Energies 2014, 7(1), 173-190; doi:10.3390/en7010173
Article

Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells

email, email, * email and email
Received: 19 November 2013; in revised form: 20 December 2013 / Accepted: 24 December 2013 / Published: 7 January 2014
(This article belongs to the Special Issue Reacting Transport Phenomena in Solid Oxide Fuel Cells)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: A proton-conductive solid oxide fuel cell (H-SOFC) has the advantage of operating at higher temperatures than a PEM fuel cell, but at lower temperatures than a SOFC. This study proposes a mathematical model for an H-SOFC in order to simulate the performance and optimize the flow channel designs. The model analyzes the average mass transfer and species’ concentrations in flow channels, which allows the determination of an average concentration polarization in anode and cathode gas channels, the proton conductivity of electrolyte membranes, as well as the activation polarization. An electrical circuit for the current and proton conduction is applied to analyze the ohmic losses from an anode current collector to a cathode current collector. The model uses relatively less amount of computational time to find the V-I curve of the fuel cell, and thus it can be applied to compute a large amount of cases with different flow channel dimensions and operating parameters for optimization. The modeling simulation results agreed satisfactorily with the experimental results from literature. Simulation results showed that a relatively small total width of flow channel and rib, together with a small ratio of the rib’s width versus the total width, are preferable for obtaining high power densities and thus high efficiency.
Keywords: proton-conductive SOFC; mathematical model; optimization of gas channels
PDF Full-text Download PDF Full-Text [856 KB, uploaded 7 January 2014 11:18 CET]

Export to BibTeX |
EndNote


MDPI and ACS Style

Liu, H.; Akhtar, Z.; Li, P.; Wang, K. Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells. Energies 2014, 7, 173-190.

AMA Style

Liu H, Akhtar Z, Li P, Wang K. Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells. Energies. 2014; 7(1):173-190.

Chicago/Turabian Style

Liu, Hong; Akhtar, Zoheb; Li, Peiwen; Wang, Kai. 2014. "Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells." Energies 7, no. 1: 173-190.

Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert