Energies 2014, 7(2), 520-547; doi:10.3390/en7020520
Article

Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error

Received: 6 December 2013; in revised form: 13 January 2014 / Accepted: 17 January 2014 / Published: 23 January 2014
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Remaining useful life (RUL) prediction is central to the prognostics and health management (PHM) of lithium-ion batteries. This paper proposes a novel RUL prediction method for lithium-ion batteries based on the Wiener process with measurement error (WPME). First, we use the truncated normal distribution (TND) based modeling approach for the estimated degradation state and obtain an exact and closed-form RUL distribution by simultaneously considering the measurement uncertainty and the distribution of the estimated drift parameter. Then, the traditional maximum likelihood estimation (MLE) method for population based parameters estimation is remedied to improve the estimation efficiency. Additionally, we analyze the relationship between the classic MLE method and the combination of the Bayesian updating algorithm and the expectation maximization algorithm for the real time RUL prediction. Interestingly, it is found that the result of the combination algorithm is equal to the classic MLE method. Inspired by this observation, a heuristic algorithm for the real time parameters updating is presented. Finally, numerical examples and a case study of lithium-ion batteries are provided to substantiate the superiority of the proposed RUL prediction method.
Keywords: lithium-ion batteries; remaining useful life; the Wiener process; measurement error; prediction; truncated normal distribution; maximum likelihood estimation; Bayesian; expectation maximization algorithm
PDF Full-text Download PDF Full-Text [743 KB, uploaded 23 January 2014 14:33 CET]

Export to BibTeX |
EndNote


MDPI and ACS Style

Tang, S.; Yu, C.; Wang, X.; Guo, X.; Si, X. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error. Energies 2014, 7, 520-547.

AMA Style

Tang S, Yu C, Wang X, Guo X, Si X. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error. Energies. 2014; 7(2):520-547.

Chicago/Turabian Style

Tang, Shengjin; Yu, Chuanqiang; Wang, Xue; Guo, Xiaosong; Si, Xiaosheng. 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error." Energies 7, no. 2: 520-547.

Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert