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Abstract: The small medium large system (SMLsystem) is a house built at the
Universidad CEU Cardenal Herrera (CEU-UCH) for participation in the Solar Decathlon
2013 competition. Several technologies have been integrated to reduce power consumption.
One of these is a forecasting system based on artificial neural networks (ANNs),
which is able to predict indoor temperature in the near future using captured data by a
complex monitoring system as the input. A study of the impact on forecasting performance
of different covariate combinations is presented in this paper. Additionally, a comparison of
ANNs with the standard statistical forecasting methods is shown. The research in this paper
has been focused on forecasting the indoor temperature of a house, as it is directly related
to HVAC—heating, ventilation and air conditioning—system consumption. HVAC systems
at the SMLsystem house represent 53.89% of the overall power consumption. The energy
used to maintain temperature was measured to be 30%–38.9% of the energy needed to lower
it. Hence, these forecasting measures allow the house to adapt itself to future temperature
conditions by using home automation in an energy-efficient manner. Experimental results
show a high forecasting accuracy and therefore, they might be used to efficiently control an
HVAC system.
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1. Introduction

Nowadays, as the Spanish Institute for Diversification and Saving of Energy (IDAE) [1] of the Spanish
Government says, energy is becoming a precious asset of incalculable value, which converted from
electricity, heat or fuel, makes the everyday life of people easier and more comfortable. Moreover, it is
also a key factor to make the progress of industry and business feasible.

Spanish households consume 30% of the total energy expenditure of the country [1]. In the European
Union (EU), primary energy consumption in buildings represents about 40% of the total [2]. In the
whole world, recent studies say that energy in buildings also represents a 40% rate of the total consumed
energy, where more than half is used by heating, ventilation and air conditioning (HVAC) systems [3].

Energy is a scarce resource in nature, which has an important cost, is finite and must be shared.
Hence, there is a need to design and implement new systems at home, which should be able to produce
and use energy efficiently and wisely, reaching a balance between consumption and streamlined comfort.
A person could realize his activities much easier if his comfort is ensured and there are no negative factors
(e.g., cold, heat, low light, noise, low air quality, etc.) to disturb him. With the evolution of technology,
new parameters have become more controllable, and the requirements for people’s comfort level
have increased.

Systems that let us monitor and control such aspects make it necessary to refer to what in reference [4]
is called “Ambient Intelligence” (AmI). This refers to the set of user-centered applications that integrate
ubiquitous and transparent technology to implement intelligent environments with natural interaction.
The result is a system that shows an active behavior (intelligent), anticipating possible solutions adapted
to the context in which such a system is located. The term, home automation, can be defined as it is
mentioned in reference [5], as the set of services provided by integrated technology systems to meet the
basic needs of security, communication, energy management and comfort of a person and his immediate
environment. Thus, home automation can be understood as the discipline which studies the development
of intelligent infrastructures and information technologies in buildings. In this paper, the concept of
smart buildings is used in this way, as constructions that involve this kind of solution.

In this sense, the School of Technical Sciences at the University CEU-UCH has built a solar-powered
house, known as the Small Medium Large System (SMLsystem), which integrates a whole range
of different technologies to improve energy efficiency, allowing it to be a near-zero energy house.
The house has been constructed to participate in the 2012 Solar Decathlon Europe competition.
Solar Decathlon Europe [6] is an international competition among universities, which promotes research
in the development of energy-efficient houses. The objective of the participating teams is to design and
build houses that consume as few natural resources as possible and produce minimum waste products
during their lifecycle. Special emphasis is placed on reducing energy consumption and on obtaining
all the needed energy from the sun. The SMLsystem house includes a Computer-Aided Energy Saving
System (CAES). The CAES is the system that has been developed for the contest, which aims to improve
energy efficiency using home automation devices. This system has different intelligent modules in order
to make predictions about energy consumption and production.

To implement such intelligent systems, forecasting techniques in the area of artificial intelligence
can be applied. Soft computing is widely used in real-life applications [7,8]. In fact, artificial neural
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networks (ANNs) have been widely used for a range of applications in the area of energy systems
modeling [2,9–11]. The literature demonstrates their capabilities to work with time series or regression,
over other conventional methods, on non-linear process modeling, such as energy consumption in
buildings. Of special interest to this area is the use of ANNs for forecasting the room air temperature
as a function of forecasted weather parameters (mainly solar radiation and air temperature) and the
actuator (heating, ventilating, cooling) state or manipulated variables, and the subsequent use of these
mid-/long-range prediction models for a more efficient temperature control, both in terms of regulation
and energy consumption, as can be read in reference [10].

Depending on the type of building, location and other factors, HVAC systems may represent up
to 40% of the total energy consumption of a building [2,3]. The activation/deactivation of such
systems depends on the comfort parameters that have been established, one of the most being indoor
temperature, directly related to the notion of comfort. Several authors have been working on this idea;
in reference [2], an excellent state-of-the-art system can be found. This is why the development of
an ANN to predict such values could help to improve overall energy consumption, balanced with the
minimum affordable comfort of a home, in the case that these values are well anticipated in order to
define efficient energy control actions.

This paper is focused on the development of an ANN module to predict the behavior of indoor
temperature, in order to use its prediction to reduce energy consumption values of an HVAC system.
The architecture of the overall system and the variables being monitored and controlled are presented.
Next, how to tackle the problem of time series forecasting for the indoor temperature is depicted.
Finally, the ANN experimental results are presented and compared to standard statistical techniques.
Indoor temperature forecasting is an interesting problem which has been widely studied in the literature,
for example, in [2,3,12–14]. We focus this work in multivariate forecasting using different weather
indicators as input features. In addition, two combinations of forecast models have been compared.

In the conclusion, it is studied how the predicted results are integrated with the energy consumption
parameters and comfort levels of the SMLsystem.

