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Abstract: In order to model the liquid water transport in the porous materials used
in polymer electrolyte membrane (PEM) fuel cells, the pore network models are
often applied. The presented model is a novel approach to further develop these models
towards a percolation model that is based on the fiber structure rather than the pore structure.
The developed algorithm determines the stable liquid water paths in the gas diffusion layer
(GDL) structure and the transitions from the paths to the subsequent paths. The obtained
water path network represents the basis for the calculation of the percolation process with
low calculation efforts. A good agreement with experimental capillary pressure-saturation
curves and synchrotron liquid water visualization data from other literature sources is found.
The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals
that the porosity is not a crucial factor for the limiting current density. An algorithm for
condensation is included into the model, which shows that condensing water is redirecting
the water path in the GDL, leading to an improved oxygen diffusion by a decreased
breakthrough pressure and changed saturation distribution at breakthrough.
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Symbols:

β—object orientation in x/y plane
γ—surface tension of liquid
ε—porosity
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Θ—contact angle
µ—mean value
ν—object orientation in x/z plane
σ—path orientation
∆c—concentration difference
b—object width
h—GDL height
il—limiting current density
jO2—oxygen flux over boundary
l—object length
n—number of electrons transferred during reaction
p—pressure
pc—capillary pressure
pc,min—minimum path pressure at a location
pc,t—minimum drainage pressure at location
q(j, k)—evaporation/condensation sink/source term
r—meniscus radius
rp—pore radius
s—saturation
std—standard deviation
Db—bulk oxygen diffusion coefficient according to Bruggemann
Df—oxygen diffusion coefficient in an object
DO2,air—oxygen diffusion coefficient in air
F—faraday constant
K1/2—threshold values
T—temperature
UM—unstable meniscus

1. Introduction

Water management is very important for the efficiency, stability and durability of polymer electrolyte
membrane (PEM) fuel cells. On the one hand, the water has to be retained in the ionomer to avoid
dehydration and performance loss due to low protonic conductivity. Dehydration also leads to membrane
electrode assembly (MEA) degradation due to membrane thinning and pinhole formation [1,2]. On the
other hand, the liquid water saturation in the gas diffusion layers (GDLs) must be low enough to sustain
the gas transport from the gas channels to the active sites. Flooding can also accelerate degradation of
the catalyst layer and the GDL due to polytetrafluoroethylene (PTFE) loss [3,4], and lead to formation
of hot spots due to local reactant starvation.
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If operating at high currents or in wet conditions, condensation within the GDL or the electrode can
not be avoided. Therefore, the liquid water transport in the GDL is a key issue since the liquid water has
to be transported efficiently to the gas channels to maintain the reactant gas transport paths to the active
sites free of liquid water.

The fragile water balance can be influenced in two different ways: by regulating the operating
conditions (gas flow, gas humidity and pressure, cell temperature) or by component design.

Changing the wetting properties of the GDL towards hydrophobic by adding PTFE improves the
water management by avoiding water accumulation in the porous structure. The negative aspects
of this approach are the reduced pore space for the gas transport by lower porosity, lower electrical
conductivity and liquid water accumulation in the electrode due to the increased entry pressure into
the GDL. However, different groups have shown that the cell performance and stability increases by
adding up to 20 wt% PTFE into the GDL [5–9].

Other approaches involve changing the GDL structure to improve the water management.
Adding artificial water transport channels by laser perforation has been shown to improve the water
management, which is most likely due to a drainage effect in the GDL [9–16].

Due to the diversity of possible GDL designs, optimization premises the understanding of the
complex and highly coupled thermodynamics of the GDL water transport and their influence on fuel cell
performance. Convection, diffusion and phase change on the microscale have a significant influence on
the relevant parameters and have to be considered. For specific optimization, modeling is fundamental,
but simplifications have to be chosen very carefully to identify the relevant influencing factors.

In general, there are two different ways of modeling the liquid water transport in GDLs: continuum
modeling and discrete modeling.

In continuum models, the transport and phase change processes in the GDL are represented by
differential equations. Since the relevant fuel cell processes are mostly formulated in continuum
expressions, these models can directly be combined to whole fuel cell models, including the heat, charge
and mass transport, to directly capture the influence of the GDL design on the fuel cell performance.

For discrete models, the coupling to continuum fuel cell models is difficult due to the different
formulation of the processes. Discrete models are often pore network models. Pore network models
are very helpful for understanding the general dependencies of the liquid water transport phenomena
in porous materials for fuel cells [17–23]. In contrast to continuum models, they are able to capture
the complex liquid water fingering transport processes, observed in ex situ experiments for highly
porous and hydrophobic materials [10,24]. The GDL is represented by regularly shaped pores, which
are interconnected by regularly shaped throats, presuming the connectivity. The network is most
often derived by interpreting mercury intrusion experiments using the Young-Laplace equation for
cylindrical pores:

p = 2γ
cos Θ

rp
(1)

This way, the volume of the pores with radius rp can be attributed to the penetration pressure p
(with γ as the surface tension of the penetrating fluid and Θ as the contact angle between the fluid
and solid). The obtained pore size distributions can easily be used as an input parameter for pore
network models, since both approaches apply the same simplified representation of the pore geometry.
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However, the distribution of the invading fluid cannot be extracted from the measurements, and the
influence of structural changes can hardly be predicted.

