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Abstract: Measurement of the active, reactive, and apparent power is one of the most 
fundamental tasks of smart meters in energy systems. Recently, a number of studies have 
employed the discrete wavelet transform (DWT) for power measurement in smart meters. 
The most common way to implement DWT is the pyramid algorithm; however, this is not 
feasible for practical DWT computation because it requires either a log N cascaded filter or 
O (N) word size memory storage for an input signal of the N-point. Both solutions are too 
expensive for practical applications of smart meters. It is proposed that the recursive 
pyramid algorithm is more suitable for smart meter implementation because it requires 
only word size storage of L × Log (N-L), where L is the length of filter. We also investigated 
the effect of varying different system parameters, such as the sampling rate, dc offset, 
phase offset, linearity error in current and voltage sensors, analog to digital converter 
resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy 
measurement using DWT. The error analysis is depicted in the form of the absolute 
difference between the measured and the true value of the reactive energy.  

Keywords: reactive power; smart meter; recursive pyramid algorithm; discrete  
wavelet transform 
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1. Introduction 

Energy conservation is currently a highly important and much-discussed field of research. The 
increase in global energy demand has resulted in almost daily increases in energy prices; therefore, 
energy conservation is important for both consumers and service providers [1]. Energy conservation 
can save money for consumers by reducing tariffs; on the other hand, supplying more consumers with 
lower energy production reduces installation costs for service providers [2].  

In this context, the smart grid is one of the most interesting fields of research for next-generation 
power systems. This type of grid uses a bidirectional flow of electricity and information to create  
a widely distributed power delivery network. The smart grid offers several advantages, such as 
renewable energy usage, reduced greenhouse gas emissions, increased energy efficiency due to better 
balance of supply and demand, improved security and reliability, and fast and effective responses to 
energy generation, consumption fluctuations, and catastrophic events [3]. The catastrophic events are 
sudden incidents, which occur due to the occasional failure of the power system component. The 
achievement of energy conservation in a smart grid, either at the consumer level or at the utility level, 
requires analysis of the energy provided by the utility, the effectiveness of energy use by the consumer, 
and the losses. This type of analysis requires energy consumption to be measured at various levels in 
the smart grid. 

Smart meters represent one of the major components of smart grids. Smart meters can be used to 
measure energy consumption at various points in the smart grid [4]. The smart grid concept has been 
put into full use by utility companies throughout the World through the installation of smart meters in 
homes and commercial buildings; by 2015, approximately 60 million smart meters will be installed  
in the US [5]. The smart meter is an advanced energy meter that measures a consumer’s energy 
consumption and provides additional information for the utility company not typically available with a 
regular energy meter. The smart meter can read real-time energy consumption data and securely send 
those data to the company [6]. The ultimate objective of these meters is to set real-time pricing and 
establish demand-side management [7].  

The functional requirement of electricity for smart meters, in terms of power measurement,  
is the measurement of active, reactive, and apparent power. Broadly speaking, reactive power is  
the difference between the power used for real working (active power) and the total consumed  
power (apparent power). However, some electrical equipment used in industrial and commercial  
building—especially transformers and motors—requires an amount of reactive power in addition to 
active power. The reactive power in such equipment is used to generate a magnetic field, which is 
essential for the inductive elements in these pieces of equipment to operate [8]. Although reactive 
power is required to operate several pieces of equipment, if supplied in excess, it can also make 
harmful effects on appliances and installed electrical infrastructure [1].  

Power factor is another term associated with power measurement in power systems. Power factor is 
the relationship between the active and reactive power. It indicates how effectively the electrical power 
is used. In other words, power factor is the ratio of active power to the apparent power. Typically, 
homes have power factors in the range of 70%–85%, depending on the appliances being used. 
However, a power factor correction mechanism can be employed to increase the power factor above 
90%. Power factor correction has several benefits. It can: save money by reducing tariff; prevent 
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electric losses; reduce peak energy demand and reduce risk of harm being done to the installed  
electrical infrastructure [9]. 

The tremendous increase in the amount and complexity of electrical equipment has provided 
welcome additions to modern homes, such as electronic ballast lighting, computer monitors, and air 
conditioners, but these impose an additional energy burden. This has resulted in an electric distribution 
profile that is completely different from what was observed 50 years ago [10]. This change in the  
end-user load profile is a disadvantage for the service provider, which generates tariffs based only on 
active power. The addition of these nonlinear loads to the power lines means that active energy no 
longer represents the total energy delivered. Therefore, from the above discussion it can be concluded 
that the reactive power measurement is necessary to bill consumers, design the compensator, power 
factor correction and monitor power usage. 

The aim of this study is to devise a method for practical measurement of reactive power. A reactive 
power measurement is essential to determine the reactive power demand and to assist in improving the 
voltage profile introducing power factor correction mechanism. It also enables the service provider to 
take the proper steps to reduce revenue losses, peak energy demand and increase power generation 
capacity to serve more consumers [11]. Reactive power overloads the power lines and produces 
excessive thermal stress on the conductors, and it is also undesirable from the service provider’s 
perspective. A decrease in the reactive power leads to lower expenses; once the reactive power has been 
measured, it can be compensated with the help of a suitable capacitor or a number of capacitors [2].  

In this paper, we propose a more suitable implementation of the discrete wavelet transform (DWT) 
that uses a recursive pyramid algorithm (RPA) for reactive energy measurement in smart meters. This 
paper also investigates the effect of varying different system parameters such as the sampling rate, dc 
offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, 
and number of harmonics in a non-sinusoidal system on the reactive energy measurement using DWT. 
The error analysis is depicted in the form of the absolute difference between the measured and the true 
value of the reactive energy.  

The rest of the paper is organized as follows: Section 2 discusses some of the related work. Section 3 
discusses the different methods for measuring reactive power, their categorization, and the challenges 
involved with each of them. Section 4 describes reactive power measurement using the DWT and 
Section 5 suggests DWT implementation. Section 6 presents the results for different case studies and 
shows the impact of various kinds of errors. Section 7 provides some concluding remarks. 

2. Related Work 

Definitions and approaches for measuring reactive power have been developed in the time  
domain [12,13], Fourier (frequency domain) [14–16], and the wavelet domain (time-frequency 
domain) [17–19]. The limitation of time domain definitions is that they cannot measure the reactive 
power for a specific frequency component and they also result in loss of temporal insights. Therefore, 
time-frequency (wavelet domain) analysis emerges as the most appropriate solution for measurements 
in power systems, because it preserves both temporal and spectral relationships associated with the 
resulting power [17]. A comprehensive survey of the categories shown in Figure 1 has been presented 
in [20]. The present paper focuses on wavelet-based power measurement in the smart meter.  
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Figure 1. Categories of reactive power measurement definitions and approaches. 
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The advantage offered by wavelet domain analysis has been exploited by many studies on power 
measurement reported in the literature. For example, Yoon and Devaney [21] introduced the concept 
of power measurement using the DWT. In [2], the same authors proposed a calculation for reactive 
power using the DWT. That wavelet-based reactive power measurement system requires the phase 
shift of the input voltage or current signal. In [22], Vatansever and Ozdemir proposed a method for 
power measurement using the discrete wavelet packet transform and the Hilbert transform. In [2], 
Morsi summarized the approaches made to power measurement in the wavelet domain by comparing 
them. In [20], Morsi et al., investigated the usefulness of bio-orthogonal and reverse bio-orthogonal 
wavelets to measure reactive power. In [19], Morsi et al., proposed a method for measuring reactive 
power using the wavelet packet transform. In [23], Morsi presented a modified version of reactive 
power measurement using the DWT, which reduced the computational complexity when compared to 
the wavelet packet transform. 

