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Abstract: To reduce the influence of wind power output uncertainty on power system 

stability, demand response (DRPs) and energy storage systems (ESSs) are introduced while 

solving scheduling optimization problems. To simulate wind power scenarios, this paper 

uses Latin Hypercube Sampling (LHS) to generate the initial scenario set and constructs a 

scenario reduction strategy based on Kantorovich distance. Since DRPs and ESSs can 

influence the distribution of demand load, this paper constructs a joint scheduling 

optimization model for wind power, ESSs and DRPs under the objective of minimizing total 

coal cost, and constraints of power demand and supply balance, users’ demand elasticity, 

thermal units’ startup-shutdown, thermal units’ output power climbing and wind power 

backup service. To analyze the influences of ESSs and DRPs on system wind power 

consumption capacity, example simulation is made in a 10 thermal units system with a  

1000 MW wind farm and 400 MW energy storage systems under four simulation scenarios. 

The simulation results show that the introduction of DRPs and ESSs could promote system 

wind power consumption capacity with significantly economic and environment benefits, 

OPEN ACCESS 



Energies 2014, 7 7283 

 

 

which include less coal consumption and less pollutant emission; and the optimization effect 

reaches the optimum when DRPs and ESSs are both introduced. 

Keywords: wind power consumption; demand response; energy storage systems;  

Unit combination; scheduling optimization 

 

1. Introduction  

China’s wind power industry has been in rapid development since 2005. By the end of 2013, the total 

installed wind power capacity reached 94.41 GW, ranking first in the world. However, large-scale 

installed wind power capacity results in the problem of abandoned wind power. In 2013, the average 

equivalent utilization hour of wind power in some Chinese provinces was only 1,400 h, and the total 

abandoned wind power reached 20 TW·h. Since wind turbines’ power generation efficiency cannot be 

guaranteed, generation companies’ investment enthusiasm in wind power is gradually decreasing.  

The current situation is not beneficial to the wind power industry’s sustainable development [1]. 

In China, the wind power consumption problem remains the main bottleneck of wind power’s  

large-scale development. The reasons for abandoned wind power are two-fold. On the one hand,  

wind power is intermittent and unstable [2], increasing the difficulty of system scheduling problems.  

On the other hand, wind power output is anti-load distributed [3–5]. China’s wind resources are mainly 

distributed in the “Three north-areas” which are far away from load demand centers, and local load 

demand cannot meet the consumption requirements [6,7]. Besides, mismatched grid infrastructures and 

uncoordinated interest relationships of wind power, grid enterprise and thermal power also influence 

wind power grid connection [8,9]. 

Current, literature about wind power consumption problems concentrates on two aspects: local 

consumption schemes and wind power delivery. Since wind power output is uncertain, thermal power, 

hydro power or other traditional power sources are required to provide backup service for wind power 

delivery [10–12]. However, general wind power delivery has a series of constraints, such as power 

transmission capacity, transmission power stability, load demand and other factors [13,14]. Local 

consumption methods include building pumped storage power station, developing electric vehicles, 

utilizing energy storage systems, etc. [15–20]. Energy storage systems (ESSs) can achieve peak shifting, 

decrease the influence of wind power uncertainty and improve wind power utilization rate. Therefore, 

ESSs have great application potential for wind power consumption problems. 

There are four major methods to improve systems’ wind power consumption capacity, including 

improving system adjustment ability [21], improving power grid transmission capacity [22,23], improving 

wind power grid connection technology performance [24,25] and improving wind power scheduling 

operation levels [26,27]. Improving wind power scheduling operation level is the key to solving wind 

power consumption problems [8]. The above literatures are mainly focused on optimizing wind power 

consumption problems from the power generation side. Considering time-of-use price (TOU price) and 

ESSs both have the capacity to influence demand load distribution, this paper tries to optimize the power 

system scheduling problem from power generation side and load demand side, which means optimizing 

units’ combined output structure and demand load distribution at the same time. This paper introduces 
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DRSs and ESSs to the wind power consumption optimization model, and optimizes real-time outputs of 

thermal units and wind turbines, real-time charging-discharging behavior of energy storage systems to 

thus achieve the system’s maximum energy-saving benefits. 

The rest of the paper is organized as follows: Section 2 presents the demand response model. The model 

divides 24 h of one day into peak, flat and valley load periods according to their load demands and 

calculates load variation amounts according to the elasticity coefficients. Section 3 presents the energy 

storage system’s charging and discharging model. The model takes the energy storage system’s capacity 

limitation, power limitations, and energy consumption coefficients as the constraints. In Section 4,  

Latin Hypercube Sampling (LHS) and Kantorovich distance method are used, respectively, to simulate wind 

power output scenarios and construct a reduction strategy scenario. Section 5 builds a power generation 

scheduling optimization model with wind power; Section 6 builds another model considering the influences 

of ESSs and DRPs. Section 7 divides thermal units’ power generation coal consumption function into 

segments to transform the quadratic function into a linear function, and deals with the multiplication of 

two binary variables in the objective functions to simplify the calculation. In Section 8 we perform a 

case study and simulation to compare the influences of demand response and energy storage systems on 

a power grid’s wind power consumption capacity. Section 9 highlights the main conclusions of the paper. 

2. Demand Response Model 

Demand side management (DSM) means controlling user-behavior by changing their electric use 

habits, improving terminal electricity efficiency and other measures. DSM could decrease total electric 

consumption while guaranteeing meeting users’ demand. There are many types of DSM mechanisms, 

for example Rate basing, Energy-saving benefit sharing, RDM Plus and so on [28]. This paper chooses  

time-of-use price (TOU price) to study its influence on power efficiency. With the influence of TOU 

price, users would decrease load demand in peak load periods and transfer their demand into flat or 

valley load periods, making the demand load curve become smoother.  