A step towards more realistic and applied modeling is to extract the pore network from the physical
GDL structure instead of generating it by randomized processes. Luo et al. and Thiedman et al. [19,25,26]
presented a topologically equivalent pore network model and extracted the network from either a
stochastic fiber model or direct visualization of real GDLs. Luo et al. extracted the pore and throat
geometry by applying a maximal balls concept according to Dong and Blunt [27], neglecting the
influence of the material wetting properties on the network.

In highly porous materials, the breakdown of the structure to a pore space distribution with regularly
shaped pores is often problematic due to the inadequate geometrical representation of the void space
in-between the solid, as is obvious from the GDL cross-section in Figure 1a. The pore network does
not provide a direct geometric representation of a physical porous medium, and the physical consistency
is ensured by selecting a throat radii distribution function, such that the capillary pressure matches the
measured data [20]. Depending on the structure and filling direction, the shape of the water in the
void space can significantly differ from the regular structures in pore network models. Furthermore,
each point in space can only be part of one pore or throat, despite that in Figure 1b each point in
between the fibers can be part of several menisci between several fiber combinations and can, therefore,
have significantly different entrance pressures.

Figure 1. Illustration of the concept of the water path network: (a) a path consists of stable
menisci positions between an object pair; (b) each point in space can be part of several paths
having different entry pressures (menisci radii).

(a) (b)

To examine the influence of the GDL structure and local wetting properties, we developed a
percolation model using the GDL design parameters as a direct input. This includes the distributions of
fiber contact angle, fiber size and orientation, as well as spatially varying porosities. The presented model
is an attempt to bridge the gap and couple the water percolation to the physical structure of the GDL. It is
a novel approach to extend present discrete pore network models towards a more realistic description of
the liquid water transport in the void structure of the GDL. Instead of pores that are interconnected
by throats, the GDL is represented by all its possible stable water paths which are connected by
unstable transitions.
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The model is designed to be coupled with a continuum model describing the electrochemical and
thermodynamic processes in the fuel cell in a later stage. The physics of liquid water movement in highly
porous materials is very complex, and the direct discrete simulation of the water movement through the
structure can become very time-consuming easily. Since an iterative coupling algorithm would demand
the frequent recalculation of the percolation model during iterations, the high calculation effort makes
a coupling unrealistic. However, using a network describing the connectivity of water paths dependent
on the GDL structure is perfectly suited for the coupling, since the calculation effort is significantly
reduced. By creating this network in a one-time computationally intensive pre-processing step, all
necessary information is provided for a non-time-consuming simulation of the percolation process.

Furthermore, we developed and included an algorithm describing the discrete liquid water formation
and transport due to phase change for modeling the two-phase water transport when coupling to a whole
fuel cell model in future work.

2. Model Description

In Figure 2, a schematic of the different modeling steps (GDL structure generation, network
generation and percolation calculation) is shown, which is described in detail in the following
subsections. The generation of a stochastic GDL model containing two-dimensional (2D) objects is
described first. The description of the network generation based on the GDL structure is described in
detail in the following section. After defining the initial liquid water position, the network is used as a
basis for calculating the water movement and the filling of the GDL, which is described in Section 2.3.

Figure 2. Schematic of the modeling steps.

2.1. GDL Structure Generation

To demonstrate the functionality of the percolation model, a simple GDL structure generation
algorithm has been developed. Optional to the described algorithm, other three-dimensional (3D)
structure modeling approaches [28,29] or X-ray-based reconstructing methods [30] can also be used
to generate an input for the percolation model.
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The fiber-based network model is based on the 2D structure of a carbon-fiber GDL. The fibers,
and PTFE in the GDL structure are represented by 2D, rectangular objects having different sizes
and orientations. Even though the cross-section of a round fiber is a rectangle with two round sides,
we assume that the effect of neglecting the circular shape on the liquid water transport is negligible.

The length and width of the objects, the contact angle and orientation in the visualized x/z
cross-section plane (β, see Figure 1a) are normally distributed. The fibers are placed at random positions
that are not occupied until a predefined porosity is reached. Intersecting objects are trimmed from the
starting point until the intersection. Since the fibrous materials are produced by laying down a mat of
fibers, the mean value of β is set to 0◦, and the object orientation angle in the z/x plane (γ) is assumed
to be uniformly distributed. The cross-section length of an object with width b in the visualized plane is
then calculated via b× cos γ, while limited by the actual object length.

As an example for a GDL model generation, Figure 3 shows a cross-section of a Toray TGP-H-060
carbon paper with 20 wt% PTFE (Toray Industries, Inc., Tokyo, Japan; the treatment of PTFE is
according to reference [31]) and a 2D representation for a GDL with the respective design parameters
(porosity and fiber size/orientation).

Figure 3. (a) Cross-section of a Toray TGP-H-060 with 20 wt% PTFE (edge length is
200 µm) and (b) the 2D representation for the same type of GDL.