In this paper, we propose a more suitable implementation of the DWT for reactive power 
measurement in smart meters. General purpose computers can be used to implement DWT in an 
efficient algorithm using the pyramid algorithm (PA) proposed by Mallat [24,25]. However, for real 
time or running implementations of DWT, the PA requires either O(N) storage or N cascade filters 
together in order to compute the N-point DWT. Both of these alternatives [that is, O (N) memory 
storage cells and N cascaded filters] are expensive. Hence, a more efficient method for measuring 
reactive power using DWT is desired for smart meters because real-time reactive power measurement 
must be computed. In the present study, we present a reformulation of the (PA), called the pyramid 
recursive algorithm (RPA), for use in reactive power measurement in smart meters. The RPA, first 
introduced by Vishwanarth [26], computes the N-point DWT using just L × log (N-L) storage cells, 
where L is the length of the filter and generally L << N. It takes the same number of operations as that 
required by the PA.  

3. Reactive Power Measurement 

The notations used in the paper are listed in Table 1. 
Reactive power calculation methods of commercially available smart meters can be divided into 

two types: a time shift approach and a power triangle approach [2]. The following is a brief description 
of each method, along with its physical interpretation. 
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Table 1. Nomenclature. 

Sr. No Notation Description 
1 v (t) Voltage waveform 
2 i (t) Current waveform 
3 f Fundamental frequency 
4 fs Sampling frequency 
5 Time Window (TW) Observation duration of the waveforms 
6 Vrms Root mean square value of the voltage waveform 
7 Irms Root mean square value of the current waveform 
8 VDWT Vrms representation using DWT 
9 IDWT Irmsrepresentation using DWT 
10 P Active power 
11 Q Reactive power 
12 S Apparent power 
13 α Voltage waveform amplitude scaling factor 
14 β DC offset in the voltage waveform 
15 γ Phase offset in the current waveform 

3.1. Time Shift Approach 

A time delay is introduced to shift one of the waveforms by 90° at the fundamental frequency and 
to multiply the voltage and current waveforms, as shown in Figure 2. 

Figure 2. Time shift approach for reactive power calculation. 
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In [4], the reactive energy using time shift approach is mathematically expressed as: 

 (1) 

where T is the time period of the fundamental frequency component of the voltage waveform. If the 
voltage and current waveforms contain harmonic distortion, the time shift approach loses its physical 
meaning because it is only valid when applied to the fundamental frequency component. Therefore, in 
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the case of non-sinusoidal waveforms, reactive power measured by an electronic energy meter based 
on the time-shift approach will give a measurement that differs from the actual reactive energy.  

3.2. Power Triangle Approach 

The block diagram for calculating reactive power is shown in Figure 3. The power triangle method 
is based on the assumption that apparent, active, and reactive powers form a right angle triangle, as 
shown in Figure 3.  

Figure 3. Power triangle approach for reactive power calculation. 
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In [4], the reactive power is mathematically expressed as: 

 (2) 

where apparent power is the product of total root mean squared (rms) voltage and rms current: 

 (3) 

Active power can be written as: 

 (4) 

where T represents the time of interest or the observation time, or for periodic signals, the time period. 
In an ideal power system, the voltage and currents are purely sinusoidal with a frequency of 50 Hz 

or 60 Hz, but in real power systems, current and voltage waveforms are no longer sinusoidal and 
contain harmonics due to existence of inductive, capacitive components and occurrence of  
distortions [27]. 

Unlike the time shift approach, the triangle approach is capable of calculating reactive power  
under most of the conditions that contribute to the degradation of the electric power quality—such as 
disturbances, harmonics distortion or losses, etc. However, it is unable to provide reactive power at the 
fundamental frequency under a non-sinusoidal condition.  
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Reactive power measurement using the power triangle method first needs to compute active and 
apparent power. Active power measurement is accurate for most energy meters, but the accuracy of the 
apparent power is bounded by the accuracy of the rms measurements. Therefore, in this paper, we also 
investigated the usefulness of the DWT for computing reactive power using the power triangle method 
under sinusoidal as well as non-sinusoidal cases, and by varying different operating parameters such as 
sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital 
converter resolution and a number of harmonics in the non-sinusoidal system. 