Users Load demand should be calculated by its real load demand and corresponding line-loss rate. The 

total load demand for all users should be a summation of all types and voltage levels users’ load demands. 

Therefore, total demand load before implementing the TOU price 0

tG  could be calculated by Equation (1): 

0 0

1 1

/ (1 )
I K

t ikt k

i k

G L l
 

   (1) 

wherein I is user type number; i is the index for time, i = 1,2,…,I; K is voltage level number; k is the 

index for voltage level, k = 1,2,…,K; T is time length; t is the index of time, t = 1,2,…,T; 0

iktL  is the load 

demand of user i in voltage level k without TOU price; I is the number of user types; K is the number of 

voltage levels; lk is the line-loss rate of voltage level k, (0,1)kl  . 

Demand load after implementing TOU price is: 

0

ikt ikt iktL L L   (2) 

wherein Likt is the load demand of user i in voltage level k with TOU price; ΔLikt is the variation amount 

of load demand. 

We divide 24 h into peak, flat and valley load periods according to total demand load 0

tG . When TOU 

price is implemented, demand load in the peak, flat and valley load periods would change. For different 
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users, the load demand variation amount in different time periods (peak, flat and valley) would be 

different, which could be represented by their demand elasticity coefficients. Equation (3) shows the 

demand elasticity coefficients for different users. 

0

0

/

/

iks iks
ikst

ikt ikt

L L
e

P P





 (3) 

wherein s is the index for time, s = 1,2,…,T; eikst is user demand elasticity coefficient of user i in voltage 

level k, it reflects the influence of price variation at time t on load demand variation amount at time s.  

If s = t, eikst represents its influence on users’ load demand when price changes in the current period; and 

if s ≠ t, eikst represents its influence on other period’s load demand when price changes in the current period.  

Considering the mutual influence of three periods, user i in voltage level k demand elasticity 

coefficients matrix Eik could be expressed as Equation (4): 

pp pf pv

fp ff fv

vp vf vv

ik ik ik

ik ik ik ik

ik ik ik

e e e

E e e e

e e e

 
 

  
 
 

 (4) 

wherein ΔLikp, ΔLikf and ΔLikv are respectively total demand variation amount of user i in voltage level k 

in three periods after TOU price. Based on Equations (3) and (4) ΔLikp, ΔLikf and ΔLikv could be calculated 

by Equation (5): 

0 0

p p

0 0

f f

0 0

v v

0 0 /

0 0 /

0 0 /

ik ikp ik ikp

ik ikf ik ik ikf

ik ikv ik ikv
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L L E P P

L L P P

     
    

      
          

 (5) 

wherein
0

ikpL , 
0

ikfL  and 0

ikvL  are respectively the total demand loads of user i in voltage level k in three 

periods, and they could be calculated by Equations (6)–(8): 

0 0

, peak

ikp ikt

t t

L L


   
(6) 

0 0

,

ikf ikt

t t flat

L L


   
(7) 

0 0

, valley

ikv ikt

t t

L L


 
 (8) 

Assume the demand load change rate in the same period (peak, flat or valley) is fixed. Then peak,  

flat and valley periods’ load demand with TOU price could be calculated according to Equation (2), 

wherein ΔLikt in different periods could be calculated by Equation (9):  

0

p 0
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 (9) 
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The load demand after TOU price Gt could be expressed as Equation (10): 

1 1

/ (1 )
I K

t ikt k

i k

G L l
 

   (10) 

From the above analysis, TOU price would influence load demand distribution and units’ output 

power. Therefore, TOU price can be regarded as a function of independent variables ΔLikp, ΔLikf and 

ΔLikv. The variable Gt can be calculated by Equation (11): 

p f v( , , )t t ik ik ikG G P P P     (11) 

3. Energy Storage Systems Charging and Discharging Model 

In traditional electricity generation mode power generation, transmission and allocation progresses  

are happening at almost the same time. This characteristic would influence electric system’s planning, 

construction, scheduling and controlling mechanisms. Energy storage systems are both power sources and 

loads; in valley load period, ESSs could charge as a load, and in peak periods ESSs could discharge as a 

power source. Large-scale energy storage system could effectively decrease peak-valley load ratio, improve 

electricity quantity, improve power supply stability and promote renewable energy grid connection. 

While charging or discharging the ESS itself would also consume some energy. Therefore, considering 

energy conversion efficiency ESSs’ charging-discharging behavior at time t should meet Equation (12): 

0

1 1

( - )
t t

t t ess t

t t

Q Q Q p Q
 

 



 

     (12) 

wherein t  is the index for time, 1,2,...t T  ; Q0 is the initial storage electricity of the ESSs; 
tQ   is the 

storage electricity of ESSs at time t ; 
tQ  is the charging power of ESSs at time t; 

tQ  is the discharging 

power of ESSs at time t; Pess is the energy conversion efficiency coefficient of ESS. Equation (12) states 

that the original storage energy plus charging gains minus the current storage capacity and then 

multiplies energy efficiency coefficient should be equal to the summation of discharging. 

Assume ESSs could not charge and discharge at the same time, its charging-discharging status should 

meet Equation (13): 

0t tQ Q    (13) 

wherein 
tQ  is charging power of the ESSs at time t; 

tQ  is discharging power of ESSs at time t. 

ESSs charging and discharging power is constrained by its max power limitations: 

0 tQ Q    (14) 

0 tQ Q    (15) 

wherein Q  is the max charging power limitation of the ESSs; Q  is the max discharging power 

limitation of the ESSs. 

