Energies 2014, 7, 8446-8464; doi:10.3390/en7128446

energies

ISSN 1996-1073
www.mdpi.com/journal/energies

Article

Comparison Study on Two Model-Based Adaptive Algorithms
for SOC Estimation of Lithium-lon Batteries in Electric Vehicles

Yong Tian !, Bizhong Xia **, Mingwang Wang 2, Wei Sun ? and Zhihui Xu ?

1 Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University,

Tsinghua Campus, the University Town, Shenzhen 518055, China; E-Mail: tian.yong@sz.tsinghua.edu.cn
2 Sunwoda Electronic Co. Ltd., Yihe Road, Baoan District, Shenzhen 518108, China; E-Mails:
wangmw@sunwoda.com (M.W.); sunwei@sunwoda.com (W.S.); luojie@sunwoda.com (Z.X.)

* Author to whom correspondence should be addressed; E-Mail: xiabz@sz.tsinghua.edu.cn;
Tel./Fax: +86-755-2603-6757.

External Editor: Izumi Taniguchi

Received: 22 August 2014; in revised form: 17 November 2014 / Accepted: 10 December 2014 /
Published: 17 December 2014

Abstract: State of charge (SOC) estimation is essential to battery management systems in
electric vehicles (EVs) to ensure the safe operations of batteries and providing drivers with
the remaining range of the EVs. A number of estimation algorithms have been developed to
get an accurate SOC value because the SOC cannot be directly measured with sensors and is
closely related to various factors, such as ambient temperature, current rate and battery aging.
In this paper, two model-based adaptive algorithms, including the adaptive unscented
Kalman filter (AUKF) and adaptive slide mode observer (ASMO) are applied and compared
in terms of convergence behavior, tracking accuracy, computational cost and estimation
robustness against parameter uncertainties of the battery model in SOC estimation. Two
typical driving cycles, including the Dynamic Stress Test (DST) and New European Driving
Cycle (NEDC) are applied to evaluate the performance of the two algorithms. Comparison
results show that the AUKF has merits in convergence ability and tracking accuracy with an
accurate battery model, while the ASMO has lower computational cost and better estimation
robustness against parameter uncertainties of the battery model.

Keywords: lithium-ion battery; state of charge; adaptive unscented Kalman filter;
adaptive slide mode observer
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1. Introduction

Electric vehicles (EVs) have rapidly developed in the past few years due to the increasing cost of
energy and global warming constraints. A battery management system (BMS) is important for EVs to
safeguard the battery performance and extend its life [1]. An accurate state of charge (SOC) estimation
is the most key technique in a BMS, since it indicates the remaining energy in the battery, which is
helpful to prevent the battery from over-charging or over-discharging, which may damage the battery.
The simplest definition of SOC is the ratio between the remaining capacity of the battery and its
nominal capacity. However, it is difficult to get an accurate value of SOC, because the SOC cannot be
directly measured with sensors and is closely related to various factors, such as ambient temperature,
current rate and battery aging.

Numerous SOC estimation approaches have been proposed with the development of EVs, and
each with its own advantages and disadvantages. A most commonly used method in practice is the
Ampere-hour (Ah) counting (or Coulomb counting) method [2,3]. The Ah method obtains the
remaining capacity of a battery by integrating the current over the time. It is simple and can be easily
implemented on-board, because it only needs to measure the battery operating current and does not
need complex computations. However, this method can easily cause accumulated calculation errors due
to uncertain disturbances in the current measurement process and a lack of correction for the initial SOC
offset. The open-circuit voltage (OCV) method estimates the SOC according to the relationship between
the OCV and the SOC [4,5]. Nevertheless, it is not suitable for online estimation due to the long rest time
to reach the steady-state of the battery. Computational intelligence algorithms, such as artificial neural
networks (ANNSs) [6-8], fuzzy-logic [9-11], and support vector machines (SVMs) [12,13] have also
been developed to estimate the SOC. These methods do not require detailed knowledge of the battery
systems, thus, they can be applied to all battery types and have excellent estimation performance if the
training data is sufficient to cover all loading conditions. However, it is time consuming and nearly
impossible to collect training data that can cover all possible loading conditions. Besides, all the
aforementioned methods are open-loop estimation algorithms and do not require the battery model.