2. SMLhouse and SMLsystem Environment Setup

The Small Medium Large House (SMLhouse) and SMLsystem [15] solar houses have been built
to participate in the Solar Decathlon 2010 and 2012 [6], respectively, and aim to serve as prototypes
for improving energy efficiency. The competition focus on reproducing the normal behavior of the
inhabitants of a house, requiring competitors to maintain comfortable conditions inside the house—to
maintain temperature, CO2 and humidity within a range, performing common tasks like using the oven
cooking, watching television (TV), shower, etc., while using as little electrical power as possible.

As stated in reference [16], due to thermal inertia, it is more efficient to maintain a temperature of a
room or building than cooling/heating it. Therefore, predicting indoor temperature in the SMLsystem
could reduce HVAC system consumption using future values of temperature, and then deciding whether
to activate the heat pump or not to maintain the current temperature, regardless of its present value. To
build an indoor temperature prediction module, a minimum of several weeks of sensing data are needed.
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Hence, the prediction module was trained using historical sensing data from the SMLhouse, 2010, in
order to be applied in the SMLsystem.

The SMLhouse monitoring database is large enough to estimate forecasting models, therefore its
database has been used to tune and analyze forecasting methods for indoor temperature, and to show
how they could be improved using different sensing data as covariates for the models. This training data
was used for the SMLsystem prediction module.

The SMLsystem is a modular house built basically using wood. It was designed to be an energy
self-sufficient house, using passive strategies and water heating systems to reduce the amount of electrical
power needed to operate the house.

The energy supply of the SMLsystem is divided into solar power generation and a domestic hot
water (DHW) system. The photovoltaic solar system is responsible for generating electric power by
using twenty-one solar panels. These panels are installed on the roof and at the east and west facades.
The energy generated by this system is managed by a device to inject energy into the house, or in case
there is an excess of power, to the grid or a battery system. The thermal power generation is performed
using a solar panel that produces DHW for electric energy savings.

The energy demand of the SMLsystem house is divided into three main groups: HVAC,
house appliances and lighting and home electronics (HE). The HVAC system consists of a heat pump,
which is capable of heating or cooling water, in addition to a rejector fan. Water pipes are installed inside
the house, and a fan coil system distributes the heat/cold using ventilation. As shown in reference [17],
the HVAC system is the main contributor to residential energy consumption, using 43% of total power
in U.S. households or 70% of total power in European residential buildings. In the SMLsystem,
the HVAC had a peak consumption of up to 3.6 kW when the heat pump was activated and, as shown in
Table 1, it was the highest power consumption element of the SMLsystem in the contest with 53.89% of
total consumption. This is consistent with data from studies mentioned as the competition was held
in Madrid (Spain) at the end of September. The house has several energy-efficient appliances that
are used during the competition. Among them, there is a washing machine, refrigerator with freezer,
an induction hob/vitroceramic and a conventional oven. Regarding the consumption of the washing
machine and dishwasher, they can reduce the SMLsystem energy demand due to the DHW system.
The DHW system is capable of heating water to high temperatures. Then, when water enters into
these appliances, the resistor must be activated for a short time only to reach the desired temperature.
The last energy-demanding group consists of several electrical outlets (e.g., TV, computer, Internet router
and others).

Table 1. Energy consumption per subsystem. HVAC: heating, ventilation and air conditioning;
HE: home electronics.

System Power peak (kW) Total power (Wh) Percentage

HVAC 3.544 37987.92 53.89%

Home appliances - 24749.10 35.11%

Lighting & HE 0.300 7755.83 11.00%
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Although the energy consumption of the house could be improved, the installed systems let the
SMLsystem house be a near-zero energy building, producing almost all the energy at the time the
inhabitants need it. This performance won the second place at the energy balance contest of the Solar
Decathlon competition [18].

A sensor and control framework shown in Figure 1 has been used in the SMLsystem. It is operated
by a Master Control Server (MCS) and the European home automation standard protocol known as
Konnex (KNX) [19] has been chosen for monitoring and sensing. KNX modules are grouped by
functionality: analog or binary inputs/outputs, gateways between transmission media, weather stations,
CO2 detectors, etc. The whole system provides 88 sensor values and 49 actuators. In the proposed
system, the immediate execution actions had been programmed to operate without the involvement of
the MCS, such as controlling ventilation, the HVAC system and the DHW system. Beyond this basic
level, the MCS can read the status of sensors and actuators at any time and can perform actions on them
via an Ethernet gateway.

Figure 1. Small medium large system (SMLsystem) sensors and actuators map.
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A monitoring and control software was developed following a three-layered scheme. In the first layer,
data is acquired from the KNX bus using a KNX-IP (Internet Protocol) bridge device. The Open Home
Automation Bus (openHAB) [20] software performs the communication between KNX and our software.
In the second layer, it is possible to find a data persistence module that has been developed to collect
the values offered by openHAB with a sampling period of 60 s. Finally, the third layer is composed
of different software applications that are able to intercommunicate: a mobile application has been
developed to let the user watch and control the current state of domotic devices; and different intelligence
modules are being developed also, for instance, the ANN-based indoor temperature forecasting module.
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The energy power generation systems described previously are monitored by a software controller.
It includes multiple measurement sensors, including the voltage and current measurements of
photovoltaic panels and batteries. Furthermore, the current, voltage and power of the grid is available.
The system power consumption of the house has sensors for measuring power energy values for
each group element. The climate system has power consumption sensors for the whole system,
and specifically for the heat pump. The HVAC system is composed of several actuators and sensors
used for operation. Among them are the inlet and outlet temperatures of the heat rejector and the inlet
and outlet temperatures of the HVAC water in the SMLsystem. In addition, there are fourteen switches
for internal function valves, for the fan coil system, for the heat pump and the heat rejector. The DHW
system uses a valve and a pump to control water temperature. Some appliances have temperature sensors
which are also monitored. The lighting system has sixteen binary actuators that can be operated manually
by using the wall-mounted switches or by the MCS. The SMLsystem has indoor sensors for temperature,
humidity and CO2. Outdoor sensors are also available for lighting measurements, wind speed, rain,
irradiance and temperature.

3. Time Series Forecasting

Forecasting techniques are useful in terms of energy efficiency, because they help to develop
predictive control systems. This section introduces formal aspects and forecasting modeling done for
this work. Time series are data series with trend and pattern repetition through time. They can be
formalized as a sequence of scalars from a variable x, obtained as the output of the observed process:

s̄(x) = s0(x), s1(x), . . . , si−1(x), si(x), si+1(x) (1)

a fragment beginning at position i and ending at position j will be denoted by sji (x).
Time series forecasting could be grouped as univariate forecasting when the system forecasts variable

x using only past values of x, and multivariate forecasting when the system forecasts variable x using
past values of x plus additional values of other variables. Multivariate approaches could perform better
than univariate when additional variables cause variations on the predicted variable x, as is shown in the
experimental section.

Forecasting models are estimated given different parameters: the number of past values, the size
of the future window, and the position in the future of the prediction (future horizon). Depending
on the size of the future window and how it is produced [21], forecasting approaches are denoted as:
single-step-ahead forecasting if the model forecasts only the next time step; multi-step-ahead iterative
forecasting if the model forecasts only the next time step, producing longer windows by an iterative
process; and multi-step-ahead direct forecasting [22] if the model forecasts in one step a large future
window of size Z. Following this last approach, two different major model types exist:

• Pure direct, which uses Z forecasting models, one for each possible future horizon.
• Multiple input multiple output (MIMO), which uses one model to compute the full Z future

window. This approach has several advantages due to the joint learning of inputs and
outputs, which allows the model to learn the stochastic dependency between predicted values.
Discriminative models, as ANNs, profit greatly from this input/output mapping. Additionally,
ANNs are able to learn non-linear dependencies.
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3.1. Forecast Model Formalization

A forecast model could be formalized as a function F , which receives as inputs the interest variable
(x0) with its past values until current time t and a number C of covariates (x1, x2, . . . , xC), also with its
past values, until current time t and produces a future window of size Z for the given x0 variable:

〈ŝt+1(x0), ŝt+2(x0), . . . , ŝt+Z(x0)〉 = F (Ω(x0),Ω(x1), . . . ,Ω(xC)) (2)

Ω(x) = stt−I(x)+1(x) being the I(x) past values of variable/covariate x.
The number of past values I(x) is important to ensure good performance of the model, however, it

is not easy to estimate this number exactly. In this work, it is proposed to estimate models for several
values of I(x) and use the model that achieves better performance, denoted as BEST. It is known in
the machine learning community that ensemble methods achieve better generalization [23–25]. Several
possibilities could be found in the literature, such as vote combination, linear combination (for which
a special case is the uniform or mean combination), or in a more complicated way, modular neural
networks [26]. Hence, it is also proposed to combine the outputs of all estimated models for each
different value of I(x), following a linear combination scheme (the linear combination is also known as
ensemble averaging), which is a simple, but effective method of combination, greatly extended to the
machine learning community. Its major benefit is the reduction of overfitting problems and therefore,
it could achieve better performance than a unique ANN. The quality of the combination depends on
the correlation of the ANNs, theoretically, as the more decorrelated the models are, the better the
combination is. In this way, different input size I(x) ANNs were combined, with the expectation that
they will be less correlated between themselves than other kinds of combinations, as modifying hidden
layer size or other hyper-parameters.

A linear combination of forecasts models, given a set Fθ1 , Fθ2 , . . . , FθM of M forecast models,
with the same future window size (Z), follows this equation:

〈ŝt+1(x0), ŝt+2(x0), . . . , ŝt+Z(x0)〉 =
M∑
i=1

αiFθi(Ωi(x0),Ωi(x1), . . . ,Ωi(xC)) (3)

where αi is the combination weight given to the model θi; and Ωi(x) is its corresponding Ω function,
as described in Section 3.1. The weights are constrained to sum one,

∑M
i=1 αi = 1. This formulation

allows one to combine forecast models with different input window sizes for each covariate, but all of
them using the same covariate inputs. Each weight αi will be estimated following two approaches:

• Uniform linear combination: αi = 1
M

for 1 ≤ i ≤ M . Models following this approach will be
denoted as COMB-EQ.

• Exponential linear combination (softmax):

αi =
exp(L−1(θi,D))∑M
i=1 exp(L

−1(θi,D))
(4)

for 1 ≤ i ≤ M , L−1(θi,D) = 1/L(θi,D) being an inverted loss-function (error function) value
for the model θi, given the dataset D. It will be computed using a validation dataset. In this
paper, the loss-function will be the mean absolute error (MAE), defined in Section 3.2, because it
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is more robust on outlier errors than other quadratic error measures. This approach will be denoted
as COMB-EXP.

3.2. Evaluation Measures

The performance of forecasting methods over one time series could be assessed by several different
evaluation functions, which measure the empirical error of the model. In this work, for a deep analysis of
the results, three different error functions are used: MAE, root mean square error (RMSE) and symmetric
mean absolute percentage of error (SMAPE). The error is computed comparing target values for the time
series st+1, st+2, . . . , st+Z , and its corresponding time series prediction ŝt+1, ŝt+2, . . . , ŝt+Z , using the
model θ:

MAE(θ, t) =
1

Z

Z∑
z=1

|ŝt+z(x0)− st+z(x0)| (5)

RMSE(θ, t) =

√√√√ 1

Z

Z∑
z=1

(ŝt+z(x0)− st+z(x0))2 (6)

SMAPE(θ, t) =
1

Z

Z∑
z=1

|ŝt+z − st+z|
(|ŝt+z|+ |st+z|)/2

× 100 (7)

The results could be measured over all time series in a given dataset D as:

L?(θ,D) =
1

|D|

|D|∑
t=1

L(θ, t) (8)

|D| being the size of the dataset and L = {MAE,RMSE,SMAPE}, the loss-function defining MAE?,
RMSE?, and SMAPE?.