The electricity storage in ESSs should be not more than the total storage capacity: 

,tQ Q t T    (16) 

wherein Q  is the storage capacity of ESSs. 
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4. Wind Power Uncertainty Simulation 

Before studying the wind power consumption problem, wind power output and basic wind scenarios 

should be obtained. Wind turbine output is closely related with wind velocity at the wind turbine’s hub 

part. Therefore, wind power output could be calculated by Equation (17) [29]: 

𝑤 =
1

2
𝑐𝑤ρ𝐴𝑣

3 (17) 

wherein w is the available wind power output; ρ is air density; A is the swept area of wind turbine’s blades; 

v is wind velocity at wind turbine’s hub part; cw is a nonlinear function concerning Tip Speed Ratio (TSR) 

and pitch angle. 

In the actual calculation, the nonlinear factors in Equation (17) have little influence on wind power 

output [30], therefore, this paper chooses a piecewise linear function to simplify the calculation of wind 

power output [31]. Wind power is limited by incoming wind velocity. If the incoming wind velocity is 

lower than wind turbine’s cut-in wind velocity or higher than cut-out wind velocity, a wind turbine would 

not generate power. The wind turbine’s available output power could be calculated by Equation (18):  

*

, , , ,

, ,

0 ,

( ) ( )

, 

t in t out

m t m rated t in m rated out in t m rated

m rated m rated t out

v v or v v

w w v v v v v v v

w v v v

  


    


 

,  (18) 

wherein M is wind turbine number; m is the index of wind turbine, m = 1,2,…,M; 
*

,m t
w  is the available 

output of wind turbine m at time t; vt is the real-time wind velocity at time t; vin and vout are respectively 

wind turbine cut-in and cut-out wind velocities; vm,rated is the rated wind velocity of wind turbine m; 

wm,rated is the rated output of wind turbine m. 

4.1. Wind Power Output Scenario Simulation  

There are many existing methods to simulate wind power output scenarios [32,33]. The Monte Carlo 

method is a relatively accurate and widely used sampling method. The method has good adaptability, 

and its errors are only related to the standard deviation and sample size. However, its accuracy is 

constrained by both the stochastic sampling reliability and the simulation times. Therefore, The Monte 

Carlo method would consume large amounts of computation time to achieve a satisfactory accuracy.  

To overcome this flaw of the Monte Carlo method, the Latin Hypercube Sampling method (LHS) has been 

put forward [33]. It do not require as large amounts of computation time as the Monte Carlo method. 

Therefore, this paper chooses LHS to simulate wind power output scenarios, the details are as follows [34]: 

Assume X is a H-dimensional random variable. The individual elements xh (h = 1,2,…,H) of X are 

independent of each other. And Fh (h = 1,2,…,H) is the probability distribution function for element xh, then: 

( ) , [0,1]h h h hy F x y   (19) 

For a given simple size N, divide the domain of yh into N non-overlapping intervals of equivalent 

length, the length of each interval is 1/N. Then for an interval (n-1,n), choose a point of 

( ),( [ 1, ])h h hy F x h n n    as its sampling value xhn. Assume phn is a uniformly distributed random 

variable, and its domain is [0, 1]. Then for the n-th sampling, yhn is the probability value of the h-th 
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element xh of X, and yh should be in interval 
1

[ , ]
n n

N N


. Therefore the n-th sampling result could be 

calculated by Equation (20): 

1[( 1) / ]hn h hnx F n p N    (20) 

Once all the elements  1,2, ,ix i H  are sampled, X could be obtained. Then define a sampling 

result matrix  hn H N
P x


  (  1... ...h hn hNP x x x ). 

Assume h(x) is a transformation function of two input variables, for example x1 and x2. And the 

estimate of expectation value h  of h(x) could be calculated as: 

 
1

N

j

j

h h x N


  (21) 

Sample variance depends on the method used to simulate the sample. The variance of random sample is: 

    var h var h x N  (22) 

The variance of the sample simulated by Latin Hypercube method is: 

           1 21 cov ,var h var h x N N h x h x N    (23) 

According to Equations (22) and (23), the LHS method decreases the sample variance if 

cov(h(x1),h(x2)) < 0. Literature [35] has indicated that when the sample size N is big enough (much larger 

than the number of elements H), the covariance term is asymptotically non-positive. Therefore, it is 

easier for LHS to achieve convergence than for simple random sampling. 

4.2. Wind Power Scenario Reduction Strategy 

The LHS method could be used to get a wind power output scenarios set. Some similar scenarios 

should be deleted to simplify the calculation complexity. The basic concept of scenario reduction is to 

compare a scenario with other scenarios and remove the closest one. The bigger the scenario number, 

the bigger the scenario reduction workload.  

To overcome this problem, many well-known scenario reduction methods have been put  

forward [36–40]. Römisch, et al. [37] reviewed available scenario reduction techniques and discussed 

the related open problems. This paper chooses the Kantorovich distance method [27,39], and sets to 

minimize the Kantorovich distance between the initial scenario and the removed scenario as the 

reduction objective.  

Assume P  is a scenario set for a T-length time period, and its scenario number is H. Therefore, 

{ , 1,2,... }hP s h H    , the element of P  is { , 1,2,..., }t

h hs s t T   and the probability of sh is ph. P  could 

be obtained by LHS method. By scenario reduction we could get a reduced scenario set Q, which 

contains all the remaining scenarios after scenario reduction. { , 1,2,... }rQ s r H  , the element of Q is 

{, 1,2,..., }rs t T   and the probability of rs  is qr. The Kantorovich distance could be calculated by 

Equations (24) and (25): 

   
1 1 1 1

, inf , : 0, , , ,
H H H H

K hr T h r hr hr r hr h

h r h r

D P Q c s s q p h r   
   

 
       

 
    (24) 
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 
1

,
T

T h r h r

t

c s s s s


   
(25) 

Define a removed scenario set R, which contains all removed scenarios. Then the Kantorovich 

distance could be calculated by Equation (26): 

   , min ,K h T h r
r R

h R

D P Q p c s s




   
(26) 

Approximately regard qr as the summation of the scenario’s occurrence probability in the initial 

scenario and the closest removed scenario’s occurrence probability. The details are:  

 
r r h

h R r

q p p


    
(27) 

    :R r h R r r h    
(28) 

 
 

 arg min , ,T h r
h R r

r h c s s h R


    
(29) 

Then build a wind power scenario reduction optimization method based on Equations (24)–(29). 

