea of Theorem 2 is incorporating MLPN to compensate the uncertainty in 

parameters Ωs, μR and μH. Due to the fact the approximation error of MLPN is bounded, we cannot 

guarantee asymptotic closed-loop stability anymore. Instead, bounded closed-loop stability of reactor 

state x can be provided. However, the bounded stability is enough in practical engineering. Thus, we can 

easily see that there exists a tradeoff between uncertainty compensation and closed-loop stability. 

Remark 5. The novel MLP-compensated PD control for power-level regulation of the MHTGRs 

presented in this paper can be summarized as: 

( )

( )
( )

( )
( )

( )

A

A NP 1 ND 1 TPA 4 TDA 4

T T

T
W 1 W

T
V 1 V

2

R 0 P S R
ND

P R

d ˆ ˆ
d

ˆ ˆˆ ˆ ˆΓ δ

ˆˆ ˆ ˆΓ δ

Ω Ω ε
1

2 1 γ ηΩ Ω 2S

u u v

u k x k x k x k x

v
t

x

x

q P
k

q

α

= +
 = − + + +


 =  
  ′= − − +  
 ′= − +
 +   > + +  −  

 





W S V z

W S S V z W

V zW S V

 

(74)

where z is given by Equations (54) and (55), z , S, Ŝ  and ˆ ′S  are defined by Equations (35), (36), (45) 

and (46), respectively, activation function S is chosen as the hyperbolic tangent function given by 

Equation (37), feedback gain kNP is a positive scalar which satisfies Equation (27), both gains kTPA and 

kTDA are positive scalars chosen experientially, both δW and δV are given positive scalars, and both ΓW 

and ΓV are given positive-definite matrices. Moreover, since there have been mature program that realizing 

the MLP, algorithm in Equation (74) can be easily realized in those digital control system platforms. 

4. Simulation Results with Discussions 

To show the feasibility and performance of the MLP-compensated PD power-level control which is 

constituted by Equations (31), (52), (53), (56) and (57), in this section it is applied to the power-level 

regulation of a NSSS of HTR-PM plant. Here, the comparison between the simulation results with and 

without MLPN compensation is given and analyzed. 

4.1. Description of the Numerical Simulation 

The dynamic model of the MHTGR utilized in this simulation adopts that one composed of both 

nodal neutron kinetics and nodal reactor thermal-hydraulics given in [39]. The OTSG model is just the 

moving boundary model presented in [40]. Furthermore, the model of the steam turbine and that of the 

electrical generator are also included in the simulation code [41]. The schematic view of this NSSS 

dynamic model for numerical simulation is shown in Figure 3, and the structure of the closed-loop 

composed of this model and the power-level control strategy proposed in this paper is shown in Figure 4. 

Here, in this simulation, we choose those feedback gains of uA as kNP = 0.2, kND = 0.1, kTPA = 0.2 

and kTDA = 0.003. Moreover, the parameters of the MLPN utilized for compensation in control strategy 

in Equation (74) is chosen as l = 3, ΓW = 1000I3, ΓV = 1000I7, δW = δV = 0.01, and: 

[ ]( )T
diag 50 1 1 5 1 1 0.01=U  (75)
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Figure 3. Schematic view of NSSS dynamics. 

 

Figure 4. Structure of the closed-loop. MLP: multi-layer perceptron; and PD: 

proportional-differential. 
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T
W 1 W
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x

x

δ

δ

  ′= − − +  

 ′= − +

W Γ S S V z W

V Γ zW S V




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1
2 1 2
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Ω Ω α ε
γ ηΩ Ω

= − + + +
 +  
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 

( )T Td ˆ ˆ
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4.2. Simulation Results 

In this simulation, two case studies are done to show the feasibility of the above newly-built 

MLP-compensated PD power-level control law in Equation (74). Moreover, the performance of this 

new control law is compared with that of the experientially-tuned PD controller uA given by Equation (31). 

Here, it is clear that controller in Equation (74) is just experiential control uA compensated by an MLPN. 

(1) Case A. power-level changes linearly from 100% FP to 50% FP in 10 min. 

In this test, the power demand signal decreases down from 100% FP to 50% FP linearly with a 

speed of 5% FP/min. Due to the drop in power demand, both the error between the actual and 

demanded nuclear powers and that between the actual and referenced helium temperatures become 

larger than before. 