3.3. Forecasting Data Description

One aim of this work is to compare different statistical methods to forecast indoor temperature
given previous indoor temperature values. The correlation between different weather signals and indoor
temperature will also be analyzed.

In our database, time series are measured with a sampling period of T = 1 min. However, in order
to compute better forecasting models, each time series is sub-sampled with a period of T ′ = 15 min,
computing the mean of the last T ′ values (for each hour, this mean is computed at 0 min, 15 min, 30 min
and 45 min). The output of this preprocessing is the data series s′(x), where:

s′i(x) =

iT ′∑
j=(i−1)T ′+1

sj(x)

T ′
(9)

One time feature and five sensor signals were taken into consideration:

• Indoor temperature in degrees Celsius, denoted by variable x = d. This is the interesting
forecasted variable.
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• Hour feature in Universal Time Coordinated (UTC), extracted from the time-stamp of each pattern,
denoted by variable x = h. The hour of the day is important for estimating the Sun’s position.

• Sun irradiance in W/m2, denoted by variable x = W . It is correlated with temperature, because
more irradiance will mean more heat.

• Indoor relative humidity percentage, denoted by variable x = H . The humidity modifies the
inertia of the temperature.

• Indoor air quality in CO2 ppm (parts per million), denoted by variable x = Q. The air quality is
related to the number of persons in the house, and a higher number of persons means an increase
in temperature.

• Raining Boolean status, denoted by variable x = R. The result of sub-sampling this variable is the
proportion of minutes in sub-sampling period T ′, where raining sensor was activated with True.

To evaluate the forecasting models’ performance, three partitions of our dataset were prepared:
a training partition composed of 2017 time series over 21 days—the model parameters are estimated
to reduce the error in this data; a validation partition composed of 672 time series over seven days—this
is needed to avoid over-fitting during training, and also to compare and study the models between
themselves; training and validation were performed in March 2011; a test partition composed of
672 time series over seven days in June 2011. At the end, the forecasting error in this partition will be
provided, evaluating the generalization ability of this methodology. The validation partition is sequential
with the training partition. The test partition is one week ahead of the last validation point.

4. Forecasting Methods

4.1. Standard Statistical Methods

Exponential smoothing and auto-regressive integrated moving average models (ARIMA) are the
two most widely-used methods for time series forecasting. These methods provide complementary
approaches to the time series forecasting problems. Therefore, exponential smoothing models are
based on a description of trend and seasonality in the data, while ARIMA models aim to describe its
autocorrelations. Their results have been considered as a reference to compare to the ANN results.

On the one hand, exponential smoothing methods are applied for forecasting. These methods
were originally classified by [27] according to their taxonomy. This was later extended by [28],
modified by [29] and extended by [30], giving a total of fifteen methods. These methods could have
different behavior depending on their error component [A (additive) and M (multiplicative)], trend
component [N (none), A (additive), Ad (additive damped), M (multiplicative) and Md (multiplicative
damped)] and seasonal component [N (none), A (additive) and M (multiplicative)]. To select the
best-fitting models within this framework, each possible model was estimated for the training partition,
and the two best models were selected. To carry out this selection, Akaike’s Information Criterion
(AIC) was used as suggested by some works in the literature [31,32]. The selected models were:
the first model with multiplicative error, multiplicative damped trend and without the seasonal
component (MMdN model), and the second model with additive error, additive damped trend and
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without the seasonal component (AAdN model). The MMdN model was chosen for the validation
partition in order to minimize the MSE.

On the other hand, ARIMA models were estimated. The widely known ARIMA approach was first
introduced by Box and Jenkins [33] and provides a comprehensive set of tools for univariate time series
modeling and forecasting. These models were estimated for our data with and without covariates.
The last value of variable hour (x = h), codified as a factor—using 24 categories (0 to 23), —and
the hour as a continuous variable were used as covariates.

Either linear and quadratic form of this quantity were used, but linear performs worst. Therefore,
three model groups are used: ARIMA without covariates (ARIMA), with covariate x = h as a factor
(ARIMAF) and with covariate x = h as a quadratic form (ARIMAQ). The best models for each group
were estimated for the training partition, and in all cases, the non-seasonal ARIMA(2,1,0) model was
selected for the ARIMA part of each model using AIC. The best results, in terms of MSE, were obtained
in models with covariate time as a factor and covariate time as a quadratic form.

The forecast library in the statistical package R [34] was used for these analyses.

4.2. ANNs

Estimation of ANN forecast models needs data preprocessing and normalization of input/output
values in order to ensure better performance results.

4.2.1. Preprocessing of Time Series for ANNs

The indoor temperature variable (x = d) is the interesting forecasted variable. In order to increase
model generalization, this variable is differentiated, and a new s̄′′(x = d) signal sequence is obtained
following this equation:

s′′i (x = d) = s′i(x)− s′i−1(x) (10)

The differentiation of indoor temperature shows that is important to achieve good generalization
results, and it is based on previous work where undifferentiated data has been used [11].