Assume NR is the number of scenarios that have been removed. The optimized scenario reduction method 

can be expressed by Equation (30): 

   min min , : 1,2, , ,h T h r R
h R

h R

p c s s R H N H H




 
   

 
  (30) 

According to Equation (30), the scenario reduction mechanism would influence the reduction result 

directly. To set appropriate scenario removing number, this paper sets the maximum reduction strategy 

as Equation (31): 

 min ,h T h r
r R

h R

p c s s 




  
(31) 

Equation (31) is to ensure the similar degree of the scenario set after scenario and the initial scenario 

set is in the required range. The scenario reduction model consists of Equations (24)–(31). To solve this 

model, this paper uses the multi-stage heuristic algorithm, referring to [33]. 

5. Power Generation Scheduling Optimization Model with Wind Power 

Power generation scheduling schemes are determined by user demand. The scheduling center makes 

power generation plans for generation units based on the demand load curve. Since wind power has low 

variable cost, improving the wind power utilization level could decrease energy consumption during 

power generation. However, since wind power is intermittent and unstable, backup services are needed 

for its grid connection. This makes system scheduling problems more complicated. Therefore, how to 

allocate units’ output and get more economic benefits is the key problem for power generation 

scheduling. To decrease energy consumption, this paper sets to minimize coal consumption as the 

optimization goal and builds energy-saving power generation scheduling mode. The optimization 

objective is expressed as Equation (32): 

1 , 1

1 1

Min [ ( )+ ( ) ]
T J

jt j jt jt j t jt

t j

z u f g u u S

 

 1-  (32) 
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wherein J is thermal unit number; j is the index for thermal unit, j = 1,2,…,J; ujt is a 0–1 variable, ujt = 1 

represents unit j is on operation at time t and ujt = 0 represents unit j is shutdown at time t; Sjt is startup 

coal consumption of unit j; gjt is the output of unit j at time t; fj(gjt) is a quadratic function for power 

generation coal consumption, its equation is: 

2( )= +j jt j jt j jt jf g a g b g c  (33) 

wherein aj, bj and cj are coal consumption parameters of thermal unit j. The scheduling schemes should 

meet the following constraints: 

(1) Electricity demand and supply balance constraint: 

,

1 1

 (1 )+ (1 )
J M

jt jt j m t m t

j m

u g p w p G
 

     (34) 

wherein pj is the auxiliary power consumption rate of unit j; pm is the auxiliary power consumption rate 

of wind turbine m.  

(2) System maximum backup service constraints: 

max 0,

,

1

( )(1 )
J

max

jt j t jt j t t

j

u g g p R R


     (35) 

max

, 1 , ,=min( , )max

j t jt j t jt j j tg u g g g u

    
(36) 

wherein 
max

,j tg  is max limitation of thermal unit j at time t; Rt is the backup service demand without TOU 

price and ESSs at time t; 0,max

tR  is the max limitation of system spinning reserve without TOU price and 

ESSs at time t; jg   is the max climbing limitation of unit j output power. 

(3) System minimum backup service constraints: 

min 0

,

1

( )(1 )
J

min

jt jt j t j t

j

u g g p R


   ，
 

(37) 

min

, 1 , ,max( , )min

j t jt j t jt j j tg u g g g u

     
(38) 

wherein 
min

,j tg  is the min limitation of thermal unit j at time t; 0,min

tR  is the min limitation of system 

spinning reserve without TOU price and ESSs at time t; jg   is the max climbing limitation of unit j 

output power. 

(4) Wind power real-time output constraint: 

,

1

M

m t t c

m

w w


  (39) 

wherein λt is the equivalent utilization coefficient of wind power at time t. 

(5) Thermal units output constraint: 

, ,

min max

jt j t jt jt j tu g g u g   (40) 

(6) Thermal units power climbing constraint: 

, 1j jt j t jg g g g 

      (41) 
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(7) Thermal units’ start time constraints: 

on on

, 1 , 1( )( ) 0j t j j t jtT M u u     (42) 

wherein 
on

, 1j tT   is the continuous operation time of unit j at time t−1; 
on

jM  is the min operation time 

limitation of unit j. 

(8) Thermal units’ downtime constraints: 

off off

, 1 , 1( )( ) 0j t j jt j tT M u u     (43) 

wherein 
off

, 1j tT   is the continuous shutdown time of unit j at time t−1; 
off

jM  is the min limitation shutdown 

time of unit j. 

The scheduling model achieves energy-saving by controlling the startup-shutdown and units output. 

Therefore, the decision variables in the model are units’ startup-shutdown statue variable ujt,  

units’ output variable gjt and wind power’s real-time output variable wm,t. 

6. Power Generation Scheduling Optimization Model Considering ESSs and DRPs 

DRPs and ESSs could change demand load distribution. The distribution would influence the power 

generation scheduling scheme. Therefore, a power generation scheduling scheme can be optimized with 

the influence of DPRs and ESSs. According to the operation mechanism, DRPs and ESSs could help 

load shifting, decrease load volatility and decrease units’ scheduling pressure. Then, units with high 

effectiveness and low coal consumption rate would output more, units with low effectives and high coal 

consumption level would output less or not generate. In this way, system average coal consumption 

could be decreased. 

According to the above analysis, this paper sets thermal units’ real-time output, operation statue, wind 

power real-time output, ESSs real-time charging and discharging power and TOU price change as the 

decision variables and builds a power generation scheduling optimization model with ESSs and DRPs. 