(a) (b)

The porosity can be modified locally to capture GDL inhomogeneities, like perforations or different
compression levels under the land and the channel. A contact angle can be attributed to all four straight
boundaries of the GDL objects separately by specifying its distribution parameters. The boundaries of
the model domain are captured by four straight lines having a contact angle of 90◦.

2.2. Network Generation

The model follows the assumption that each water filled region in the GDL is confined by at least
two menisci, which are spanning between object pairs, respectively. The position of a stable meniscus
between one pair moves between the pair, dependent on the liquid water pressure. When the meniscus
outruns the object pair, additional menisci between further pairs are established. Based on the stable
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menisci positions between all the possible object pairs and their connectivity, a water path network is
obtained. This network contains the information about the location of all stable water paths and their
connectivity together with the pressure level, necessary to reach the subsequent path. Each point in space
is no longer part of a pore or a throat, but can be part of several paths and transitions.

The presented approach describes the percolation in 2D, but would in theory also be applicable to 3D.
Instead of considering menisci with two contact points and a circular meniscus, the 3D approach would
have to consider more complex structures and menisci geometries. However, for the 3D approach,
further, far reaching considerations are necessary, which will also result in significantly increased
calculation efforts.

2.2.1. Stable Water Paths

To minimize the liquid water surface energy, the preferred shape of a free meniscus is circular.
Considering a meniscus between two boundaries of an object pair, there are exactly two possible
positions for a defined radius, while keeping the conditions of the contact angles in the two
contact points. One of these position is for one moving direction between the pair. If neglecting all
other forces than the forces by the surface tension γ, the liquid water pressure p for a meniscus with
radius r can be calculated according to the Young-Laplace-equation:

p =
2γ

r
(2)

Accordingly, the radius and the position of the meniscus will change depending on p. In Figure 1a,
the center of the circular meniscus travels along a straight line (path) while changing the curvature of the
surface with varying pressure. The orientation of this path (σ1 for one moving direction and σ2 for the
other moving direction) depends on the object contact-angles (Θ1, Θ1) and the object surface orientations
(β1, β1):

σ1 =
β1 − β2

2
+ β1 +

Θ1 − Θ2

2
(3)

σ2 =
β2 − β1

2
+ β2 +

Θ2 − Θ1

2
(4)

For equal object contact angles, the path is the bisecting line of the object pair in both
penetration directions.

Starting from an entering point in a path, the liquid water will fill up the path to the position, with p
corresponding to the actual liquid water pressure.

2.2.2. Unstable Menisci Transition

If the liquid water pressure is high enough for the stable meniscus to move to the end of a path,
it transfers through several positions into one or several following stable paths. These unstable water
transitions are temporary liquid water positions and represent the connections between the stable water
paths in the network. The physics behind these transitions is very complex. However, we assume that for
the percolation process, the stable positions are the most influencing, and we capture these transitions in
a significantly simplified way as described as follows.
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At the end of a path, we differentiate between three scenarios (see Figure 4):

• the touching point of the object pair is reached;

• a third object interrupts the meniscus in the path;

• one of the contact points outruns the object.

Figure 4. Illustration of the three different scenarios and the splitting of the stable meniscus
in two unstable menisci (UM1 and UM2) at the end of a path: (i) a dead end is reached, and
no unstable meniscus (UM) is established; (ii) a third object interrupts the meniscus; and (iii)
the meniscus outruns the traversed object, and two different possible scenarios are considered
(A and B).

(i) (ii) (iii)

In case (i), no new path is contacted (dead end). In cases (ii) and (iii), one or several following paths
are contacted (junction) after the unstable transition has finished. For both cases (ii) and (iii), the starting
point for these unstable transitions are two menisci, which span between a new found contact point and
the two contact points at the end of the path. If the meniscus is interrupted [case (ii)], the new menisc
form between the splitting point and the two old contact points. If the contact point outruns the object
[case (iii)], a new contact point for the new menisci can be found using two different approaches. On
the one hand, the meniscus can form a bubble with an increasing diameter, while keeping both contact
points. In this case, the new contact point is the place where the bubble touches a third object first. On
the other hand, the bubble can burst and disperse in the direction of the ending contact point. Then,
the new contact point is the intersection point of a straight line through the old contact points with the
closest object in the direction of the ending object. In all cases, both scenarios are calculated, and the
later scenario is only chosen if the length of the distance between the new contact points is smaller than
a threshold value, which is estimated to be 1.4-times the distance between the old contact points.

Since the two new menisci do not necessarily maintain the conditions of contact angle and circular
shape, they do not represent stable positions. Thus, the surface tension and the liquid water pressure
force the meniscus to change its position and shape until the contact angles with the contacted objects
matches the material properties. In the presented model, this movement is represented by rotating the
meniscus around one of the contact points. The rotation direction and the rotation point are chosen in
a way that the meniscus moves in the direction of the stable position and in the direction of the liquid
water movement. If this movement can be executed without interruption until the meniscus turns stable,
the position in the new path is the stable position. If the moving contact line is interrupted by a third
object before a stable position is reached, the newly contacted object splits the meniscus again, creating
two further unstable menisci as in case (ii) in Figure 4. The old meniscus continues rotating around the
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touching point until it is interrupted again, creating three new unstable menisci. If one of the contact
points reaches the end of the object, the rotation direction is turned first, before new unstable menisci are
created according to case (ii) in Figure 4, if it is interrupted again.