4. Reactive Power Measurement Using the DWT 

This section covers the operating principles of the reactive energy meters using the power triangle 
method and the DWT. Let v(t) and i(t) be the time domain signal of the voltage and the current 
waveform, respectively. In the time domain, the rms value can be calculated as follows: 

 (5) 

 (6) 

where n is the total number of samples in one period of the waveform; m is the current sample number; 
and vm and im are the voltage and current values, respectively, defined in the samples.  

Using DWT, the rms value of the voltage and current waveforms can be expressed as follows: 

 (7) 

 (8) 

where the c’s and d’s represent the scaling/approximation and detail wavelet coefficients; which 
quantify how closely the wavelet function matches the original waveform at sample time k and 
frequency sub-band j, with jo as the lowest frequency sub-band; Subscripts j and k refer to the wavelet 
level/frequency sub-band and the sample time; respectively, while the superscripts v and i represent the 
voltage and current coefficients, respectively, in the wavelet domain. The apparent power at the 
approximation level (lowest frequency band) jo, Sjo, and the total apparent power SDWT are as follows: 

 (9) 

 (10) 

The reactive power in the wavelet can be calculated as: 

 (11) 
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 (12) 

The reactive power Q contains all the non-active power due to harmonics and any oscillating power 
that does not contribute to the power transmission. When considering the apparent power at the lowest 
wavelet decomposition, the reactive power becomes: 

 (13) 

5. Implementation of the DWT 

The wavelet theory was first applied to digital signal processing application following derivation of 
the PA for the DWT by Mallat [24,25]. Since then, many applications of the DWT have been explored. 
In recent years, DWT has become a powerful tool for analyzing and measuring power in energy 
meters. The DWT can be viewed as a multi-resolution decomposition of a sequence. The large-scale 
study of wavelets for power measurement in energy meters has pointed to the importance of practical 
implementation of power measurement using the DWT. Figure 4 shows the block diagram of a smart 
meter in a smart grid, along with a schematic of the energy calculation algorithm using wavelet transform. 

Figure 4. Block diagram of an energy meter using wavelet transform in a smart grid. 

 

For N points of input sequence x(n), DWT generates a sequence of length N as the output y(n).  
The output has N/2 values at the highest resolution and N/4 values at next to the highest resolution 
level, and so on. This mean time resolution is high at high frequency and low at low frequency, 
whereas frequency resolution is low at high frequency and high at low frequency. Let N = 2J, where  
J is the number of frequencies. Therefore, the frequency index varies as 1, 2,…, J corresponding to the 
scales 21, 22,…, 2J. The scaling and detailed wavelet coefficients can be computed as follows: 
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where: 

 kth approximation and detail coefficient at level j; 
  Low pass and high pass L-tap filters obtained from chosen wavelet transform; 

  N-sample input signal x(n); 
 Number of wavelet coefficients in level j. 

The Pyramid Algorithm (PA) 

The pseudo code for the Pyramid algorithm can be written as: 

Pyramid algorithm for N-point DWT computation 

1. begin 
2.  

fs ← sampling rate 

a.TW ← observation interval for voltage or current waveform 

b. N = fs × TW 
3. J = log2N 
4. for (j = 1 to J) 
5. for (k = 1 to 2J − j) 

6.  

7.  

8. end for 
9. end for 
10. end for 

where J is the number of octaves; N = 2J is the length of sequence x; L is the length of the wavelet 
filter; and w( ) and h( ) are the low pass and high pass filters; respectively, derived from the wavelet. 
The output for the jth octave is contained in dj(k). The PA algorithm can be implemented using either 
filter bank architecture or folded architecture, as shown in Figures 5 and 6, respectively. 
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Figure 5. DWT filter bank architecture for J = 3 octaves. 
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Figure 6. DWT folded architecture. 