The optimization objective is still minimizing total coal consumption: 

2 , 1

1 1

Min [ ( )+ ( ) ]
T J

jt j jt jt j t jt

t j

z u f g u u S

 

 1-  (44) 

The scheduling schemes should meet the following constraints Equations (1)–(16),(18),(33),(38)–(43). 

Besides, they should meet constrains of ESSs and backup services: 

(1) ESSs charging and discharging constraint: 

,

1 1

(1 )+ (1 )+
J M

jt jt j m t m t t t

j m

u g p w p Q G Q 

 

      (45) 

(2) The max and min backup service limitation constraints of wind power considering ESSs  

and DRPs: 

max

,

1

( )(1 )
J

max

jt j t jt j t t

j

u g g p R R


     (46) 

wherein max

tR  is the max limitation of system spinning reserve with TOU price and ESSs at time t: 
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min

,

1

( )(1 )
J

min

jt jt j t j t

j

u g g p R


    (47) 

wherein min

tR  is the min limitation of system spinning reserve with TOU price and ESSs at time t. 

7. Linear Processing 

The decision variables of the optimization model contains continues variables and 0–1 variables, 

which is a mixed integer optimization problem. Thermal units’ real-time output is a decision variable, 

the relationship between the real-time output and coal consumption is expressed as a quadratic function 

fj(g). The optimization objective function contains a multiplication of a 0–1 variable and a quadratic 

term. Therefore, the power generation scheduling optimization problem is a mixed integer nonlinear 

programming problem [41]. Algorithms for mixed integer nonlinear programming problems are general 

complicated with slowly convergence. Therefore, referring to [42] this paper divides thermal units’ 

power generation coal consumption function into segments. In each segment the relationship could be 

expressed in a linear function. In this way the quadratic optimization problem is transferred into a linear 

optimization (shown in Figure 1). 

Figure 1. Liner processing of quadratic function. 

ming min +g  min +2g  maxg
g

( )f g

min( )f g

min( + )f g 

min( +2 )f g 

max( )f g

0
 

Assume the quadratic function has been divided into N segments. Then the function could be 

expressed as a piecewise linear function [42] . When : 

'( ) ( + ) ( ) [ (2 1) 2 ]min min min

jf g f g n g g n b n c cg           (48) 

In Equation (48) n = 0,1,…,N−1 and Δ is the length of the segments Δ = (gmax − gmin)/N. 

For optimization of objective Equations (32) and (44), the multiplication of two binary variables 

should be dealt with. This paper divides the calculation of startup-shutdown coal consumption 

, 1

1 1

( )
T J

jt j t jt

t j

u u S

 

 1-  into two parts, i.e., unit startup part and shutdown part. And the startup-shutdown 

coal consumption of unit j at time t could be calculated by Equations (49) and (50): 

'( )jf g min min[ , ( 1) ]g g n g n     
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startup j t j t j t j tstartup

jt

j t j t

u u u u
S

u u

  



 
 


 (49) 

, -1 , , , 1

, , 1

( ) ,

0 ,

shutdown j t j t j t j tshutdown

jt

j t j t

u u u u
S

u u

 



 
 


 (50) 

wherein 
startup

jtS  and 
shutdown

jtS  are respectively startup and shutdown coal consumption of unit j at time t ; 

startup  and shutdown  are coal consumption coefficient of thermal unit startup and shutdown, in this 

simulation =startup shutdown  . And total coal consumption amount could be calculated by Equation (51): 

, 1

1 1 1 1 1 1

( ) =
T J T J T J

startup shutdown

jt j t jt jt jt

t j t j t j

u u S S S

     

  1-  (51) 

The simulation has been implemented in the GAMS optimization software using CPLEX 11.0 linear 

solver. The CPU time required for solving the problem for different case studies with an idea pad 450 

series laptop computer powered by core T4300 processor and 2 GB of RAM was less than 10 s.  

8. Case Study 

8.1. Simulation Scenarios 

To study ESSs’ and DRPs’ influence on system wind power consumption capacity, this paper sets 

four simulation scenarios: 

Case 1: Basic scenario. In this case ESSs and DRPs are not considered, it is a scheduling optimization 

problem with wind power. 

Case 2: ESSs scenario. In this case ESSs are taken into consideration but DRPs is not.  

Four energy storage systems are added into the scheduling system. The storage capacity is 400 MW and 

the charging-discharging power limitation is 80 MW. 

Case 3: DRPs scenario. In this case DRPs is taken into consideration but ESSs are not. The electricity 

price in peak load period and valley load period are respectively increased and decreased by 25%. 

Case 4: ESSs and DRPs scenario. In this case both ESSs and DRPs are taken into consideration.  

Four energy storage systems are added into the scheduling system and the electricity price in peak load 

period and valley load period are increased and decreased by 25% respectively. 

8.2. Basic Data 

To simulate the model proposed by this paper, 10 thermal units, one wind power farm and four energy 

storage systems are chose as the simulation system. According to demand load distribution 

characteristics and voltage level, users could be classified into A and B types. Both A and B have I, II 

and III three different voltage level users. Load demand distributions of users are shown in Figure 2.  