Additional efforts have been focused on model-based and closed-loop estimation methods, including
the Kalman filter (KF) [14-38] and sliding mode observer (SMO) [39-43]. Despite requiring a higher
computation cost than the A h method, these methods have merits in being self-correcting and involving
online computing as well as the availability of the dynamic SOC estimation error range. Thus, they are
increasingly popular and more suitable for real-time application than the other types of SOC estimation
methods. To expand the application of KF in nonlinear battery systems, the Extended KF (EKF) and
Unscented KF (UKF) have been developed. The EKF-based methods have been widely used for
battery SOC estimation [14-27]. However, the application of EKF in practice has some shortcomings.
For example, the linearizing process causes large linearization errors and complicated computation of the
Jacobian matrix that may lead to instability of the filter and inaccurate estimation for highly nonlinear
battery systems [30]. The UKF has been demonstrated to have a higher accuracy in estimating the mean
and the error covariance of the state vector than EKF, and it does not need the complicated computation
of the Jacobian matrix [28-38]. On the other hand, in KF algorithms, the process and measurement noise
covariances are critical for the filtering performance and stability. In both EKF and UKF, constant values
of the process and measurement noise covariances usually need to be pre-specified by a trial-and-error
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method which is time consuming, laborious and error-prone [30]. Too small values of the process noise
covariance and/or the measurement noise covariance at the beginning of the estimation process may
result in a tight uncertainty tube around the true value and a biased solution, while too large values may
lead to filter divergence [44]. For the battery SOC estimation, inappropriate values of the noise
covariances will cause large estimation errors. Therefore, an adaptive unscented Kalman filter (AUKF)
was developed in [30] to improve the SOC estimation accuracy by adaptively updating the process and
measurement noise covariances based on the output voltage residual sequence of the battery model.

More recently, the SMO-based SOC estimation approaches have been developed to handle the
battery model uncertainties, external disturbances and measurement noises [39—42]. Nevertheless,
these methods rely on details about the battery dynamics for the appropriate selection of SMO
parameters, such as uncertainty boundaries and switching gains, which may lead to the trade-off
between the chattering magnitude and the convergence speed in the SOC estimation [43]. To overcome
such a problem, an adaptive sliding mode observer (ASMO) for the SOC estimation has been proposed
in [43]. Compared with the traditional SMO, the ASMO is able to dynamically adjust the switching
gains in response to the tracking errors, and guarantee the reachability of sliding mode surface and
trigger the sliding mode, thereby improving the SOC estimation accuracy.

In this paper, a comparison study between the two model-based adaptive algorithms above is
carried out using the experimental data collected from a lithium-ion battery test bench. Two typical
driving cycles, namely the Dynamic Stress Test (DST) and New European Driving Cycle (NEDC) are
used to evaluate the performance of the algorithms in terms of convergence behavior, tracking
accuracy, computational cost and estimation robustness against parameter uncertainties.

The remainder of the paper is organized as follows: in Section 2, the battery state functions are
established based on an equivalent circuit model which is used to characterize the dynamic behaviors of
the lithium-ion battery, and the method for battery model parameter identification is discussed. Section 3
introduces the principles of AUKF- and ASMO-based SOC estimation algorithms in detail. Section 4
presents the experimental results and discussion, and Section 5 provides the conclusions of the paper.