 

Recursive Pyramid Algorithm (RPA) 

The RPA proposed by Vishwanth is a reformulation of the PA proposed by Mallat for real-time 
computation of the DWT coefficients. The core aim of the RPA is to make the memory size 
independent of the input length. The basic idea behind the RPA is to rearrange the computation order 
of the DWT coefficient. In the RPA, each coefficient computation is scheduled at the earliest possible 
instance. This schedule for computing the DWT coefficients is based on the precedence rule; i.e., if the 
earliest instance of the ith octave clashes with the (I + 1)th octave, then the ith octave output is computed 
first. For the sake of understanding, the scheduling mechanism of the RPA considers a grid of the 
DWT coefficients as shown in Figure 7. This is now pushed in a way that makes all horizontal lines 
line up in the form of a single line (RPA output sequence). The order of the output gives the output 
schedule. The advantages offered by the RPA are: 

 Because each output of the jth octave is scheduled at the earliest instance, only the latest L 
words (L is the length of filter) need to be stored. Thus, the total memory size needed for DWT 
using RPA is L(J − 1), where J is the number of decomposition levels; 

 The memory size can be small because each output of the different decomposition level is 
computed at the earliest possible instance. This removes the need to store the whole result of 
the jth octave for (j + 1)th octave computations; 
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 The input number of samples fed for each subsequent stage is equal to the length of the filter; 

therefore, it achieves a uniform rate; i.e., a practical rate. 

Figure 7. Scheduling diagram for the RPA. 

 

The pseudo code for computing the N-point DWT using the RPA is as follows: 

Recursive Pyramid Algorithm for N-Point DWT Computation 

1. begin 
2.  

3. fs ← sampling rate 
TW ← observation interval for voltage or current waveform 

 
4. for (I = 1 to N) 
5. recursive_dwt (i, 1) 
6. end for 
7. end  

Function recursive_dwt (i, j) 

1. begin 
2.  
3.  

4.  

5.  

6. else 
7. recursive_dwt (i/2, j + 1) 
8. end if 
9. end 

The RPA algorithm architecture is shown in Figure 8. The routing network has to keep track of the 
latest Llog (N-L) blocks of output. The main disadvantage of implementing the RPA on general 
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purpose computers is that the efforts required by the routing network to keep track of the latest Llog 
(N-L) block of output might prevail over the reduction in the memory storage because searching for 
data from a huge memory requires longer access time. Hence, smart meters can be implemented more 
practically using the DWT with the RPA, which requires fewer memory cells than the PA does.  

Although, computing the DWT using the RPA reduces memory requirements quite remarkably, 
however, still it requires heavy arithmetic computation because it is essentially a two channel filter bank. 
This arithmetic complexity can be reduced by using lifting scheme implementation of the DWT [28]. 
Implementation of lifting wavelet transform with an efficient RPA can be realized as an interesting 
future work for power measurement in smart meters. 

Figure 8. RPA implementation architecture. 

 

6. Results and Discussion 

This section first presents a comparison of the PA and the RPA in terms of the required numbers of 
memory cells and then provides an error analysis for power measurement using the DWT. Table 2 
shows the memory required for the PA and the RPA for an input sequence having different samples, 
with a filter having 20 and 40 samples.  

Table 2. Comparison of required numbers of memory cells for the pyramid algorithm (PA) 
and the recursive pyramid algorithm (RPA). 

