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Abstract: In order to meet the needs of wind speed prediction in wind farms, we consider 

the influence of random atmospheric disturbances on wind variations. Considering a 

simplified fluid convection mode, a Lorenz system can be employed as an atmospheric 

disturbance model. Here Lorenz disturbance is defined as the European norm of the 

solutions of the Lorenz equation. Grey generating and accumulated generating models are 

employed to explore the relationship between wind speed and its related disturbance series. 

We conclude that a linear or quadric polynomial generating model are optimal through the 

verification of short-term wind speed prediction in the Sotavento wind farm. The new 

proposed model not only greatly improves the precision of short-term wind speed 

prediction, but also has great significance for the maintenance and stability of wind power 

system operation. 

Keywords: wind disturbance model; Lorenz equation; polynomial generating function; 

accumulated generating model; Rayleigh number; short-term wind speed prediction 
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1. Introduction 

Wind energy is one of the most popular and potential renewable energies worldwide [1,2].  

Rapid development of wind energy has contributed greatly to energy supply systems. The Global Wind 

Energy Council (GWEC) has provided the latest and comprehensive statistics about the development 

of wind power industries. By the end of 2013, global cumulative and new installed wind power 

capacities have exceeded 318 GW and 35 GW, respectively. China occupied the largest share of both 

parts [3]. As a result how to effectively utilize wind resources has received increasing attention [4,5]. 

Wind power generation in wind farms could make full use of wind energy on a large-scale [6,7],  

but considering the stochastic volatility nature of wind energy, integration of wind power into power 

systems becomes a challenge [8–11]. Necessary measures should be taken to maintain the normal 

operation of electric systems and decrease losses that could affect people’s daily prodivity and life. 

Therefore, high precision wind speed and power prediction is urgently needed. Scholars at home and 

abroad have done lots of studies on wind forecasting and achieved excellent results [5,12–14]. In this 

paper a novel wind disturbance model to improve the performance of conventional back propagation 

(BP) neural networks is proposed. 

Wind formation and variation in the atmosphere are typical nonlinear processes [15]. As Lorenz 

said in his 2008 lecture at the University of Rome named the Butterfly Effect, the real atmospheric 

state of motion is actually the observed state plus a small perturbation. This random perturbation is the 

key consideration that affects wind speed forecasting precision. This problem could not be resolved by 

linear theory. Lorenz extracted a three-variable system called the Lorenz system from a fluid 

convection model in 1963 [16–19]. The Lorenz system is frequently used to study nonlinear science 

since it was first proposed due to its good performance in accomodating chaos [20,21]. Here it is used 

as a typical atmospheric disturbance model. Different initial conditions and values of parameters could 

result in different evolutions of a Lorenz system. Various types of Lorenz disturbances are used to 

establish wind disturbance models in this article. 

This paper is organized as follows: Section 2 briefly introduces the related content on the topic of 

nonlinear Lorenz disturbances. Section 3 presents the modeling process and the verification on 

disturbance model through short-term wind speed prediction. Section 4 concludes the paper. 

2. Nonlinear Lorenz Disturbance and Data Preprocessing Forms  

2.1. Different Types of Lorenz Disturbance and Normalization Constants 

2.1.1. Different Types of Disturbance in a Lorenz System 

The Lorenz system was extracted from the seven-variable fluid convection model of  

Saltzman [17–19,22]. A Lorenz system could exhibit chaotic state in a simplest way in nonlinear 

systems. It has enriched people’s acknowledgement of the dynamics of nonlinear systems and played a 

vital role on the development of chaos theory. The fluid convection model simplified by Saltzman can 

be expressed as follows [17]: 
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where ψ is a two-dimensional stream function, θ is a temperature difference from that occurring in 

equilibrium state, g,ς,υ,κ denote the acceleration of gravity, the coefficient of thermal expansion,  

the kinematic viscosity, and the thermal conductivity, respectively. 

The convection Equation (1) describes the following system. The fluid moves between two fixed 

parallel surfaces, whose temperature difference is kept constant by external heating. The whole 

procedure was assumed to develop in the vertical plane. If the solution of Equation (1) was unstable, 

convective motion would develop. This system was similar with what Lorenz studied at that time. 