By this subsequent splitting of the menisci during the unstable meniscus transition, several following
paths can be reached at the end of each stable path.

2.3. Liquid Water Percolation

In our model, we simulate the slow invasion of liquid water into the GDL pore structure.
Therefore, dynamic effects are neglected and the liquid water pressure is assumed to be uniform
throughout the GDL.

In fuel cell operation, the GDL is filled with liquid water generated by the electrochemical reaction
from the boundary facing the catalyst layer. Therefore, both fillings during the operation and during an
injection experiment are simulated identically, and water is injected through one of the GDL boundaries.
At this boundary, a constant pressure boundary condition is applied, and the saturation distribution for
an injection pressure is defined by increasing the pressure to the corresponding magnitude. During the
percolation process, an increasing number of stable paths are contacted with liquid water, which we
denote as “activated”.

If assuming that the liquid water is drained out of the electrode by growing spherical liquid
water droplets, the droplets will grow into the GDL pores adjacent to the electrode until they touch
the first object. Before an external pressure (over the boundary of the GDL) is necessary for the further
percolation, the spheres will grow and move on the electrode surface until they touch a second object.
Hence, if assuming a contact angle of 90◦ of water on the electrode surface, semicircles on the electrode
surface touching two objects are the starting condition for the percolation process. The water lines
between the two contact points on the electrode surface and the two contact points with two objects can
be interpreted as three unstable menisci for each semicircle, respectively. Thus, the initially activated
paths are found using the algorithm for the unstable menisci transition (Section 2.2.2. ).

As described before, each path can have several transitions and therefore, following stable paths at its
end. The criterion for the activation of each following path is that the liquid water pressure is higher than
the invading pressure at the end of the old path. If a path is activated, the liquid water pressure defines to
which level the path is filled and if its following paths are activated in the case of a complete filling.

When simulating an injection experiment, the liquid water pressure is increased, and the liquid water
distribution for a predefined water inlet pressure is reached if no further paths can be activated at
this pressure.

2.4. Phase Change

Condensation and evaporation can have a significant influence on the injection process and cannot be
neglected when simulating the liquid water distribution during fuel cell operation.

Therefore, condensation can be included in the model via a partly pixel-based algorithm. The input for
the condensation algorithm is a dimensionless matrix q(j, k), representing the condensation [q(j, k) > 0]
and evaporation [q(j, k) < 0] source terms at position (j, k). q(j, k) depends on a couple of parameters,
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like the relative humidity, temperature and saturation distribution. However, since these parameters
are not considered in the percolation model, we postulate a constant q(j, k) that is also independent
of the actual liquid water distribution to demonstrate the importance of considering phase change.
When coupling the discrete model to a whole fuel cell model in future work, q(j, k) is calculated using
a continuum approach. Since q(j, k) is dependent on the saturation distribution, it will change in the
course of an iterative coupling algorithm, since the saturation distribution will, in turn, also change the
water vapor distribution.

The translation of the continuum variable q(j, k) into the discrete percolation approach is described
in the following.

The position of the maximum in q(j, k) is assumed to be the condensation nucleus for the condensed
water propagation. From this point, water droplet growth starts at the closest object surface until a second
object is touched. The two contact points on the two objects represent the contact points of two unstable
menisci moving in opposite directions. Using the same algorithm as for the unstable menisci transition,
the menisci moves through the GDL until the next stable paths are found. The stable paths are then
considered to be the starting condition for a subsequent filling procedure, as described in Section 2.3.

During the filling, the liquid water pressure increases, and the corresponding binary saturation
distribution s(j, k) is calculated using the percolation algorithm described before. The filling is stopped
if the sum of the source terms is equal or lower than the sum of the sink terms in the water filled regions:∑

j,k

q(j, k) · s(j, k) <= 0 (5)

or the liquid water reaches the GDL surface. Subsequently, q(j, k) is set to zero in the water
filled regions, and the next starting point is the place with the highest source term [q(j, k) > 0] again.
This procedure is repeated until all entries in q(j, k) are equal to or smaller than zero. After the
condensation process, evaporation source terms [q(j, k) < 0] are only present in regions with no liquid
water and are therefore, not considered further.

If considering a region that is filled with condensed water, some of the water will eruptively
drain into adjacent regions, if they have a lower entry pressure than the capillary pressure of the
filled region. Compared to the percolation during a liquid water injection experiment, condensation
fluxes in a fuel cell are rather low and therefore, the flux is not high enough to refill the drained
regions with liquid water quickly. Thus, some regions will be filled with liquid water only part of
the time even though q(j, k) is positive (constant condensation). This behavior of liquid water within
hydrophobic materials is also known as Haines jumps [32,33] and is dependent on the entry pressure and
capillary pressure distribution. It can have significant influence on the oxygen diffusion in hydrophobic
GDLs since without consideration, even a hydrophobic GDL would be fully saturated by condensed
water in over-humidified conditions.