2. Battery Modeling and Parameter Identification
2.1. Battery Equivalent Circuit Model

Both the UKF and SMO are model-based methods, so precise battery models are required to
accurately estimate the SOC values. Numerous models have been developed to simulate the dynamic
characteristics of batteries. The equivalent circuit models (ECMs) with lumped parameters have been
widely used in SOC estimation applications due to their good performance in describing the dynamic
voltage characteristics of a lithium-ion battery [1,44]. The most common ECMs are comprised of resistor
and resistor-capacitor (RC) network(s) connected in series. Based on the conclusion that adding RC
networks can increase the model accuracy, but adding more complexity beyond two RC networks is not
helpful [44], this paper selects the second-order RC model to establish the state functions for battery
SOC estimation. As shown in Figure 1, the second-order RC battery equivalent circuit model consists of
an open-circuit voltage Uoc(SOC), a resistor Ro, and two RC networks connected in series. The resistor
Ro represents the ohmic resistance caused by the accumulation and dissipation of charge in the electrical
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double-layer, Rp1 and Cp1 are the activation polarization resistance and capacitance respectively, Rp2 and
Chp2 respectively are the concentration polarization resistance and capacitance.

Figure 1. Schematic diagram of the second-order RC battery equivalent circuit model.
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According to the circuit theory, the electrical behavior of the second-order RC battery equivalent
circuit model shown in Figure 1 can be derived as:

SOC:—CiIt+v1
: 1 1
U,=- U,+—1I +V 1
pl Rplcpl pl o t 2 ( )
U, =- L U,,+ L I, +V,
Rp2Co2 Cp.
U, =U,(SOC)-U,-U_,-R I, +w )

where Cy is the battery nominal capacity; Upr and Up2 are the terminal voltage of Cp1 and Cp,
respectively; Ut and It are the battery terminal voltage and current, respectively; Uoc represents the
open circuit voltage (OCV) which is related to the values of SOC; vi, vz, vz and w represent noises
caused by model uncertainties and external disturbances.

By selecting x = (SOC, Up1, Up2)" as the state vector, and considering the current I: and voltage Ut as
the model input and output respectively, the discrete-time state equations of the second-order RC
battery equivalent circuit model can be obtained as:

X = F (X0 U) + W 3)

Yi =h(X, u) +V, 4)

where f and h are the nonlinear process and measurement functions, respectively; xx represents the
unmeasurable state vector at time step k; uk (=ltk) stands for the input vector; yk (=Utk) is the observed

output; vk (=(vik V2k vak)") and wk are separately the process and measurement noises, which are both
uncorrelated zero-mean Gaussian white sequences.

2.2. Battery Model Parameters Identification

In order to estimate the battery SOC based on the second-order RC battery equivalent circuit model,
the model parameters, including the OCV-SOC relationship, Ro, Rp1, Cp1, Rp2 and Cp2 need to be
determined. In order to acquire the data used to determine the relationship of OCV vs. SOC, a pulse
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discharge experiment was carried out based on an ICR18650-22F type lithium-ion battery. More
details about the battery parameters and the test bench configurations will be provided in Section 4.
The test procedure is summarized as follows [45]: (1) The battery is fully charged at room temperature
using the standard charging method, and then it is left in the open-circuit condition for 5 h; (2) the
battery terminal voltage is measured and the measured voltage is regarded as the equilibrium potential
since the battery is assumed to have reached the steady state; (3) the battery is discharged with a
constant current of 0.1C A by 10% of the nominal capacity, and then it is left in the open-circuit
condition for 2 h; (4) steps (2) and (3) are repeatedly performed until the battery is fully discharged.
The measured data and the fitted curves with different broken-lines, including four-stage broken-line
(4-broken-line) and ten-stage broken-line (10-broken-line) are shown in Figure 2. Despite the fact that
the OCV-SOC curves of lithium-ion batteries are nonlinear, there exists a piecewise linear relationship
between the OCV and the SOC in a certain range of SOC [43] indicated by the red circles in Figure 2.
Therefore, in this paper the broken-lines are used to reduce the complexity of the OCV-SOC function.

Figure 2. Experimental OCV-SOC relationship of a lithium-ion battery.
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The exponential-function fitting method [43] was applied to determine the other parameters of the
battery model in Figure 1 (e.g., Ro, Rp1, Cp1, Rp2 and Cp2) based on the transient response of terminal
voltage by executing a pulse-current discharging process at the room temperature [45]. The identified
parameters are summarized in Table 1.

Table 1. Identified parameters of the second-order RC battery equivalent circuit model.