Then Equation (1) was further simplified into the following three-variable system called Lorenz 

system given by: 

 x x y

y xz rx y

z xy bz

  

   
 



  

(2)

where x is proportional to fluid intensity, y is proportional to the temperature difference between the 

ascending current and the descending current, z is proportional to the temperature difference in the 

vertical direction compared to the equilibrium state, σ, r and b are all positive parameters. We can 

obtain various Lorenz attractors by taking different values of r. Those attractors in phase space 

correspond to various forms of disturbance in a real atmospheric system. The values of r can be 

divided into four intervals as shown in Table 1 [16]. 

Table 1. The actual fluid motions in Lorenz system when parameters σ and b are 

respectively equal to 10 and 8/3. 

Items to be Compared The Values of r and its Corresponding Fluid Motions 

Rayleigh Number (r) 0 < r < 1 1 < r < 13.97 13.97 < r < 24.74 r > 24.74
Actual fluid motion Heat conduction Regular convection Transient chaos Chaos 

2.1.2. Normalization Constant of Lorenz Disturbance  

It is convenient to discuss the solutions of Lorenz system in R3. Here we define the European norm 

of vectors in R3 as the atmospheric disturbance. Let P(x,y,z) be an arbitrary vector in R3. The European 

norm of P(x,y,z) can be expressed as: 

2 2 2+y +zL p x   (3)

There will be a problem if taking Formula (3) as the form of the Lorenz disturbance. Let the initial 

condition and parameters σ, b, r be (0,1,0),10,8/3,45, respectively. The Lorenz disturbance defined by 

Formula (3) is demonstrated in Figure 1a. We can clearly see that the disturbance fluctuates within 

interval (0,90), which is larger than the range of the actual wind speed changes. Therefore, we need to 
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define a normalization constant to reduce this range to a reasonable small interval like (0,3), which is 

decided by the deviations occurred in previous wind speed predictions. Let the normalization constant 

be 50 for the disturbance shown in Figure 1a. The normalized disturbance is shown in Figure 1b. 

Generally the normalization constant varies according to different size of Lorenz disturbance and  

wind fluctuations.  

Figure 1. (a) The initial Lorenz disturbance defined by Formula (3). (b) The normalized 

Lorenz disturbance. 

 

2.2. Data Preprocessing 

It is necessary to preprocess the scattered sample data before building the disturbance model.  

Figure 2 shows the distribution of wind speed sequence and its corresponding disturbance series in a 

certain period. For the calculation of the two arrays we can refer to the modeling process in  

Section 3.3. We can see that the points are distributed extremely irregularly. A further calculation of 

the correlation coefficient can quantitatively describe the relationship of the two arrays. The calculated 

result is 0.1713, which is less than 0.3 and proves the irrelevance between the two arrays.  

The correlation coefficient is expressed by: 

  
   2 2

x x y y
r

x x y y

 


 




 (4)

where x and y denote the two arrays to be analyzed, x  and y  denote the average of x and y, respectively. 

In this section grey generating is applied to discover the inherent relationship between variables x 

and y. Grey generating commonly includes Accumulated Generating Operation (AGO), Inverse AGO 

(IAGO), Mean (MEAN), and Effect Measure (EM), etc. AGO not only does well in establishing a grey 

model, but also can be used to reduce the randomness of discrete sequences [23,24]. AGO means 

adding original data in sequence to obtain the generating series [25,26]. 
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Figure 2. Wind speed versus the corresponding disturbance series for a period of time. 

 

Definition 1 

Let  0x  be raw series: 

              0 0 0 01 , 2 , ,x x x x n   (5)

 1x  is AGO series of  0x , denoted as: 

   1 0x AGOx  (6)

Provided that: 

              1 1 1 11 , 2 , ,x x x x n 
 (7)

where: 

       1 0

1

, 1,2, ,
k

m

x k x m k n


   (8)

Definition 2 

y is IAGO series of  0x , denoted as: 

 0y IAGOx  (9)

Provided that: 

      1 , 2 , ,y y y y n   (10)

where: 

           0 0 0(1) (1), 1 , 2,3, ,y x y k x k x k k n     
 (11)

Based on the ways of data processing like Formulas (5)–(8), the same treatment could be applied to 

the arrays in Figure 2. Figure 3 shows the generated data of Figure 2. It is clear that the irregular data 
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in Figure 2 are converted into a monotonically increasing sequence in Figure 3. This conversion will 

realize a high precision curve fitting called accumulated generating model, namely the new proposed 

wind disturbance model in this research. 