To account for these effects, we have to find an estimate for a local saturation that is both dependent
on the local entry pressure and the entry pressure in its vicinity. According to Figure 5, the filling level of
a region depends on (i) the necessary capillary pressure to hold the water in a region and (ii) the pressure
at which the liquid water can be drained into an adjacent region. The higher the necessary capillary
pressure to hold the water in a region, the lower is the temporal average saturation in this region.
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Figure 5. Illustration of the influence of the capillary pressure distribution pc (represented
by the size of the circles in the pores) on the temporal average liquid water saturation
(represented by the filling levels of the circles).

Furthermore, if the pressure threshold for draining the water into the adjacent regions is smaller
than the necessary capillary pressure to hold the water in this region, a higher difference between this
pressure and the threshold results in a lower saturation. The physics and couplings behind this effect
are very complex, beyond the scope of the described modeling approach and normally neglected in
state-of-the-art condensation models. However, we approximate the general dependencies by setting
the local saturation in the water filled regions to the temporal mean value. Therefore, we combine two
saturation distributions, s1 and s2, which describe the dependency on both effects. s1 depends on the
minimal capillary pressure pc,min to hold the water, which is the lowest capillary pressure of all water
filled paths containing this location. s2 depends on the difference between pc,min and the pressure at
which the liquid water can be drained into an adjacent region. This drainage pressure pc,t is the lowest
pressure at the end of all activated paths containing this location.

s1 =


KT,1

pc,min
if pc,min > KT,1

1 if pc,min < KT,1

(6)

s2 =


pc,t−pc,min+KT,2

KT,2
if 0 > pc,t − pc,min > −KT,2

1 if 0 <= pc,t − pc,min

0 if −KT,2 >= pc,t − pc,min

(7)

The threshold values, KT,1 and KT,2, are set to the values: KT,1 = 200 Pa, KT,2 = 1 × 104 Pa.
Since both the conditions for s1 and s2 have to be fulfilled to result in a high final saturation, s1 and s2
are combined to a final saturation sges by:

sges = s1 · s2 (8)

Considering that liquid water both by condensation and by injection is filling the porous structure,
the temporal progression of the processes is a problem. Water cannot condense where liquid water is
already present, and water which is forced into the GDL by injection into the GDL will travel preferably
along a path where water has already condensed before. In a real fuel cell, both processes will take place
more or less simultaneously. The order depends on the history of the fuel cell and how the current and
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operating conditions are changed during a polarization curve, for example. In our model, we assume that
the liquid water distribution by condensation is completed before the injection process takes place. If the
liquid water front formed by injection reaches a liquid water region that was formed by condensation,
all paths and transitions that were active at the termination of the condensation process are activated.
This way, the water movement continues at the boundaries of the condensed region.

3. Results and Discussion

3.1. Saturation Distribution

For the comparison of the water inlet pressure-dependent saturation distribution, only a little
experimental data is available in the literature. Flückiger et al., Kim et al. and Utaka et al. [34–36]
presented saturation distributions in GDLs at different water inlet pressures using X-ray visualization.

In Figure 6, the result of a numerical intrusion without phase change is compared to experimental
ex-situ synchrotron visualization data by Flückiger et al. [34]. Shown are the calculated and measured
one-dimensional saturation profiles over the thickness of a GDL at three different water injection pressure
levels. For the computed data, the mean values and standard deviations of twenty stochastically generated
models are shown. The experimentally determined properties of the same carbon paper GDL are used as
model input parameters (Table 1, Toray TGP-H-060) and as used in the experiments by Flückiger et al.

For the experimental data, Flückiger et al. could also extract the local porosity by analyzing
the 3D X-ray adsorption data. They found that the porosity varied over the GDL thickness and is
between 0.8 and 0.6 in the middle of the GDL and increases to 1.0 towards the surfaces of the GDL.
They attribute the variation to the production process of the GDL and correspondingly found a
significantly increasing saturation towards the GDL surfaces due to the locally reduced capillary
pressure. Bending of the GDL due to the water pressure could also have played a role during the
experiments. However, we assume that a saturation of 1.0 close to the electrode interface in a fuel cell
is not realistic, since this would totally block the oxygen transport to the active area and consequently,
stop the current and water generation. For the model data, a homogeneous porosity distribution is used,
which results in a lower saturation towards the GDL surfaces. Disregarding the saturation at the GDL
surfaces, the saturation profiles show a good correspondence at all pressure levels. The saturation profiles
decrease from the inlet surface towards the middle of the GDL with similar shapes. The breakthrough
pressure is between 4–6 kPa for the experimental and 4 kPa for model data. Especially towards the
outlet, the standard deviations of the model data shown in Figure 6 are rather high. The average standard
deviation over the whole GDL is 45% of the mean value at 6 kPa. This shows that especially for the
breakthrough pressure, stochastic influences are quite high in the 220 × 1000 µm domain. The high
standard deviation is consistent with confined breakthrough locations caused by regions with lower
intrusion pressure. This “fingering effect”was also found in different percolation experiments [10,24].
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Figure 6. Saturation profile over the thickness of a Toray TGP-H-060 GDL from the
water inlet interface (right) to the water outlet interface (left). The calculated data for three
different pressure levels are compared to synchrotron visualization data by Flückiger et al. [34]
for the same type of GDL.