The time series corresponding to sun irradiance (x = W ), indoor relative humidity (x = H),
air quality (x = Q) and rain (x = R) are normalized, subtracting the mean and dividing by the standard
deviation, computing new signal sequences, s̄′′(x ∈ {W,H,Q,R}):

s′′i (x ∈ {W,H,Q,R}) =
s′i(x)− E[s̄′(x)]

σ(s̄′(x))
(11)

where E[s̄′(x)] is the mean value of the sequence; s̄′(x) and σ(s̄′(x)) is the standard deviation.
These two parameters may be computed over the training dataset. For the hour component (x = h),
a different approach is followed. It is represented as a locally-encoded category, which consists of
using a vector with 24 components, where 23 components are set to 0, and the component that indicates
the hour value is set to 1. This kind of encoding avoids the big jump between 23 and 0 at midnight,
but forces the model to learn the relationship between adjacent hours. Other approaches for hour
encoding could be done in future work.
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4.2.2. ANN Description

ANNs has an impressive ability to learn complex mapping functions, as they are universal function
approximators [35] and are widely used in forecasting [10,25,36,37].

ANNs are formed by one input layer, an output layer, and a few numbers of hidden layers. Figure 2 is
a schematic representation of an ANN with two hidden layers for time series forecasting. The inputs of
the ANN are past values of covariates, and the output layer is formed by the Z future window predicted
values, following the MIMO approach described in Section 3, which has obtained better accuracy in
previous experimentation [11].

Figure 2. Artificial neural network (ANN) topology for time series forecasting.

The well-known error-backpropagation (BP) algorithm [38] has been used in its on-line version to
estimate the ANN weights, adding a momentum term and an L2 regularization term (weight decay).
Despite that theoretically algorithms more advanced than BP exists nowadays, BP is easier to implement
at the empirical level, and a correct adjustment of momentum and weight decay helps to avoid bad local
minima. The BP minimizes the mean square error (MSE) function with the addition of the regularization
term weight decay, denoted by ε, useful for avoiding over-fitting and improving generalization:

E =
1

2Z

Z∑
i=1

(ŝt+i(x0)− st+i(x0))2 +
ε

2

∑
wi∈θ

w2
i (12)

where θ is a set of all weights of the ANN (without the bias); and wi is the value of the i-th weight.

5. Experimental Results

Using the data acquired during the normal functioning of the house, experiments were performed
to obtain the best forecasting model for indoor temperature. First, an exhaustive search of model
hyper-parameters was done for each covariate combination. Second, different models were trained
for different values of past size for indoor temperature (x = d), and a comparison among different
covariate combinations and ANN vs. standard statistical methods has been performed. A comparison
of a combination of forecasting models has also been performed. In all cases, the future window size Z
was set to 12, corresponding to a three-hour forecast.

A grid search exploration was done to set the best hyper-parameters of the system and ANN topology,
fixing covariates x ∈ {d,W,H,Q,R} to a past size, I(x) = 5 and I(x = h) = 1, searching
combinations of:
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• different covariates of the model input;

• different values for ANN hidden layer sizes;

• learning rate, momentum term and weight decay values.

Table 2 shows the best model parameters found by this grid search. For illustrative purposes,
Figures 3 and 4 show box-and-whisker plots of the hyper-parameter grid search performed to optimize
the ANN model, d+ h.

Table 2. Training parameters depending on the input covariates combination (η is the
learning rate, µ is the momentum term, and ε is weight decay).

Covariates η µ ε Hidden layers

d 0.005 0.001 1× 10−6 8 tanh–8 tanh
d+W 0.001 0.005 1× 10−6 24 tanh–8 tanh
d+ h 0.005 0.005 1× 10−6 8 tanh

d+ h+W 0.005 0.005 1× 10−5 24 tanh–16 tanh
d+ h+H 0.005 0.005 1× 10−5 16 tanh
d+ h+R 0.005 0.005 1× 10−6 16 logistic–8 logistic
d+ h+Q 0.0005 0.005 1× 10−4 24 logistic

d+ h+W +H 0.005 0.005 1× 10−5 16 tanh
d+ h+W +R 0.005 0.005 1× 10−6 16 logistic–8 logistic
d+ h+W +Q 0.005 0.005 1× 10−4 8 tanh–8 tanh

d+ h+W +Q+R 0.005 0.005 1× 10−4 24 tanh–8 tanh

Figure 3. Mean absolute error (MAE)? box-and-whisker plots for ANNs with one hidden
layer and the hyper-parameters of the grid search performed to optimize the ANN model,
d+ h. The x-axis of the learning rate, momentum and weight decay are log-scaled.
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Figure 4. MAE? box-and-whisker plots for ANNs with two hidden layers and the
hyper-parameters of the grid search performed to optimize the ANN model, d + h.
The x-axis of the learning rate, momentum and weight decay are log-scaled.
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They show big differences between one- and two-hidden layer ANNs, two-layered ANNs being more
difficult to train for this particular model. The learning rate shows a big impact in performance, while
momentum and weight decay seems to be less important. This grid search was repeated for all the
tested covariate combinations, and the hyper-parameters that optimize MAE? were selected in the rest of
the paper.

5.1. Covariate Analysis and Comparison between Different Forecasting Strategies

For each covariate combination, and using the best model parameters obtained previously, different
model comparison has been performed. Note that the input past size of covariates is set to
I(x ∈ {W,H,Q,R})= 5 time steps, that is, 60 min, and to I(x = h) = 1. For forecasted variable
x = d, models with sizes I(x = d) ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21} were trained.