Figure 3. The points in this figure denote the AGO series of the data shown in Figure 2. 

 

3. Wind Disturbance Model Based on Grey Generation  

3.1. Data Description  

The modeling data set is derived from the Sotavento wind farm from 1 January to 28 February in 

2014. The observations contain 8196 groups of wind speed and wind direction. Figure 4 shows the 

distribution of wind speed in the above two months. The average, maximum, and minimum wind 

speed are 10.83 m/s, 38.67 m/s, and 2.6 m/s, respectively. We can see that the range of wind 

fluctuation is quite large. 

Figure 4. The distribution of wind speed recorded from January to February in 2014 in 

Sotavento wind farm. 
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3.2. Error Criteria  

Selecting a reasonable set of error indicators can objectively evaluate the level of wind speed 

predictions and the effectiveness of forecasting models. Some common error criteria include absolute 

error (AE), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean-square 

error (RMSE), standard deviation of error (SDE) [8,15,27–29], etc. Compared to MAE, RMSE is more 

sensitive to large data samples and is robust when dealing with large errors [30]. Here we use MAE 

and RMSE, given by: 

   
1

1 M

k

MAE y k f k
M 

 
 

(12)

    2

1

1 M

k

RMSE y k f k
M 

 
 

(13)

where y(k) and f(k) respectively denote the observed data and predicted value, M is sample size.  

3.3. Wind Disturbance model When Rayleigh Number Equals to 45 

3.3.1. BP Neural Network 

BP neural network is widely used in wind forecasting and does well in dealing with nonlinear 

problems [31–33]. Thus, it is adopted as the basic forecasting model in this study. Based on a gradient 

descent algorithm, the BP neural network obtains the minimum mean square error between output 

vectors and the sample values through constantly adjust the weights and biases in networks.  

This particular network could perfectly learn and store the mapping relations between input and  

output variables.  

The structure of the BP neural network used in this paper is shown in Figure 5. A BP network 

generally consists of three layers, i.e., input layer, hidden layer, and output layer. The three input vectors 

of BP network are wind speed (V(t)) and sine-cosine of wind direction ((sin D, cos D)) at time t.  

The hidden layer has three sigmoid neurons followed by an output layer of one linear neuron. The 

outputs of hidden layer and output layer are ruled by the following two formulas:  

 3

1
j j ij i j

i

y f w x b


   (14)

3

0 0
1

j j
j

y f w y b


   
 
  (15)

where xi is input vector with i = 1,2,3, yj and y are the output vectors of hidden layer and output layer 

with j = 1,2,3, fj and f0 are transfer functions of nodes, wij and wj are connection weights, bj and b0  

are biases.  
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Figure 5. Three-layer BP neural network. 

 

3.3.2. Modeling Process and Discussion 

We attempt to establish a disturbance model that it is able to output a valid disturbance sequence 

according to a given wind speed series. Then we could use this relevant disturbance sequence to reduce 

the nonlinear components contained in the wind speed series. Polynomial functions are some of the 

most widely used and simplest fitting functions. Hence, we use a polynomial generating function to 

construct the disturbance model, which is based on the principle of least squares. The modeling 

procedure can be divided into the following four steps: 

Step one: 

Determine the wind speed and sine-cosine of wind direction as the input variables of BP network. 

Train the BP network with the training data and predict the subsequent wind speed series. Denote the 

initial forecasting result and the real wind speed as WI and WR, respectively.  

Step two: 

In order to seek the minimum deviation between WI and WR, we need to seek a certain disturbance 

sequence called DL from the normalized disturbance series shown in Figure 1b. DL is said to be the 

best compensation to WI. 