The line-loss of voltage level I, II and III are respectively 5.5%, 5.0% and 4.5%. Electricity prices before 

implementing TOU of user type AI, AII and AIII are respectively 464, 444 and 424 Yuan/MW·h, and 

of user type BI, BII and BIII are respectively 623, 593 and 563 Yuan/MW·h.  
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According to the TOU price mechanism, 24 h are divided into three periods, namely peak load, flat 

load and valley load periods. Valley load period contains time zone 0:00–5:00 and 21:00–24:00,  

flat load period contains 5:00–8:00 and 14:00–19:00 and peak load period contains 8:00–14:00 and 

19:00–21:00. Electricity price in the peak load period is increased by 25% and in the valley period is 

decreased by 25%. Demand elasticity coefficients matrixes of type A and B are: 

0.25 0.31 0.28

0.23 0.25 0.24

0.18 0.11 0.25

AE

 
 

 
 
  

 
(52) 

0.23 0.10 0.14

0.20 0.22 0.23

0.35 0.25 0.25

BE

 
 

 
 
  

 
(53) 

Figure 2. Load distribution of various users in different voltage ranges (MW). 
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The max limitation of storage energy of an energy storage system is 100 MW·h, the max limitation 

of its charging and discharging power is 20 MW. The initial storage energy of an energy storage system 

is 0 MW·h. The coefficients of thermal units are listed in Table 1. From unit 1# to unit 10#, the installed 

capacity, coal consumption coefficient, pollutant emission coefficient and startup-shutdown time are 

decreasing while energy efficiency is decreasing. 

Table 1. Coefficients of thermal power units. 

Unit 

min

jg  

(MW) 

max

jg  

(MW) 

jg   

(MW/h) 

jg   

(MW/h) 
aj bj cj 

on

jMT  

(h) 

off

jMT  

(h) 

Sit 

(t) 
𝛉𝒊 

1# 250 600 280 −280 6.44 × 10−6 0.274 11.71 8 8 25.6 4.9% 

2# 200 500 240 −240 8.08 × 10−6 0.282 9.79 8 8 23.1 5.3% 

3# 200 450 210 −210 1.12 × 10−5 0.293 8.88 7 7 22.3 5.2% 

4# 180 400 180 −180 1.84 × 10−5 0.297 8.48 7 7 19.6 5.7% 

5# 150 350 150 −150 2.40 × 10−5 0.304 7.27 6 6 16.2 6.1% 

6# 150 300 150 −150 3.66 × 10−5 0.308 6.17 5 5 15.4 7.1% 

7# 120 300 120 −120 3.74 × 10−5 0.317 5.26 4 4 12.3 6.8% 

8# 100 250 100 −100 4.59 × 10−5 0.328 4.65 4 4 8.1 7.3% 

9# 70 150 70 −70 4.15 × 10−5 0.332 3.54 3 3 4.3 8.3% 

10# 30 100 50 −50 9.01 × 10−5 0.337 1.43 2 2 2.1 7.7% 
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In this case the total installed wind power capacity is 1000 MW. Based on the wind power output 

scenario simulation method in Section 4.1., we used Matlab to get 100 kinds of basic wind power output 

scenarios. Then we remove scenarios according to the introduced scenario reduction strategy, and finally 

keep 20 kinds of basic wind power output scenarios as the basic data of the optimization model. To 

simplify the calculation, this paper uses the average value of wind power output in 24 h in the 20 cases 

as available wind power output, as shown in Table 2. 

Table 2. 24 h output power of wind farm. 

Time 
Available wind power 

(MW·h) 
Time 

Available wind power 

(MW·h) 
Time 

Available wind power 

(MW·h) 

1 581.5 9 716.9 17 480.0 

2 726.2 10 495.4 18 372.3 

3 646.2 11 572.3 19 264.6 

4 680.0 12 633.8 20 406.2 

5 667.7 13 732.3 21 523.1 

6 683.1 14 923.1 22 310.8 

7 843.1 15 812.3 23 415.4 

8 747.7 16 756.9 24 566.2 

8.3. Simulation Results 

8.3.1. Case 1: Self-Scheduling Results of System in the Basic Scenario 

Case 1 is a reference for the other three cases. ESSs and DRPs are not considered in this case. With 

the objective of minimizing power generation coal consumption, thermal units and wind power output 

scheduling results are optimized. Figure 3 shows their output structure in Case 1. According to Figure 3, 

in flat and valley load periods, load is mainly allocated to unit 1#, 2# and 3#. In those periods, unit 1# is 

always in full generation statue and unit 2# almost in full generation statue. In peak load period unit 4#, 

5# and 7# are called.  

Figure 3. Thermal units and wind power output in Case 1. 
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In the flat load period and valley load period, load demand and load variation are relatively small, so 

units with high energy efficiency and small pollutant emission has a priority to be called, so units 1# and 

2# are called all the time and unit 3# is called to adapt to the load variation. In the peak load period,  
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load demand increases and changes quickly, units 1# and 2# are already in full power generation statue. 

Although unit 3# is better than other units, unit 3# could not meet the load variation requirement since it 

need more time to startup-shutdown than small capacity units. Therefore, units with smaller capacity and 

shorter startup-shutdown time were called to generate. In Case 1, the total coal consumption is 12,006 t. 

8.3.2. Case 2: Self-Scheduling Results of System in the ESSs Scenario 

In Case 2, this paper considers ESS’ influence on load demand and system wind power consumption 

capacity. Compared with Case 1, the electricity balance constraint is changed and charging-discharging 

constraint of ESSs is added in this case. Figure 4 shows thermal units and wind power output structure 

in Case 2. According to Figure 4, in the flat load period and valley load period, the output structure is 

similar to that in Case 1. Load is mainly allocated to units 1# and 2# and unit 3# is called for adaptation. 

In the peak load period units 4#, 5# and 8# are called. 

Figure 4. Thermal units and wind power output in Case 2. 
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The energy storage system can influence the demand load curve by its charging and discharging 

behavior, making the load curve smoother and load demand changes not as quickly as that in Case 1. 

Compared with Case 1, small installed capacity units’ output decreased, units 2# and 3# output increased 

(such as 4–7 and 15–17 period). In Case 2 the total coal consumption is 11,702 t. 