Input size (N) Filter length (L) Required memory cells PA (RPA) 
512 20 512 180 

1024 20 1024 200 
2048 20 2048 220 
512 40 512 360 

1024 40 1024 400 
2048 40 2048 440 

Two case studies are introduced for error analysis, considering sinusoidal (linear load) and  
non- sinusoidal (non-linear load) operating conditions to show the performance of power measurement 
using the DWT under varying parameters. The overall block diagram of the simulated system is shown 
in Figure 9.  
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True values of the measurable quantities, such as P, Q, and S, are already predetermined because 
the input voltage and current waveform are synthesized by known parameters. The true value of Q is 
computed using the Hilbert transform. However, computing Q using the Hilbert transform at 
reasonable cost is not practically feasible because it requires a dedicated processor to process the 
Hilbert transform necessary to compute a constant phase shift of 90° at each harmonic frequency [29]. 
Hence, the value of Q computed using the Hilbert transform approach is taken as the reference point 
and compared with the value of Q computed using the DWT and the absolute error is presented in  
the results. 

Figure 9. Block diagram of the power measurement system. 
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The input voltage or current waveforms are defined with parameters such as amplitude, 
fundamental frequency, and number of harmonics, phase offset, and (direct current) dc component.  

The generalized form of sinusoidal voltage and current waveforms for case study 1 is defined as: 

 
(16) 

 (17) 

where Vmax represents the peak voltage and Imax is the peak current; α is the amplitude scaling; β is the 
dc offset; γ is the phase offset and t is the running time. 

For the case study 2, the non-sinusoidal voltage waveform contains n harmonics and can be 
expressed as: 

 
(18) 

These input waveforms pass through an analog to digital converter (ADC); two things are defined 
here: i.e., sampling rate and the ADC resolution, meaning how many bits a sample represents. These 
sample sequences are fed to the processing unit where the power calculation is performed using DWT. 
The mother wavelet chosen for the DWT is Daubechies 10 (db10) and Daubechies 20 (db20). The 
simulation is conducted in Matlab and the developed GUI interface is shown in Figure 10. The time 
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window (TW) in the figure indicates the observation time of the input waveform and is in multiple of 
the fundamental time period T. 

The impact of sensor linearity error is shown by varying α in Equation (16), the impact of DC offset 
is shown by varying β, the impact of phase offset is shown by varying γ, the impact of nonlinear load is 
shown by varying the number of harmonics, the effect of ADC resolution is shown by varying the 
number of bits used to store a sample, and the impact of sampling rate is shown by varying the 
sampling frequency fs. 

Figure 10. GUI for power measurement system. 

 

Case study 1: Let both v(t) and i(t) be sinusoidal, with only a fundamental frequency component, 
and be given as: 

and  (19) 

The sampling frequency fs is taken as 1.92 kHz and a 64 bit floating point numbering system is 
used. Various values obtained for α, β and γ are shown in Table 3. The values of α, β, and γ for which 
the error value (ERRQ) is lowest are highlighted. 

Case study 2: Let v(t) be a waveform comprising three frequency components; i.e., fundamental 
frequency, third, and fifth harmonic. Current i(t) contains just the fundamental frequency component. 
These are given as: 

,  (20) 

 (21) 

The sampling frequency fs is taken as 1.92 kHz and a 64 bit (double) floating point numbering 
system is used. The results of varying values of α, β and γ are shown in Table 4. The values of α, β, 
and γ for which the error value (ERRQ) is lowest are highlighted. 
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Table 3. Results for case study 1. 

Mother wavelet Inputs Outputs 
α β γ Vrms Irms P Q S ERRQ 

db10 

1 0 1 155.6099 3.5366 550.3285 0 550.3285 0 
2 0 1 77.805 3.5366 275.1642 0 275.1642 0 
1 0 2 155.6099 3.535 0.79664 550.0836 550.0841 0.0736 
1 0 3 155.6099 3.5332 274.4743 476.3863 549.8001 0.0823 
1 5 2 160.116 3.535 0.76768 566.0127 566.0132 16.013 
1 10 2 164.6506 3.535 2.332 582.0384 582.0431 32.038 

db20 

1 0 1 155.6099 3.5366 550.3285 0 550.3285 0 
2 0 1 77.805 3.5366 275.1642 0 275.1642 0 
1 0 2 156.5769 3.513 35.1974 549.3 550.0472 0.7 
1 0 3 156.5769 3.4247 248.1128 475.3787 536.2321 0.37 
1 5 3 156.4203 3.42427 247.6205 475.0306 535.6957 0.0306 
1 10 3 156.4234 3.4247 247.1282 475.299 535.7065 0.299 

Table 4. Results for case study 2. 