Step three: 

According to the data preprocessing method in Section 2.2, we apply AGO to WI and DL, 

respectively. Then we can obtain two arrays that possess a clear relationship as shown in Figure 3.  

No more than fifth degree polynomials are applied to analyze the generated data. Table 2 shows the 

detailed statistics of the disturbance models, including the polynomial expression, accumulated 

generating model, and the fitting error (RMSE). The polynomial expressions are used to describe the 

features of related disturbance models. f (x) and x denote 1-AGO of Lorenz disturbance and 1-AGO of 

wind speed, respectively. 
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Table 2. Detailed statistics of grey generating models based on various polynomials. 

Polynomial Expression Accumulated Generating Model 
Fitting Error 

(RMSE) 
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Step four: 

In this step we will use the disturbance models to predict wind speed for a period of time in the 

future. We retrain the BP network and make an initial prediction of the future wind speed, which is 

similar to Step one. We denote the initial prediction in predicted period as WIP, and then input the 

IPAGOW  series into the disturbance models established in step three, respectively. The generated 
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outputs are in turn written as , 1,2, ,5iD i   , which needs to be reduced by IAGO. The compensating 

formula is given by: 

IPi iW W IAGOD   (16)

where Wi denotes the wind prediction result corresponding to each disturbance model with 
1, 2, ,5i   . The prediction results are presented in Table 3. The indicator (I), which means initial 

result, is used to distinguish the result of initial predictions and disturbed predictions.  

We can draw the following conclusions through a comprehensive analysis of Tables 2 and 3. On the 

one hand, seen from the figures of generating models and the fitting errors in Table 2, the fitting does 

become much better with a higher degree of polynomial. On the other hand, coefficients of high-order 

terms of generating functions approximate to zero. Hence, it is not wise to use high order polynomials. 

Besides, the MAE and RMSE results in Table 3 suggest that the forecasting errors become apparently 

worse starting from the third degree polynomial model. Therefore, a good fitting cannot promise a 

good forecasting performance. The universality of disturbance models is seriously reduced due to 

over-fitting problem. It turns out that linear or quadratic polynomials could work out much better wind 

predictions compared to other forms of polynomials. 

Table 3. MAE and RMSE results of wind speed prediction in February 2014. 

Degree of Polynomial 
Wind Forecasting Error 

MAE (I) (m/s) MAE (m/s) RMSE (I) (m/s) RMSE (m/s)

1 0.5772 0.0729 0.5870 0.0979 
2 0.5935 0.0535 0.5989 0.0789 
3 0.6632 0.2230 0.6720 0.2672 
4 0.6248 0.1897 0.6365 0.2267 
5 0.4377 0.1643 0.4683 0.2268 

3.4. Wind Disturbance Models When Rayleigh Numbers are Equal to 0.7, 12, and 16, Respectively  

A Lorenz system would present various evolutions when taking different Rayleigh numbers. Each 

evolution corresponds to a concrete fluid motion referred in Table 1. In order to verify the universality 

of Lorenz fluid motions in founding a disturbance model, we can respectively choose four values of 

Rayleigh number from each interval in Table 1, such as 0.7, 12, 16, and 45. We have made a detailed 

analysis when the Rayleigh number is equal to 45. Now we continue to verify the other three cases. 

According to the conclusions in Section 3.3, a linear or quadratic polynomial generating model is 

adopted in this section. Similar steps are applied to the modeling processes in this section. The optimal 

disturbance models are shown in Table 4. Persistence model (PM) is introduced as a reference with 

indicator (P). Table 5 presents the related wind prediction results. Figures 6–9 are the wind speed 

forecast curves corresponding to each disturbance model in Table 5. The red curves, blue curves, and 

black curves respectively denote the initial wind predictions of BP neural network, the improved 

predictions of disturbance model, and the actual wind speed series. 
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Table 4. The optimal disturbance models when taking different Rayleigh number values. 

Rayleigh 
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Polynomial Expression Accumulated Generating Model 
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Although the improvements are not exactly the same, these results have fully proved that all forms 

of Lorenz disturbance flow could contribute to the predicted level of a BP neural network. Table 5 

presents another important discovery. The models could be easily grouped into two categories by the 

errors in Table 5. The forecasting accuracy tends to be high when the Rayleigh numbers equal 16 and 45. 