Ro Rp]_ Cpl Rp2 sz
0.0344 Q 0.0191 Q 1513 F 0.0077 Q 15428 F

3. AUKF and ASMO Algorithms for SOC Estimation
3.1. AUKF Algorithm

The adaptive unscented Kalman filter (AUKF) can adaptively update the process and measurement
noise covariances based on the output voltage residual sequence of the battery model [30]. Thus,
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it addresses the issue of the standard EKF and UKF that inappropriate values of the noise covariances
cause large error. The process of the AUKF can be summarized as follows [30]:
(1) Initialization:

(@) Initial a posteriori error covariance: Po;
(b) Initial process noise covariance: Qo;
(c) Initial measurement noise covariance: Vo;

(d) Window size for covariance matching: Lw;
(e) Initial mean X, and covariance Po with a random state vector Xo as follows:

% = E[x] (5)
Ry = E[(% —%)(% —%,)'] (6)

(2) Generate sigma points at time step k—1.:
Tk = R (7)

=R +(J(N+DRS ) i=12-N ()
A =R —(JIN+DRS) =12 N ©)

where A is a composite coefficient satisfying the following equation:

r=a*(N+x)—N (10)
where N is the dimension of the state vector, o and « are scaling parameters. The parameter o (0 <a < 1)
determines the spread of the sigma points around the mean value, and it should ideally be a small
number [46]. The condition x > 0 should be satisfied to guarantee the semi-positive definiteness of the

covariance matrix, and a good default choice is x = 0 [47].
(3) Time update:

(a) Propagate sigma points through the process equation:
X = T (e U+ W, (11)

(b) Calculate the mean of state variable:

2N

%= W1 (12)

i=0

where W1 are weights defined as:
A

wiol —

" ON+A (13)
i 1 .
i = i=12,--,2N

" 2(N+)) (14)

(c) Calculate the propagated covariance:

st,k = %Wc[i] (5(5] =X )(5({('] =X )T +Q, (15)
i=0
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where Qx is the process noise covariance matrix at time step k and weights W' is defined as:

A
WO = ot 1—a? +p) (16)
Wc[i]:; i=12-..,2N (17)
2(N+2)

where B is a nonnegative scaling factor used to incorporate prior knowledge of the distribution, and the
optimal choice is p = 2 for a Gaussian distribution [41].
(4) Measurement update

(a) Propagate sigma points through the measurement equation:
Y =N, ) +V, (18)

(b) Calculate the mean of output variable:

2N

Ve =2 W9 (19)
i=0
(c) Calculate the estimated covariance:
. 2N S _ . T
P =2 W (P -3, ) (9 -3, ) +V, (20)
i=0
5 W (50 _ 5 (ol _v V'
ny,k :ZWC (Xk _Xk)(yk _yk) (21)
i=0

where Vi is the measurement noise covariance matrix at time step k.
(5) Measurement correction

(a) Calculate the Kalman gain:

Ky =PyiBi (22)
(b) Update the estimated state:
R =%+ K (Ve = V) (23)
(c) Update the propagated covariance:
P, =P, —KP, K¢ (24)
(6) Adjustment of Qx and Vk
Q. =K. FK{

N N[l o AT 25
V, =F o+ > W (9 -5 ) (9" - ¥, ) (29)
i=0
where Fk is an approximation to the covariance of the voltage residual at time step k and is defined as:

k

F = Z eieiT (26)

i=k-L,+1
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where ej is the voltage residual of the battery model at time step i, and Lw is window size for
covariance matching. More details about the AUKF algorithm can be found in [30] and [34].

3.2. ASMO Algorithm

With the piecewise linearisation method shown in Figure 2, the OCV-SOC relationship can be
formulated as:

U,,(SOC) =k,SOC +k, 27)

where the values of ki and k2 are varying in different SOC ranges, and their values can be obtained
with linear fitting method in different SOC ranges as shown in Figure 2.