A comparison between BEST, COMB-EQ and COMB-EXP approaches was performed and shown
in Table 3. Figure 5 plots the same results for a better confidence interval comparison. Table 4 shows
COMB-EQ weights used in experimentation, obtained following Equation (4) and using MAE? as the
loss-function. From all these results, the superiority of ANNs vs. standard statistical methods is
clear, with clear statistical significance and with a confidence greater than 99%. Different covariate
combinations for ANN models show that the indoor temperature correlates well with the hour (d + h)
and sun irradiance (d+W ), and the combination of these two covariates (d+h+W ) improves the model
in a significant way (99% confidence) with input d+W . The addition of more covariates is slightly better
in two cases (d+h+W+R and d+h+W+Q), but the differences are not important. With only the hour
and sun irradiance, the ANN model has enough information to perform good forecasting. Regarding the
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combination of models, in some cases, the COMB-EXP approach obtains consistently better results than
COMB-EQ and BEST, but the differences are not important.

Table 3. Symmetric mean absolute percentage of error (SMAPE)?, MAE? and root mean
square error (RMSE)? results on the validation partition comparing different models, input
features and combination schemes with the 99% confidence interval. BEST refers to the best
past size ANN, CEQ refers to COMB-EQ ANNs, and CEXP refers to COMB-EXP ANNs.
Bolded face numbers are the best results, and the gray marked row is the most significant
combination of covariates. ARIMA: auto-regressive integrated moving average models;
ARIMAQ: ARIMA with covariate x = h as a quadratic form (ARIMAQ); ARIMAF:
ARIMA with covariate x = h as a factor.

Model SMAPE ?(%)[lower, upper] MAE?[lower, upper] RMSE?[lower, upper]

Standard statistical models
ARIMA-d 1.5856 [1.4528, 1.7183] 0.3099 [0.2851, 0.3348] 0.3715 [0.3413, 0.4016]

ARIMAQ-d+ h2 1.5932 [1.4607, 1.7257] 0.3113 [0.2865, 0.3362] 0.3729 [0.3428, 0.4029]
ARIMAF-d+ h 1.5888 [1.4558, 1.7219] 0.3105 [0.2857, 0.3352] 0.3721 [0.3420, 0.4022]

ETS-d 1.5277 [1.3946, 1.6607] 0.3004 [0.2753, 0.3255] 0.3648 [0.3340, 0.3957]
ANN models

BEST-d 0.8687 [0.7856, 0.9517] 0.1682 [0.1524, 0.1840] 0.2109 [0.1911, 0.2306]
CEQ-d 0.9315 [0.8545, 1.0085] 0.1802 [0.1661, 0.1944] 0.2248 [0.2072, 0.2423]

CEXP-d 0.8695 [0.7938, 0.9452] 0.1680 [0.1541, 0.1818] 0.2109 [0.1937, 0.2280]
BEST-d+W 0.7296 [0.6311, 0.8281] 0.1418 [0.1228, 0.1608] 0.1777 [0.1544, 0.2010]
CEQ-d+W 0.7792 [0.6959, 0.8625] 0.1510 [0.1353, 0.1667] 0.1888 [0.1695, 0.2082]

CEXP-d+W 0.7387 [0.6576, 0.8199] 0.1430 [0.1277, 0.1582] 0.1788 [0.1601, 0.1975]
BEST-d+ h 0.6593 [0.5889, 0.7298] 0.1275 [0.1143, 0.1406] 0.1549 [0.1389, 0.1708]
CEQ-d+ h 0.6787 [0.6055, 0.7519] 0.1312 [0.1175, 0.1449] 0.1590 [0.1425, 0.1754]

CEXP-d+ h 0.6768 [0.6037, 0.7498] 0.1308 [0.1172, 0.1445] 0.1586 [0.1422, 0.1750]
BEST-d+ h+W 0.5737 [0.5058, 0.6416] 0.1121 [0.0994, 0.1248] 0.1379 [0.1222, 0.1536]
CEQ-d+ h+W 0.5625 [0.4944, 0.6306] 0.1094 [0.0966, 0.1222] 0.1348 [0.1189, 0.1506]

CEXP-d+ h+W 0.5608 [0.4927, 0.6289] 0.1091 [0.0963, 0.1218] 0.1344 [0.1187, 0.1501]
BEST-d+ h+H 0.6006 [0.5369, 0.6642] 0.1169 [0.1050, 0.1288] 0.1429 [0.1285, 0.1573]
CEQ-d+ h+H 0.5897 [0.5240, 0.6553] 0.1142 [0.1019, 0.1264] 0.1399 [0.1250, 0.1548]

CEXP-d+ h+H 0.5864 [0.5207, 0.6521] 0.1137 [0.1014, 0.1259] 0.1393 [0.1244, 0.1543]
BEST-d+ h+R 0.6042 [0.5292, 0.6792] 0.1170 [0.1031, 0.1309] 0.1424 [0.1255, 0.1593]
CEQ-d+ h+R 0.5947 [0.5214, 0.6680] 0.1149 [0.1014, 0.1284] 0.1410 [0.1245, 0.1575]

CEXP-d+ h+R 0.5933 [0.5196, 0.6670] 0.1146 [0.1009, 0.1282] 0.1407 [0.1241, 0.1574]
BEST-d+ h+Q 0.6189 [0.5526, 0.6852] 0.1200 [0.1075, 0.1325] 0.1463 [0.1311, 0.1614]
CEQ-d+ h+Q 0.6219 [0.5539, 0.6899] 0.1208 [0.1080, 0.1336] 0.1479 [0.1324, 0.1633]

CEXP-d+ h+Q 0.6196 [0.5518, 0.6873] 0.1203 [0.1076, 0.1331] 0.1473 [0.1319, 0.1627]
BEST-d+ h+W +H 0.5977 [0.5309, 0.6646] 0.1163 [0.1037, 0.1289] 0.1434 [0.1280, 0.1588]
CEQ-d+ h+W +H 0.5943 [0.5304, 0.6583] 0.1155 [0.1034, 0.1275] 0.1424 [0.1276, 0.1571]