8.3.3. Case 3: Self-Scheduling Results of System in the DRPs Scenario 

In Case 3, TOU price’s influence on load demand is considered and the electricity price in the peak 

load period and valley load period are respectively increased and decreased by 25%. According to  

Equations (1)–(11) load demand with demand response could be calculated. Demand load curves with 

and without demand response are drawn in Figure 5. When considering demand response load demands 

in peak load period were decreased and load demand in valley load period was increased. 

The optimized thermal units and wind power output structure of this case are shown in Figure 6. In 

Case 3, large capacity units’ output steadily, and other units were mainly called in peak load period. 

Because of the influence of demand response, the demand load curve has become much smoother, which 

makes units 1# and 2# generate steadier and the units called for peak shaving could be used for wind 

power’s backup service. In Case 3 total coal consumption is 11,258 t. 
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Figure 5. Load demand curve before and after considering demand response. 
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Figure 6. Thermal units and wind power output in Case 3. 
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8.3.4. Case 4: Self-Scheduling Results of the System in the ESSs and DRPs Scenario 

In Case 4 the influence of ESSs and DRPs are considered. The optimized thermal units and wind power 

output structure are shown in Figure 7. Compared with the former three cases, units 1# and 2# generate 

steadily, unit 3# generates in the flat load period, and unit 5# is called in the flat and peak load period. 

Figure 7. Thermal units and wind power output in Case 4. 
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With the influence of ESSs and DRPs, system’s demand load curve has become smoother. Load was 

mainly allocated to high energy efficiency and small pollutant emission units. In the valley load period, 

the demand load was increased and small capacity thermal units could act as backup service, so wind 
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power output increased significantly. In Case 4 total coal consumption is 11,022 t, which is the lowest 

of the four cases. 

8.4. Result Analysis 

To compare wind power consumption, and the system’s economic and environmental benefits in 

different cases this paper comparatively analyzes demand load, wind power output, energy storage 

system charging-discharging behavior, thermal units’ output and system’s economic and environmental 

benefits in four cases. 

8.4.1. Demand Load 

The system’s load structure in the four cases is listed in Table 3. Compared with Case 1, in Case 2, 

the load proportions of the valley load and flat load periods increased while the load proportion of the 

peak load period decreased. The maximum demand load decreased while the minimum demand load 

remained the same, and the peak-valley ratio decreased from 2.26 to 2.20. In Case 3, load proportions 

changed like those in Case 2 but more dramatically so. The maximum demand load decreased and the 

minimum demand load increased, and the peak-valley ratio decreased from 2.26 to 1.77. In Case 4 the 

variation amount is the maximum. The peak load proportion decreased from 41.06% to 37.21% while 

the valley load proportion increased from 25.93% to 28.05%. The peak-valley ratio decreased to 1.63. 

Those results show that both ESSs and DRPs could help load shifting. The load shifting effect reaches 

the maximum when both ESSs and DRPs are introduced. Table 3 lists the load demand structures in the 

four cases. 

Table 3. Load demand structure in four cases. 

Cases 
Load structure (%) Max load 

(MW) 

Min load 

(MW) 
Peak-Valley ratio 

Valley Flat Peak 

Case 1 25.93 33.01 41.06 2905 1284 2.26 

Case 2 26.09 33.16 40.74 2830 1284 2.20 

Case 3 28.38 34.35 37.27 2561 1445 1.77 

Case 4 28.50 34.29 37.21 2483 1525 1.63 

8.4.2. Wind Power Output 

Compared with Case 1, wind power output increased from 12,810 MW·h to 14,173 MW·h and the wind 

power consumption ratio increased from 88.0% to 97.4% in Case 4. Wind power output in Case 1 is the 

lowest. According to Table 4 in Case 1, abandoned wind power exists in time period 1–3, 5, 15, 16–17, 24 

and the total abandoned power is 174 MW·h. Abandoned wind power in four cases are 1747, 1234, 1164 

and 383 MW·h, respectively. Wind power output in Case 4 achieves its maximum value. Wind power output 

mainly increased in flat and valley load periods (time period 0–4 and 15–17). Table 4 shows wind power 

consumption situations in the four cases, and wind power output in the four cases is drawn in Figure 8. 
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Table 4. Wind power consumption situations in four cases. 

Cases 
Wind power output 

(MW·h) 

Total abandoned 

wind (MW·h) 

Wind power output proportion 

of the total output (%) 

Wind power 

consumption ratio (%) 

Case 1 12,810.1  1747 26.1  88.0  

Case 2 13,322.6  1234 27.2  91.5  

Case 3 13,392.4  1164 28.1  92.0  

Case 4 14,173.4  383 29.7  97.4  

Figure 8. Wind power output in the four cases. 
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According to the above results, energy storage system and demand response could change demand 

load distribution to some extent and decreased the peak-valley ratio. In this way, DRPs and ESSs could 

relieve the scheduling pressure caused by wind power output anti-load distributed characteristics, 

improve power system wind power consumption capacity and decrease abandoned wind power. 

In Case 1, wind power could output effectively only in the peak load period. In the valley load period 

load is mainly allocated to highly efficient units (units 1# and 2#) and abandoned wind power exists. 

With the influence of ESSs and DRPs the demand load curve becomes smoother and demand load in the 

valley load period increased. Small capacity units used for peak shaving would be called less. Therefore, 

small capacity units could provide backup service for wind power in valley load periods. Increased  

load demand in valley load periods gives wind power more space to output, so abandoned wind  

power decreased. 

8.4.3. ESSs Charging and Discharging Behavior 

Energy storage system’s charging and discharging behaviors in Case 2 and Case 4 are listed in  

Table 5. Energy storage systems mainly charge in the valley load and flat load periods, which would 

increase load demand, and discharge in the peak load period, which could supply electricity for power 

systems. Compared with Case 1, energy storage systems would be more involved in load shifting, and 

charging-discharging electricity increased in Case 4. 
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Table 5. Charging and discharging optimization results of energy storage system (MW·h). 