Due to the fast sampling rate [43], the changing rate of discharge current I: can be negligible, that’s
to say, dl/dt = 0. Thus, the time derivative of terminal voltage Ut in Equation (2) with the substitutions
of Equations (1) and (27) can be obtained as:

: 1 1 1 1
U :——‘nkﬁmum—c—pllt+WUPZ—C—ML+W (28)

p2~p2

By solving It in Equation (2) and substituting it into Equation (1) as well as rearranging
Equations (1) and (28), the state-space equations of the second-oder RC battery equivalent circuit
model can be derived as:

Ut = _alut +a1Uoc(SOC)_a3U pl _a4U p2 _bllt +W
SOC =a,U, —a,U,(SOC)+a,U , +a,U,, +V,

. 29
Upl:—a3Upl+b2It+v2 (29)

Up2 =—a4Up2 +b,1, +v,

where a1 = 1/(RmCpr + 1/(Rp2Cp2)), @2 = 1/(RoCn), as = 1/(RpCpi), as = 1/(Rp2Cp2),
b1 = ki/Cn + Ro/(Rp1Cp1) + 1/Cp1 + Ro/(Rp2Cp2) + 1/Cp2, b2 = 1/Cp1 and bz = 1/Cpa.
By selecting x = [Ut Uoc Up1 Up2]" as the state vector, and considering the model input and output as

u = It and y = Uy, respectively, the discrete-time state equations of the second-order RC battery
equivalent circuit model can be concisely expressed in matrices as follows:

% = A% +Bu +TE, (30)
Y =CX, (31)

where T'é represents modeling errors and random disturbances at time step k. The parameter 7" is the
uncertainty input matrix. The parameter & is assumed to be bounded |Ek| < ho, in which ho is a constant.

a4 & -8 -4 —b, Wy
a, -a, a, a 0 v
The matrices A, B and C are given as: A=| 2 272 2 B= C & =| ™| and
0 0 -a O b, v,
0 0 0 -a b, vy,

c=[1 0 0 0]

The adaptive sliding mode observer for the system in Equations (30) and (31) is designed as:



Energies 2014, 7 8454

R = A%, +Bu,+He,, +pI'sgne, ) (32)

¥ =CX, (33)
where e, =Y, —Y, is the observation error, H is the feedback gain matrix, p is the adaptive switching

gains function which can be designed to guarantee the stability and robustness of the AGMO as follows:

p{o‘eyk‘ if e, #0

. (34)
0 ife, =0
where ¢ is a positive constant used to adjust the speed adaptation for switching gains function.
The discontinuous switching term in Equation (32) is defined as:
+1 e, >0
sgn(e,,) =
an(ey ) 16, <0 (35)

The feedforward gain matrix H can be obtained by using either the pole assignment method or
linear quadratic regulator (LQR) method [39,43]. The LQR method is easier to obtain gain matrix H
using the Riccati equation as:

AP +PA" —PC'R.'CP =-Q, (36)
where Qu and Rwu respectively are arbitrary semi-positive definite and positive definite matrices,
having a positive definite solution P. Then AT-CTHT is stable with:

H" =R'CP (37)
which is equivalent to the stability of A—HC [39].
With appropriate Lyapunov equation, a matrix W is selected such that the reconstruction error

system is asymptotically stable. By selecting an appropriate Lyapunov equation, there exists a
symmetric definite matrix Pr as the solution of the Lyapunov equation:

(A_ HC) Pf + Pf (A_ HC)T = _Qf (38)
where Qr is an arbitrary positive definite matrix such that the structural constraint in Equation (39) can
be guaranteed if W is a positive definite matrix:

[P, =WC (39)

More details about the error convergence proof of the SMO can be found in [39—43].
4. Evaluation and Discussion
4.1. Evaluation Method

A Dbattery test bench, as shown in Figure 3, is established for the comparison study of the AUKF and
ASMO-based SOC estimation approaches. The ICR18650-22F-type lithium-ion battery manufactured
by Samsung SDI (Seoul, Korea) was used in the test. This kind of battery has a nominal voltage of
3.62 V and a nominal capacity of 2.2 A h. The electronic switch is applied to discharge the battery
with the programmable electric load or charge it with the programmable power supply. The BMS
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module is adopted to measure the battery voltage and current, transmit them to the host computer and
send the control command to the switch through the CAN communication unit. The host computer is
used to be an estimator computing the SOC values. The SOC values with the AUKF and ASMO
algorithms are estimated in the Matlab software based on the measured battery voltage and current
from the test bench, and compared with that obtained by the Coulomb counting method.