Mother wavelet 
Inputs Outputs 

α β γ Vrms Irms P Q S ERRQ 

db10 

1 0 1 155.6146 3.53665 50.3335 3.54385 50.3449 3.5438 
2 0 1 77.8128 3.53662 75.1692 3.54382 75.1921 3.5438 
1 0 2 156.3219 3.535 1.2946 550.5994 552.6009 0.5994 
1 0 3 156.3219 3.53322 277.5387 477.5193 552.3155 2.5193 
1 5 2 160.8342 3.535 2.8589 568.5449 568.552 18.552 
1 10 2 165.3746 3.535 4.4232 584.5856 584.6024 34.5856 

db20 

1 0 1 155.6146 3.53665 50.3335 3.54385 50.3449 3.5438 
2 0 1 77.8128 3.53662 75.1692 3.54382 75.1921 3.5438 
1 0 2 157.33 3.513 1.29825 550.5186 552.5009 0.5186 
1 0 3 157.33 3.4247 248.7419 477.4517 538.8113 2.45 
1 5 2 157.1687 3.513 36.0938 550.9454 552.1264 0.9454 
1 10 2 157.1664 3.513 36.1766 550.9318 552.1183 0.9318 

The impact of ADC resolution on the power measurement is shown by conducting measurements 
under different data types; i.e., double, int32, int16, and int8 for both the sinusoidal and non-sinusoidal 
cases under Daubechies 10 (db10). Let values of α, β, and γ be 1, 0 and 2, respectively. Table 5 shows 
the results for both case study 1 and case study 2. 

Table 5. Effect of ADC resolution on the power measurement. 

Data type 
Case study 1 Case study 2 

P Q S ERRQ P Q S ERRQ 
double 0.79664 550.0836 550.0841 0.841 1.2982 550.5994 552.6009 0.5994 
int32 0.2737 572.9666 572.9667 22.966 2.2059 572.6717 572.6759 22.67 
int16 0.2737 572.9666 572.9667 22.966 2.2059 572.6717 572.6759 22.67 
int8 1.2933 404.0545 404.0566 146.05 0.09080 405.0339 405.0339 144.07 
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The impact of sampling frequency fs on the power measurement is shown by conducting 
measurements under different sampling rates. Table 6 shows the results for both case study 1 and  
case study 2. 

Table 6. Effect of sampling frequency on power measurement. 

Samp Freq Case study 1 Case study 2 
fs (KHz) P Q S ERRQ P Q S ERRQ 

1.2 143.7319 529.1288 548.3029 1.6971 146.2492 530.9813 552.754 19.0187 
1.6 89.0456 542.4225 548.6861 1.3139 91.6796 544.593 552.256 5.407 
1.8 11.9928 549.9373 550.0841 0.841 14.1794 552.5994 552.5738 2.5994 

1.92 0.79664 550.0836 550.068 0.68 1.2946 552.3919 552.6009 2.3919 

7. Conclusions 

This paper presents an investigation of efficient implementation of power measurement using the 
DWT for practical smart meters. RPA-based DWT computation ideally suits power measurement in 
smart meters because it requires just L × log (N-L) words of storage for computation of the N-point 
DWT. The problems associated with the power measurement using the DWT are also discussed in 
terms of error analysis by varying the number of system parameters. The error in power measurement 
is investigated for different types of environments; i.e., for both linear and nonlinear loads. These 
studies have been conducted for a single-phase load, but extending this study to a three-phase system 
would be a worthwhile future task.  
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