CEXP-d+ h+W +H 0.5899 [0.5257, 0.6540] 0.1146 [0.1025, 0.1267] 0.1413 [0.1265, 0.1561]
BEST-d+ h+W +R 0.5600 [0.4935, 0.6266] 0.1090 [0.0966, 0.1214] 0.1335 [0.1183, 0.1486]
CEQ-d+ h+W +R 0.5568 [0.4895, 0.6240] 0.1080 [0.0955, 0.1205] 0.1328 [0.1174, 0.1482]

CEXP-d+ h+W +R 0.5541 [0.4872, 0.6210] 0.1076 [0.0951, 0.1200] 0.1323 [0.1169, 0.1476]
BEST-d+ h+W +Q 0.5732 [0.5111, 0.6353] 0.1118 [0.1000, 0.1236] 0.1376 [0.1231, 0.1521]
CEQ-d+ h+W +Q 0.5537 [0.4921, 0.6153] 0.1079 [0.0962, 0.1196] 0.1328 [0.1184, 0.1472]

CEXP-d+ h+W +Q 0.5532 [0.4916, 0.6148] 0.1079 [0.0962, 0.1196] 0.1328 [0.1184, 0.1472]
BEST-d+ h+W +Q+R 0.5704 [0.5040, 0.6369] 0.1110 [0.0984, 0.1235] 0.1363 [0.1210, 0.1517]
CEQ-d+ h+W +Q+R 0.5615 [0.4945, 0.6285] 0.1088 [0.0964, 0.1212] 0.1340 [0.1187, 0.1492]

CEXP-d+ h+W +Q+R 0.5606 [0.4937, 0.6275] 0.1087 [0.0963, 0.1211] 0.1337 [0.1185, 0.1490]
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Figure 5. SMAPE? error plot with 99% confidence interval for models of Table 3 on the
validation partition.
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Table 4. Combination weights of every input size of d for the COMB-EXP models
given tested covariates combinations. All co-variables have an input size of 5 (75 min).
Bold numbers are the best input sizes.

COMB-EXP combination weights for every d variable input size (min)Input covariates
1(15) 3(45) 5(75) 7(105) 9(135) 11(165) 13(195) 15(225) 17(255) 19(285) 21(315)

d 0.002 0.044 0.098 0.142 0.092 0.095 0.082 0.103 0.100 0.106 0.135

d+W 0.026 0.020 0.185 0.046 0.069 0.075 0.104 0.103 0.124 0.117 0.131

d+ h 0.123 0.066 0.099 0.085 0.092 0.091 0.091 0.097 0.084 0.084 0.088

d+ h+W 0.040 0.112 0.137 0.072 0.078 0.100 0.107 0.120 0.083 0.075 0.075

d+ h+H 0.049 0.058 0.121 0.127 0.095 0.105 0.114 0.068 0.100 0.074 0.090

d+ h+R 0.049 0.052 0.126 0.099 0.078 0.113 0.104 0.114 0.102 0.089 0.076

d+ h+Q 0.084 0.089 0.105 0.123 0.115 0.103 0.086 0.077 0.069 0.073 0.076

d+ h+W +H 0.062 0.085 0.071 0.091 0.123 0.134 0.094 0.082 0.067 0.121 0.069

d+ h+W +R 0.048 0.089 0.142 0.078 0.062 0.116 0.121 0.092 0.109 0.087 0.056

d+ h+W +Q 0.064 0.101 0.112 0.097 0.068 0.088 0.115 0.090 0.085 0.079 0.101

d+ h+W +Q+R 0.042 0.090 0.136 0.098 0.111 0.089 0.101 0.072 0.090 0.085 0.087

A deeper analysis could be done if comparing the SMAPE values for each possible future horizon,
as Figure 6 shows. A clear trend exists: error increases with the enlargement of the future horizon.
Furthermore, an enlargement of the confidence interval is observed with the enlargement of the future
horizon. In all cases, ANN models outperform statistical methods. For shorter horizons (less than or
equal to 90 min), the differences between all ANN models are insignificant. For longer horizons (greater
than 90 min), a combination of covariates d+h+W achieve a significant result (for a confidence of 99%)
compared with the d+W combination. As was shown in these results, the addition of covariates is useful
when the future horizon increases, probably because the impact of covariates into indoor temperature
becomes stronger over time.
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Figure 6. SMAPE? error plot with 99% confidence interval of each of the Z = 12 future
horizon predicted values (from 15 min forecast to 180 min forecast.)
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Finally, to compare the generalization abilities of the proposed best models, the error measures for
the test partition are shown in Table 5 and Figure 7. All error measures show better performance in
the test partition, even when this partition is two weeks ahead of training and contains hotter days than
the training and validation partitions. The reason for this better performance might be that the test
series has increasing/decreasing temperature cycles that are more similar to the training partition than
the cycles in the validation partition. The differences between models are similar, and the most significant
combination of covariates is time hour and sun irradiance (d+h+W ) following the COMB-EXP strategy,
achieving a SMAPE? ≈ 0.45%, MAE? ≈ 0.11, and RMSE? ≈ 0.13.

Table 5. SMAPE?, MAE? and RMSE? results on test partition comparing the best models
with the 99% confidence interval. Bolded face numbers are the best results, and the gray
marked row is the most significant combination of covariates.