Figure 3. Schematic diagram of the test bench.
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Two driving cycles, including the 360 s Dynamic Stress Test (DST) cycle and the 1184 s New
European Driving Cycle (NEDC) [26,32] are utilized to evaluate the performance of SOC estimation
approaches under the typical loading conditions when the EVs are on road. The current profiles under the
DST and NEDC tests are shown in Figures 4 and 5 [45], respectively. Figure 4a and Figure 5a show the
complete profiles vs. time, while Figure 4b and Figure 5b show the profiles of a single driving cycle.

Figure 4. Current profiles under DST test. (a) current vs. time profile; (b) a DST cycle.
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Figure 5. Current profiles under NEDC test. (a) current vs. time profile; (b) a NEDC cycle.
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In this study, four aspects, including the convergence behavior, tracking accuracy, computational
cost and estimation robustness against parameter uncertainties of the battery model are compared.
In order to evaluate the robustness against parameter uncertainties, different values of ohmic resistance
and OCV-SOC functions in Figure 2 are applied.

4.2. Comparison Results and Discussion
4.2.1. Estimation Results with Different Initial SOCs

To compare the convergence behavior of the AUKF and ASMO algorithms, the convergence rate to
45% error bound with different initial SOCs from 0% to 100% in 10% steps under the DST and NEDC
tests is obtained, and the results are shown in Tables 2 and 3, respectively. In addition, the
corresponding root mean square errors (RMSEs) of SOC are summarized in Tables 4 and 5. As an
example, the SOC estimation results with an initial SOC of 50% are shown in Figures 6 and 7. With all
the results, it can be seen that two algorithms both can quickly track the reference SOC values with
different initial SOCs, while the AUKF performs better with a faster convergence ability and a higher
accuracy. Besides, the computational cost of AUKF algorithm obtained by the Maltab commands,
including tic and toc is about 0.145 ms/point, while the value of ASMO algorithm is about
0.064 ms/point. Therefore, the ASMO performs better in terms of reducing computational cost and as a
result, it can be more easily implemented in hardware. It is important to note that in this section the
OCV-SOC relationship is fitted with the ten-stage broken-line as shown in Figure 2.
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Table 2. Comparison of convergence rate (s) with different intial SOCs under DST test.

Initial SOC (%) 0 10 20 30 40 50 60 70 80 90 100
AUKF 388 361 337 319 313 300 277 187 82 7 0
ASMO 500 482 477 457 420 380 311 274 197 94 0

Table 3. Comparison of convergence rate (s) with different intial SOCs under NEDC test.

Initial SOC (%) 0 10 20 30 40 50 60 70 80 90 100
AUKF 359 342 315 306 287 280 250 186 84 7 0
ASMO 482 468 458 423 386 355 305 271 196 92 0

Table 4. Comparison of RMSEs (%) with different intial SOCs under DST test.

Initial SOC (%) 0 10 20 30 40 50 60 70 80 90 100
AUKF 139 1323 1248 1171 1066 0965 0.864 0.738 0590 0.486 0.463
ASMO 2744 2569 2389 2220 2061 1.901 1728 1560 1399 2252 1121

Table 5. Comparison of RMSEs (%) with different intial SOCs under NEDC test.