Scenarios 
Valley period Flat period Peak period 

Charging Discharging Charging Discharging Charging Discharging 

Case 2 80.5 0.5 75.8 - - 155.8 

Case 4 131.3 51.3 156.3 156.3 62.6 142.6 

8.4.4. Thermal Power Output 

Thermal units’ total output keeps decreasing from Case 1 to Case 4. Unit 1# remains in full generation 

mode in the four cases, and unit 2#’s output increased from 10,975 MW in Case 1 and Case 2 to 11,023 MW 

in Case 3 and 11,565 MW in Case 4. The output of unit 3# also increased from Case 1 to Case 4. 

Conversely, the unit 4#, 5# and 7# output decreased. Unit 8# is only called to generate in Case 2. 

For thermal units, the smoother demand load curve reduces the load shifting requirement, which 

means less startup-shutdown times. Units with high efficiency and low pollutant emission are more 

called to generate. In this way, power generation coal consumption and startup-shutdown coal 

consumption are decreased. However, with the influence of ESSs and DRPs, thermal units’ total 

electricity sales decreased. With wind power utilization efficiency improving the market share and 

profits of thermal units would both decrease. Therefore, a coordination mechanism should be applied to 

balance the benefit relationship between thermal and wind power. Table 6 lists the output allocation of 

thermal power units in the four cases. 

Table 6. Output allocation of thermal power units in four cases (MW). 

Unit Case 1 Case 2 Case 3 Case 4 

1# 14,400 14,400 14,400 14,400 

2# 10,975 10,975 11,023 11,565 

3# 5873 5873 6216 6448 

4# 3437 3437 3283 2705 

5# 2823 2823 1100 600 

6# 0 0 0 0 

7# 120 120 0 0 

8# 0 0 650 0 

Total output 37,629 36,672 35,718 35,196 

8.4.5. System’s Economic and Environmental Benefits 

Thermal units’ coal consumption and pollutant emission in the four cases are listed in Table 7 

(wherein coal cost is 600 Yuan/t and consume 1 t coal would emit 2.89 t CO2 and 2.05 kg SO2 [43]). 

Compared with Case 1, thermal units’ output and startup-shutdown coal consumption decreased, 

system’s average coal consumption decreased and CO2 and SO2 emission decreased in Case 4. 

Therefore, system’s power generation cost and pollutant emission cost decreased. 

Compared with Case 1, Case 2 decreased coal consumption by 304.5 t, which means a decreased coal 

cost of 18.3 × 104 Yuan. Compared with Case 3, Case 4 could also decrease coal consumption and 

pollutant emissions. Part of the economic benefits could be used to build a reasonable cost-effective 

distribution mechanism and provide subsidies for energy storage systems. This could help energy storage 
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systems achieve a fiscal balance and promote long-term development of the energy storage industry. 

Table 7 lists the system coal consumptions and pollutant emissions in the four cases. 

Table 7. System coal consumption and pollutant emission in four cases. 

Cases 

Thermal power 
System coal cost  

(g/kW·h) 

Generation cost  

(104 Yuan) 

CO2  

(t) 

SO2  

(kg) 
Output  

(MW·h) 

Coal  

(g/kW·h) 

Start-stop coal  

(g/kW·h) 

Case 1 37,629  319.08  3.15  244.70  720  34,699  24,613  

Case 2 36,672  319.10  2.81  238.49  702  33,819  23,989  

Case 3 35,718  315.96  2.63  236.95  677  32,615  23,136  

Case 4 35,196  313.17  1.75  231.03  661  31,854  22,595  

For system efficiency, the introduction of TOU price and energy storage systems could decrease 

abandoned wind power and decrease total coal consumption. The average power generation coal cost 

would decrease obviously. For environment protection, the introduction of TOU price and energy storage 

systems could improve system’s energy-saving levels. Compared with Case 1, the other three cases 

decreased coal consumption by 30.45 t, 720.9 t and 984.3 t, respectively, CO2 emission by 907.5 t, 

2148.3 t and SO2 emission by 2733.4 t, 624.3 kg, 1477.9 kg and 2017.9 kg. 

According to the above analysis, TOU price and energy storage systems could help increase wind 

power consumption capacity, decrease energy consumption, decrease pollutant emissions and achieve 

environmental benefits. 

9. Conclusions 

Wind power is intermittent, unstable and its output is anti-load distributed, which hinders its grid 

connection. Generally wind power can only be effectively utilized in peak load periods, and one cannot 

avoid abandoned wind power in the flat load and valley load periods. To analyze the influence of ESSs 

and DRPs on system wind power consumption capacity, an example simulation is made in a 10 units 

system with 1000 MW wind power and 400 MW energy storage system under four simulation cases. 

The optimization results show: 

1) Energy storage systems and TOU price could influence demand load curve and decrease the  

peak-valley load ratio. The demand curve would be smoother and system would be able to accept 

more wind power in the valley load period. Therefore, with the optimization on both the power 

generation side and load demand side, the system’s wind power consumption capacity could  

be improved. 

2) With the influence of energy storage systems and demand response, wind power output increased 

and thermal units’ output decreased. The system’s total coal cost would be decreased. However, 

the thermal power’s market share and profits would also be decreased. Therefore, a profits 

allocation mechanism should be made to ensure the economic benefits of both wind power and 

thermal power. 

3) The introduction of energy storage systems would improve the system’s effectiveness and 

achieve better economic benefits. Therefore, governments could use part of the saved coal cost 

to provide subsidies for energy storage systems to help the development of related industries. 
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4) From the aspect of environment protection, while considering ESSs and DRPs, the system’s coal 

consumption and pollutant emission obviously decreased. This could help the power industry 

achieve energy-savings. 
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