Table 1. Model input parameters for Toray paper GDLs with different thicknesses
(TGP-H-060 and TGP-H-120) and PTFE contents (0 wt%, 10 wt% and 20 wt%). µ is the
mean value; σ is the standard deviation.

b/µm β/◦ Θ/◦ Domain size/µmMaterial
µ σ µ σ µ σ h w

Porosity

Toray TGP-H-060 9[17] 2 0 2 220[37] 1000 -
Toray TGP-H-120 9[17] 2 0 2 380[37] 1000 -

Toray 0 wt% - - - - 97[38] 20 - - 0.78[38]
Toray 10 wt% - - - - 107[38] 20 - - 0.76[38]
Toray 20 wt% - - - - 109[38] 20 - - 0.73[38]

3.2. Capillary Pressure-Saturation

In Figure 7a, the capillary pressure-saturation curves for Toray TGP-H-060 GDLs with 0 wt% and
20 wt% PTFE, and in Figure 7b, the thicker Toray TGP-H-120 GDL with 0 wt% and 10 wt% PTFE,
are compared to data from water injection experiments by Gostick et al. [37]. For the model data,
the mean values and standard deviations for injection simulations without phase change and twenty
different GDL realizations are shown. Even though the data are in good agreement, there is a deviation
in the low pressure region of the thinner TGP-H-060 GDL. Since the data for the thicker TGP-H-120
GDL show very good agreement, GDL surface effects either in the modeling or experimental data might
be the reason for the deviation, since the impact of these effects is higher at lower thicknesses. However,
in the experimental data, the saturation is already 0.15 at pc < 1 kPa, which is rather unlikely for
hydrophobic GDLs.
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Figure 7. Calculated capillary pressure-saturation curves for (a) Toray TGP-H-060 and
(b) Toray TGP-H-120 with different PTFE content. The mean values and standard
deviations of twenty GDL realizations are compared to data derived by Gostick et al. [31]
for the same type of GDL.

(a) (b)

Figure 8a shows the simulated injection process by the liquid water distribution in a Toray
TGP-H-120 with 10 wt% PTFE for three different water inlet pressures (Figure 8b is described in the
following section).

The reason for the sharp rise in the capillary pressure-saturation curve at low saturation (label 1 in
Figure 8a) is two-fold. According to the Young-Laplace equation [Equation (1)], the water can only
fill the largest pores at low pressures, which are relatively scarce. Furthermore, only a fraction of the
paths are activated and have yet contacted with the injected fluid. If a pressure threshold of about 7 kPa
is reached, the slope of the curve drops (label 2 in Figure 8a). Here, both the number of contacted
paths and the number of paths with the respective entry pressure (“large pores”) rapidly increase.
At a saturation higher than 0.8 (label 3 in Figure 8a), almost all paths are contacted, but with increasing
pressure, the number of paths with the respective entry pressure decreases. Furthermore, with increasing
entry pressure, the filling volume of the paths and thereby, their potential to increase the saturation,
is decreasing.
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Figure 8. Capillary pressure-saturation curve and saturation distribution for three pressure
levels during the injection process (injection is from the bottom interface), (a) without and
(b) with condensation using the same GDL model. For the condensation simulation (b),
the saturation distribution at the same pressure level is compared to the distribution
without condensation, and the water filled regions are colorized according to the different
filling processes—green: by condensation only; blue: by injection without condensation;
red: by both the condensation and the injection without condensation; purple: by injection
with condensation. The model is generated using the parameters for a Toray TGP-H-120
with 10 wt% PTFE from Table 1.

(a) (b)

3.3. Oxygen Diffusivity

The effective oxygen diffusivity for the unsaturated GDLs and for the saturated GDLs at breakthrough
are evaluated using a simple 2D continuum diffusion model. The spatial distributed oxygen diffusion
coefficient is set according to the distribution of liquid water, solid (fibers) or free pore space. In the
place where neither liquid water nor matter is present, the oxygen diffusion coefficient in air D02,air is
set according to the Chapman-Enskog formula [39]:

DO2,air = 3.2 · 10−5 ·
(
T

353

)1.5

· 1

p
(9)

In 2D, the diffusion resistance around an object will be overestimated, because the fiber diameter is
significantly smaller than the length. To account for this effect, we apply a simple approximation and set
the diffusion coefficient in the place of the fibers to a nonzero value, which is approximated with respect
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to the orientation and size of the fibers. In 3D, the oxygen will mainly diffuse along the shortest path
around the circumference of a fiber, and the mean path length can be estimated as 1.5b, with b as the
edge length of a quadratic cross-section of the fiber (see Figure 9). In contrast, the mean diffusion path
length around a fiber projected into a 2D plane is l/2 + b, with l as the projected length rectangular to
the mean diffusion direction (perpendicular to the GDL thickness). The difference is compensated by
allowing a diffusion flux through the solid. A simple flux balance finally results in:

Df = DO2,air ·
(

2

3
− 2b

l + 2b

)
(10)

Figure 9. Schematic of the approximation oft the mean diffusion length around an object
with length l and width b. For diffusion around an object, with a quadratic cross-section,
one applies l = b.