Model SMAPE?(%)[lower, upper] MAE?[lower, upper] RMSE?[lower, upper]

ETS-d 1.3669 [1.2649, 1.4688] 0.3254 [0.3023, 0.3485] 0.3930 [0.3643, 0.4218]
BEST-d 0.6736 [0.6128, 0.7343] 0.1604 [0.1460, 0.1748] 0.2022 [0.1844, 0.2199]
CEQ-d 0.7462 [0.6907, 0.8016] 0.1767 [0.1638, 0.1895] 0.2203 [0.2046, 0.2360]

CEXP-d 0.6630 [0.6101, 0.7159] 0.1572 [0.1450, 0.1694] 0.1976 [0.1824, 0.2127]
BEST-d+ h+W 0.4802 [0.4339, 0.5266] 0.1143 [0.1035, 0.1252] 0.1382 [0.1252, 0.1512]
CEQ-d+ h+W 0.4569 [0.4127, 0.5012] 0.1090 [0.0985, 0.1195] 0.1318 [0.1193, 0.1443]

CEXP-d+ h+W 0.4546 [0.4111, 0.4982] 0.1085 [0.0981, 0.1189] 0.1312 [0.1188, 0.1437]
BEST-d+ h+W +R 0.4350 [0.3925, 0.4774] 0.1034 [0.0935, 0.1132] 0.1255 [0.1136, 0.1374]
CEQ-d+ h+W +R 0.4271 [0.3854, 0.4688] 0.1013 [0.0916, 0.1111] 0.1225 [0.1109, 0.1341]

CEXP-d+ h+W +R 0.4253 [0.3837, 0.4670] 0.1010 [0.0913, 0.1108] 0.1223 [0.1107, 0.1339]
BEST-d+ h+W +Q 0.4727 [0.4258, 0.5196] 0.1127 [0.1015, 0.1238] 0.1353 [0.1223, 0.1483]
CEQ-d+ h+W +Q 0.4565 [0.4136, 0.4994] 0.1092 [0.0988, 0.1195] 0.1314 [0.1192, 0.1436]

CEXP-d+ h+W +Q 0.4565 [0.4134, 0.4995] 0.1091 [0.0988, 0.1195] 0.1313 [0.1192, 0.1435]
BEST-d+ h+W +Q+R 0.4434 [0.3997, 0.4872] 0.1051 [0.0949, 0.1153] 0.1268 [0.1147, 0.1388]
CEQ-d+ h+W +Q+R 0.4195 [0.3792, 0.4597] 0.0996 [0.0903, 0.1090] 0.1201 [0.1090, 0.1312]

CEXP-d+ h+W +Q+R 0.4192 [0.3790, 0.4595] 0.0994 [0.0902, 0.1087] 0.1200 [0.1089, 0.1311]

Figure 7. SMAPE? error plot with the 99% confidence interval for the models of Table 5 in
the test partition.
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In order to perform a better evaluation, the conclusions above are compared with mutual
information (MI), shown in Table 6. Probability densities have been estimated with histograms, making
the assumption of independence between time points, which is not true for time series [39], but is enough
for our contrasting purpose. The behavior of the ANNs is similar to the MI study. Sun irradiance (W )
covariates show high MI with indoor temperature (d), which is consistent with our results. Humidity
(H) and air quality (Q) MI with indoor temperature (d) is higher than sun irradiance, which seems
contradictory with our expectations. However, if we compute MI only during the day (removing the
night data points), the sun irradiance shows higher MI with indoor temperature than other covariates.
Regarding the hour covariate, it shows lower MI than expected, probably due to the cyclical shape of the
hour, which breaks abruptly with the jump between 23 and 0, affecting the computation of histograms.

Table 6. Mutual Information (MI) and normalized MI between considered covariates and
the indoor temperature, for the validation set.

Data Algorithm d h W H R Q

MI (for d) 9.24 4.44 6.06 8.95 0.51 7.70
Validation set

Normalized MI (for d) 2.00 1.48 1.65 1.95 1.06 1.82

Validation set, MI (for d) 8.23 3.50 8.11 8.09 0.58 7.41

removing night data points Normalized MI (for d) 2.00 1.42 1.98 1.97 1.07 1.89

6. Conclusions

An overview of the monitoring and sensing system developed for the SMLsystem solar powered house
has been described. This system was employed during the participation at the Solar Decathlon Europe
2012 competition. The research in this paper has been focused on how to predict the indoor temperature
of a house, as this is directly related to HVAC system consumption. HVAC systems represent 53.89%

of the overall power consumption of the SMLsystem house. Furthermore, performing a preliminary
exploration of the SMLsystem competition data, the energy used to maintain temperature was found to
be 30%–38.9% of the energy needed to lower it. Therefore, an accurate forecasting of indoor temperature
could yield an energy-efficient control.

An analysis of time series forecasting methods for prediction of indoor temperature has been
performed. A multivariate approach was followed, showing encouraging results by using ANN
models. Several combinations of covariates, forecasting model combinations, comparison with standard
statistical methods and a study of covariate MI has been performed. Significant improvements were
found by combining indoor temperature with the hour categorical variable and sun irradiance, achieving
a MAE? ≈ 0.11 degrees Celsius (SMAPE? ≈ 0.45%). The addition of more covariates different from
hour and sun irradiance slightly improves the results. The MI study shows that humidity and air quality
share important information with indoor temperature, but probably, the addition of these covariates does
not add different information from which is indicated by hour and sun irradiance. The combination of
ANN models following the softmax approach (COMB-EXP) produce consistently better forecasts, but
the differences are not important. The data available for this study was restricted to one month and a
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week of a Southern Europe house. It might be interesting to perform experiments using several months
of data in other houses, as weather conditions may vary among seasons and locations.

As future work, different techniques for the combination of forecasting models could be performed.
A deeper MI study to understand the relationship between covariates better would also be interesting.
The use of second order methods to train the ANN needs to be studied. In this work, for the ANN
models, the hour covariate is encoded using 24 neurons; other encoding methods will be studied, for
example, using splines, sinusoidal functions or a neuron with values between 0 and 23.

Following these results, it is intended to design a predictive control based on the data acquired
from ANNs, for example, from this one that is devoted to calculating the indoor temperature,
extrapolating this methodology to other energy subsystems that can be found in a home.
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