MAE and RMSE are respectively about 0.056 m/s and 0.078 m/s. The same quantities are about  

0.14 m/s and 0.18 m/s when the Rayleigh numbers are equal to 0.7 and 12. Theoretically speaking, 

when the Rayleigh number is larger than 13.97, a Lorenz system has transient chaotic or chaotic 

solutions, whose disturbance forms are quite complex. This kind of complexity greatly helps to 

describe the real wind variations. 
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Table 5. MAE and RMSE results of wind speed prediction in February 2014. 

Rayleigh 

Number 

Wind Forecasting Error 

MAE (I) (m/s) MAE (m/s) MAE (P) (m/s) RMSE (I) (m/s) RMSE (m/s) RMSE (P) (m/s) 

0.7 0.5278 0.1447 0.4047 0.5429 0.1720 0.5201 

12 0.7690 0.1397 0.7185 0.8035 0.1903 0.9870 

16 0.6137 0.0581 0.4108 0.6139 0.0769 0.5230 

45 0.5935 0.0535 0.4650 0.5989 0.0789 0.6486 

Besides, the forecasting errors of PM are used to evaluate the existing results. PM is especially 

suitable for short-term wind prediction [34]. In this paper, PM behaves better than the BP network on 

short-term wind prediction. Seen from Table 5, except for RMSE (P) when Rayleigh numbers are equal 

to 12 and 45, all errors of PM are smaller than the corresponding errors of a conventional BP network. 

Both MAE and RMSE of disturbance models greatly outperform PM and the BP neural network. 

Figure 6. Wind speed forecasting results of the quadratic polynomial generating model 

when Rayleigh number equals 0.7. 

 

Figure 7. Wind speed forecasting results of the linear polynomial generating model when 

Rayleigh number equals 12. 
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Figure 8. Wind speed forecasting results of the quadratic polynomial generating model 

when Rayleigh number equals 16. 

 

Figure 9. Wind speed forecasting results of the quadratic polynomial generating model 

when Rayleigh number equals 45. 

 

4. Conclusions 

With the rapid development of the wind power industry, wind speed and power generation 

forecasting methods have become a focus of research in the fields of power systems and renewable 

energy. After a deeper study on the atmospheric dynamics system and wind prediction methods, in this 

paper we introduce the Lorenz system to reduce the negative impact of atmospheric disturbances on 

wind forecasting. Based on grey generating and an accumulated generating model, we propose a new 

wind disturbance model to improve the wind forecasting precision of a BP network. PM is also 

introduced for comparison. The best improvements (r = 45) in this paper are measured by the 

following two criteria: MAE with 0.0535 m/s and RMSE with 0.0789 m/s. In [32], the new proposed 

model IS-PSO-BP obtained good wind prediction performance based on different training numbers 

and data sources, whose MAE is 0.16 m/s and RMSE with 0.4123 m/s. In [34] its authors adopted  

0 10 20 30 40 50 60 70
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Predicted period

W
in

d
 s

p
ee

d
 (

m
/s

)

 

 

Initial prediction

2-Disturbed prediction
Actual wind speed

0 10 20 30 40 50 60 70
5

6

7

8

9

10

11

Predicted period

W
in

d
 s

p
e

e
d

 (
m

/s
)

 

 
Initial prediction

2-Disturbed prediction
Actual wind speed



Energies 2014, 7 7191 

 

 

low-quality measurements as exogenous information to refine the one-hour-ahead wind predictions. 

The smallest MAE of BP neural network in [34] is 0.18 m/s and RMSE with 0.2236 m/s. 

All the above statistics and analysis suggest that we have proposed a valid and feasible wind 

disturbance model based on a BP neural network. This model fully considers the basic features of 

nonlinear atmospheric systems. Given an appropriate Lorenz disturbance sequence, it can be used to 

predict any type of wind speed series without seasonal limitations. Nevertheless there is no unified 

algorithm or principle at the moment for the selection of Rayleigh numbers. In addition, in view of the 

advantages and features of grey system theory [26,35,36], the application of the Lorenz system to the 

grey model is worthy of further exploration. 
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