For accounting effects that result from the transfer of the 3D to a 2D saturation distribution on the
oxygen diffusion, a quasi 2+1-dimensional approach is applied, which is described in the following.
In a fuel cell running at high current density and high humidity, the product water enters the GDL in
the interface towards the electrode mostly in the liquid state due to the low water uptake capacity of
the gases. The saturation distribution will be most similar to the saturation distribution at breakthrough.
Here, the liquid water flux through the established liquid water path to the GDL surface is high enough
to transport the water from the interface to the channel in the liquid state. Regarding the calculated and
measured breakthrough-saturation distribution in Figure 6, the liquid water saturation at the electrode
interface is the highest and decreases towards the surface facing the channel. Meanwhile, the current
production will be almost proportional to the saturation or electrode surface coverage in this interface.
Therefore, to account for the reduction from 3D into two, we set the local diffusion coefficient of oxygen
DO2(x, y), linearly dependent on the mean saturation of multiple realizations s(x,y).

DO2(x, y) = (1 − s(x, y)) ·DO2,air (11)

For this purpose, we stochastically generate several model realizations with the same stochastic
input parameters, and the local saturation s(x,y) is set to the mean value of the liquid water distribution
of the different realizations.

The effective Ficks GDL bulk diffusion coefficient Db is finally calculated via:

Db = jO2 ·
h

∆c
(12)
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where jO2 is the calculated oxygen flux over the GDL boundaries; h is the GDL height; and ∆c

is the predefined average oxygen concentration difference between the inlet- and outlet-boundaries.
The oxygen concentration at the interface towards the electrode is set to 0 vol% and 21 vol% at the
interface facing the channel. By using Faraday’s law, an upper limit for the limiting current density in a
fuel cell, il corresponding to jO2, is calculated:

il = jO2 · n · F (13)

with n = 4 as the number of electrons transferred by one oxygen molecule and F as the Faraday constant.
One-hundred twenty GDLs are generated using the parameters shown in Table 1 for a Toray

TGP-H-120 paper with 20 wt% PTFE, but with porosity reaching from 0.61 to 0.84 as an input.
Then, the models are sorted according to their porosity before the moving average of the saturation
distribution at breakthrough and the porosity of a subset of twelve subsequent models is calculated.
The local diffusion coefficient is then calculated according to Equation (11).

Figure 10 shows il and the diffusivity dependent on the mean porosity ε of the twelve models for
T = 320 K and p = 1 atm. Both il with the unsaturated GDL and with the saturation at breakthrough
with and without condensation under the land is shown. For comparison, il, according to the
Bruggemann correlation:

Df = DO2,air · ε1.5 (14)

is also shown which is widely used in fuel cell modeling.

Figure 10. Effective relative diffusivity and corresponding upper limit for the limiting
current density dependent on porosity. Results are for unsaturated GDLs and GDLs with
saturation at breakthrough (T = 320 K and p = 1 atm), both with and without condensation.
For comparison, also the Bruggemann correlation for unsaturated GDLs is shown.

The diffusivity calculated by the model without saturation is slightly lower than predicted by the
Bruggemann correlation, but shows a similar trend. Shou et al. [40] compared dry diffusivities found by
different research groups and found significant differences between modeling and experimental results.
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Most diffusivities are lower than the Bruggemann correlation, whereas the measured data can be up to
three-times lower than predicted by the simulations. They attribute the difference to binder material that
spans between the fibers, which is not included in most models, as in our case. However, in experiments,
the porosity is generally varied by changing the compression [41], which may also result in structure
deformation and leading to lower diffusivities.

The change of the diffusivity with increasing porosity at breakthrough is smaller than for the
unsaturated GDL. The higher saturation at breakthrough for GDLs having a higher porosity compensates
for the increasing diffusivity due to the decreasing amount of GDL material. The upper limit for the
limiting current density of approximately 3 A cm−2 at a porosity of 0.64 without condensation is in a
realistic range. However, the model does not account for the diffusion limitation in the electrode and
charge transport. Therefore, the percolation model alone can only give an upper limit for the limiting
current density. For predicting the limiting current adequately, the model has to be coupled with a whole
fuel cell model, including the electrochemical reaction, charge and mass transport in all layers of the
fuel cell.

Figure 10 also shows that by including the condensation algorithm, the limiting current is increased
in general.

For the injection with condensation, we assume that there is a constant liquid water connection
throughout a condensed region. Accordingly, at steady state, the source and sink terms over the
condensed region have to balance, and only the relative distribution of q(j, k) influences the condensed
water distribution.

For the injection with condensation, the magnitude of the liquid water source by phase change q(j, k)

in the upper left corner (y > hGDL/2, x < bGDL/4) is set to one third of the magnitude of the sink
term in the residual area. In an operated fuel cell, this scenario simulates condensation conditions under
the land and evaporation under the channel.