These error signals drive the power-level controller to insert the control rods. The system enters to a 

steady state when the reactivity induced by temperature feedback effect is balanced with that given by 

the control rods. Here, the dynamic responses of the relative nuclear power, average fuel temperature 

and outlet helium temperature as well as designed control rod speed with and without MLPN compensation 

are illustrated in Figure 5. 

Figure 5. Simulation results in Case A: (a) relative nuclear power; (b) average fuel 

temperature; (c) outlet helium temperature; and (d) designed control rod speed signal. 
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(2) Case B: power-level changes linearly from 100% FP to 50% FP in 2 min. 

In this study, the power demand signal decreases linearly from 100% FP to 50% FP in 2 min, 

and the error signals of the nuclear power and the helium temperature cause the power-level regulator 

to generate proper rod speed to cope with the decrease of power demand. The computed responses of 

some crucial reactor process variables and the designed control rod speed with and without the MLPN 

compensation are all illustrated in Figure 6. 

Figure 6. Simulation results in Case B: (a) relative nuclear power; (b) average fuel 

temperature; (c) outlet helium temperature; and (d) designed control rod speed signal. 

(a) (b) 

(c) (d) 
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fast large-range power maneuvers. This phenomenon is caused by the parameter uncertainty. Actually, 
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demand induces large parameter uncertainty, which then leads to strong oscillation of the dynamic 

responses. Also from Figures 5 and 6, because of the incorporation of the MLPN in the power-level 

control strategy, the oscillation in the dynamic responses is then quickly and effectively suppressed, 

especially in the case of fast large-range power maneuvers. This is given by the strong approximation 

ability of the MLPN. Actually, the oscillations of the process variables quickly excite the learning 

algorithm of the MLPN weighting matrices to approximate the modal features of this oscillation, and 

then suppress it by a compensating term in the feedback controller. Thus, the MLPN can be used to 

cancel the response oscillations by a properly designed learning algorithm.  

Finally, from the theoretical analysis and numerical simulation given in Sections 3 and 4,  

MLP-compensated PD power-level control strategy in Equation (74) not only guarantees the bounded 

closed-loop stability, but also effectively suppresses the response oscillations caused by parameter 

mismatch. Furthermore, due to the wide utilization of advanced digital control system platforms, 

there is no difficulty in realizing MLP-compensated power-level control law in Equation (74). 

Since there already have been some mature programs of the MLPN, it is easy for engineers to 

implement MLP-compensated controller in Equation (74) as a software running on the digital platforms. 

Here, it is worthy to be noted that the power-level control strategy given in this paper is only for the 

normal power operation of the MHTGR, and NOT for the reactor startup. 

5. Conclusions 

Due to its inherent safety features and potentially competitive economic power, the MHTGR has 

already been seen as one of the best candidates in building SMR-based nuclear power plants. It is clear 

that power-level control of the MHTGR is meaningful in providing safe, stable and efficient operation. 

Moreover since the MHTGR dynamics have the features of high nonlinearity and parameter uncertainty, 

this leads to the necessity of developing nonlinear power-level control strategies with strong 

adaptation capability. Based on the shifted-ectropies of neutron kinetics and reactor thermal-hydraulics, 

it is firstly proved theoretically that the output-feedback power-level controller with simple PD structure 

can guarantee the asymptotic closed-loop stability. However, since for tuning this PD control law, 

we should know the values of some physical or thermal-hydraulic parameters which are difficult to 

obtain accurately, there must exist parameter uncertainty. Then, an MLPN-based compensator is 

introduced to deal with the uncertainty. It has been proved theoretically that this newly-built  

MLP-compensated PD power-level control law can guarantee bounded closed-loop stability. Numerical 

simulation results in case of large-range power maneuver verify the theoretical results, and show 

that this MLP compensator can effectively suppress the oscillations caused by system parameter 

uncertainty. This newly-built power-level regulator can be easily implemented on those advanced 

digital control system platforms. The main contribution of this paper is proving that simple PD power-

level control strategy can provide asymptotic closed-loop stability and designing an MLP-based 

compensator to suppress the negative influence given by parameter uncertainty.  
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