Initial SOC (%) 0 10 20 30 40 50 60 70 80 90 100
AUKF 1362 1291 1218 1144 1.042 0944 0.844 0.720 0.579 0.481 0.459
ASMO 2687 2513 2335 2167 2010 1.851 1681 1513 1353 1206 1.085

Figure 6. Comparison of SOC estimation with an initial SOC of 50% under DST test.
(a) SOC; (b) SOC error.
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Figure 7. Comparison of SOC estimation with an initial SOC of 50% under NEDC test.
(a) SOC; (b) SOC error.
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4.2.2. Estimation Results with Different Modeling Errors

The battery model parameters, including ohmic resistance, polarization resistance and capacitance as
well as the OCV vary with various factors, such as the current rate, SOC, cycle number (battery aging)
and operating temperature [35]. Besides, an accurate expression of relationship between the OCV and the
SOC is crucial to improve the SOC estimation accuracy [48]. Therefore, in this section, different ohmic
resistance values and different OCV-SOC functions are selected to be examples for comparing the
robustness of AUKF and ASMO-based estimation approaches against the parameter uncertainties of the
battery model. The values of ohmic resistance are set to be changed in the range of 0.2 Ro to 2.0 Ro with a
step of 0.2 Ro to simulate the effect of different conditions, including current, SOC, aging and
temperature on the ohmic resistance. Figure 8 shows the comparison results of SOC estimation with
different ohmic resistance under the DST test, while Figure 9 shows them under the NEDC test. It is
clearly indicated that although the AUKF algorithm, in most cases, has a higher accuracy with a lower
mean absolute error (MAE), it has a poorer robusness againt the ohmic resistance uncertainty because its
accuracy varies much more with the variation of ohmic resistance. Besides, the estimation accuracy of
both the AUKF and ASMO algorithms decreases with the increase of ohmic resistance error.

In order to evaluate the robustness against OCV errors, two OCV-SOC functions shown in Figure 2,
namely four-stage and ten-stage broken-lines are applied, and the values of ki and k2 are shown in
Tables 6 and 7, respectively. As an example, the AUKF and ASMO-based SOC estimation results with
different OCV-SOC functions under NEDC test are shown in Figures 10 and 11, respectively. From
Figures 10 and 11, it can be seen that the estimation error of AUKF algorithm highly increases with the
decrease of OCV-SOC relationship accuracy, while that of ASMO algorithm slightly changes with the
variation of OCV-SOC relationship accuracy. Therefore, it is concluded that the ASMO algorithm has
a better robustness against the OCV errors.
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Figure 8. Comparison of SOC estimation with different ohmic resistance under DST test.
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Figure 9. Comparison of SOC estimation with different ohmic resistance under NEDC test.
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Table 6. Values of ki and k2 with four-stage broken-lines.

SOC range (%) 0-20 2040  40-60  60-100

ki 0.940 0.395 1.020 0.737
k2 3.353 3.461 3.207 3.373
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Table 7. Values of ki and k2 with ten-stage broken-lines.

8460

SOCrange (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
ki 0970 0910 0.380 0410 0900 1140 0.630 0.710 0.680  0.970
k2 3.352 3358 3464 3455 3259 3139 3445 3389 3413 @ 3.152

Figure 10. AUKF-based SOC estimation with different OCV-SOC functions under NEDC test.
(a) SOC; (b) SOC error.
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Figure 11. ASMO-based SOC estimation with different OCV-SOC functions under NEDC test.
(a) SOC; (b) SOC error.
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5. Conclusions

In this paper, two model-based adaptive algorithms, namely AUKF and ASMO, are applied to
estimate the SOC of lithium-ion batteries in EVs and compared in terms of convergence ability,
tracking accuracy, computational cost and estimation robustness. Firstly, the battery state equations are
derived from the second-order RC battery equivalent circuit model, and the model parameters are
identified with the exponential-function fitting method based on the data collected from a battery test
bench. Then, the general formulations of AUKF and ASMO-based estimation approaches are studied.
Finally, experiments based on the DST and NEDC cycles are carried out to evaluate the performance
of estimation algorithms. Comparison results indicate that both the algorithms can deal well with the
issues related to the initial SOC errors and modeling errors, but the AUKF performs better with a
higher tracking accuracy and a faster convergence rate related to the initial SOC values. However,
the ASMO has a lower computational cost and a better robustness against the parameter uncertainties
of the battery model, such as different ohmic resistance values and different OCV-SOC functions.
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