At porosities between 0.75 and 0.8, the diffusivity of both data-sets close up and intersect partly, which
is most likely due to high stochastically variations at high porosities. However, the trend lines indicate
that there is a positive influence of condensed water under the land on the limiting current density.

To illustrate the reason for the higher current when including condensation, in Figure 11,
the mean saturation distribution (a) without and (b) with condensation at a mean porosity of 0.67 and the
corresponding oxygen flux through the electrode interface jO2 is compared.

On the one hand, there is a broad region with high saturation in the corner under the land where the
condensation occurs. On the other hand, the saturation under the channel is significantly reduced and
also, the saturation adjacent to the injection interface is lower than when no condensation is considered.
If the condensation is not included, the oxygen is transported to the interface only in a small region
with low saturation under the land. In contrast, the oxygen flux is more homogeneous and higher if the
condensation is included, even though the effective saturation is almost the same.

Figure 8b illustrates how the condensation can influence the characteristic injection process.
Therefore, the injection process of the same GDL model is shown, both (a) without and (b) with
using the condensation algorithm for three different water inlet pressures. For the saturation distribution
with condensation, the same distribution of q(j, k) as for Figures 10 and 11b is used.
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Figure 11. Mean saturation distribution at breakthrough and oxygen flux in the interface
towards the electrode [injection (bottom) interface], jO2, (a) without and (b) with
condensation under the land.

(a) (b)

The colors in Figure 8b correspond to liquid water that was formed due to different processes.
Therefore, the saturation distribution, including condensation, is compared to the distribution without
condensation at the same water injection pressure level [note that in Figure 8, the pressure levels are
different for (a) and (b), except for the lowest pressure]. The green region is formed due to the phase
change algorithm alone before the injection through the interface has started. This region is constant and
does not change throughout the injection process. The blue and red regions are filled by the injection
process, whereby the red regions are the overlapped regions with the condensed water. The purple
region is water that was formed by the injection, but was not present without the condensation at the
same pressure level. The purple region, therefore, represents water that continued filling the GDL at the
boundaries of the condensed regions after the injected water reached the condensed regions.

Obviously, the condensed water under the land is redistributing the percolating water towards the
regions under the land. The condensed regions are reached already at low pressure (3.8 kPa), and a
connection to the GDL surface in the channel is established immediately. The broader percolation front,
as for the percolation without condensation at medium pressure (7.3 kPa), will not be established, since
the connection is already made at lower pressure. Because the breakthrough is reached already at very
low liquid water pressure, less water is accumulating in the GDL/electrode interface. Here, liquid water
can directly block the oxygen supply to the active sites and is therefore, directly limiting the current
production. By redirecting the flow of liquid water towards the region under the land, the GDL under
the channel remains mostly free of liquid water and is available for the oxygen transport. This finding is
important, since in a running fuel cell, condensing water can obviously result in a higher limiting current.
When including condensation under the land, the theoretical upper limit for the current at a porosity of
0.67 is increased from 4 A cm−2 to 19 A cm−2, as seen in Figure 10.
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4. Conclusions

The presented water path network percolation model is a novel approach to improve the understanding
of the liquid water transport mechanisms in GDLs and the influence of GDL design parameters on the
mass transport limitation. Therefore, the model bases state-of-the-art pore network models on a more
realistic representation of the substrate material and repeals the need to abstract the representation of the
GDL on a pore level. The percolation process is directly described by the interaction of the liquid with the
fibrous structure. Due to the similarity of GDL design and model input parameters, the model can directly
be used for material optimization and can be coupled with a continuum model. The computational efforts
for calculating the liquid water distribution are kept low after a preceding network generation step.

In the presented model, capturing the transition between stable paths is the most challenging part.
Here, the model applies the most significant simplifications and improvements can further enhance
the model quality. However, the results show that the simplifications are applicable and that the most
important processes are captured. Since the stable water paths determine the entry pressure and quantity
of water filled regions, they are the most decisive for the final saturation distribution and injection
pressure dependency. A condensation algorithm is developed and is included into the algorithm to
simulate the impact of condensation on the percolation process. The results reveal that condensation
can have a significant influence on the liquid water distribution by redirecting the liquid water flow.
Phase change should therefore, be considered in two-phase fuel cell models. Dependent on the
condensation situation, condensation can have positive impacts on the fuel cell performance by improved
oxygen transport.

The saturation-dependent diffusion properties and the capillary pressure saturation curves show a
good agreement with experimental data. Comparison of the simulated saturation distribution with
recent synchrotron visualizations shows that also the local saturation distribution in the GDL is
captured adequately.

The percolation process is dependent on the stochastic distribution of the fibers, and the reduction
from 3D into 2D changes these stochastic distributions. The applied 2+1-dimensional approach accounts
for these effects for analyzing the effect of the GDL structure on the oxygen diffusion properties.
Even though the model obviously captures the most important transport mechanisms, the 2D approach
can be further developed in a 3D model for a more sophisticated analysis of the percolation. However, the
application of the approach in 3D includes significantly higher computational and adaption efforts and
is therefore, hardly suitable for the coupling with a full fuel cell model. For analyzing the fundamental
dependencies, the 2D approach already offers a very good basis.
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