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Abstract: This study proposes an islanding detection method for photovoltaic power 

generation systems based on a cerebellar model articulation controller (CMAC) neural 

network. First, islanding phenomenon test data were used as training samples to train the 

CMAC neural network. Then, a photovoltaic power generation system was tested with the 

islanding phenomena. Because the CMAC neural network possesses association and 

induction abilities and characteristics that activate similar input signals in approximate 

memory during training process, the CMAC only requires that the weight values of the 

excited memory addresses be adjusted, thereby reducing the training time. Furthermore, 

quantification of the input signals enhanced the detection tolerance of the proposed 

method. Finally, the simulative and experimental data verified the feasibility of adopting 

the proposed detection method for islanding phenomena. 

Keywords: cerebellar model articulation controller (CMAC); islanding phenomenon 

detection; photovoltaic (PV) system 

 

1. Introduction 

Islanding refers to the continued operation of a photovoltaic power generation system when the 

utility grid supplying power malfunctions and the photovoltaic power generation system does not 

detect the malfunction or promptly disconnect. Therefore, protection devices for detecting and 

terminating islanding operations must be adopted to avoid damaging the power generation system and 
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harming users [1]. Because of the increasing number of distributed power supply systems, systems that 

use renewable power sources (e.g., photovoltaic power generation systems, wind power generation 

systems, and fuel cell generation systems) are connected to the power network in parallel. A 

malfunctioning utility grid can lead to interactions between the various distributed power systems and 

extend the duration of islanding operations, increasing the likelihood of damage. Thus, protection 

devices must be capable of detecting and terminating islanding phenomena as promptly as possible. 

Figure 1 shows a diagram of the parallel connection between a photovoltaic power generation 

system and a utility grid. During normal operations, the real power and reactive power required by the 

loads are supplied by the photovoltaic power generation system and utility grid. Consequently, the 

power at the point of common coupling (P.C.C) is balanced [2]. When the utility grid is disconnected 

and islanding phenomena is observed, the power at the point of common coupling is unbalanced 

because the utility grid has ceased to supply power. Thus, the voltage and frequency at the point of 

common coupling becomes abnormal. Under these circumstances, the photovoltaic power generation 

system can be disconnected from the loads using four types of protection relays, including over voltage, 

under voltage, over frequency, and under frequency [3]. However, when the output power of the 

photovoltaic power generation system nearly equals the power consumption of the loads, the power at 

the point of common coupling remains balanced. The frequency and voltage patterns output by the 

photovoltaic power generation system are similar to of a normally functioning utility grid, preventing 

the protection relays from function correctly. Therefore, additional islanding detection methods are 

required for terminating islanding operations under these circumstances. 

Figure 1. Photovoltaic and utility grids connected in parallel. 
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Conventional islanding detection methods can be divided into passive and active detection  

methods [4–10]. Passive detection methods primarily monitor the voltages, frequencies, and phases at 

the load-end to identify the occurrence of islanding operations, and include the phase jump detection 

method [5], voltage harmonic detection method [6], power changing rate detection method [7], and 

passive grid impedance measurement method [8]. However, when the difference between the power 

output of the photovoltaic power generation system and the total power consumption is limited, 

variations in the system voltage or frequency are not sufficiently apparent for relay detection. 

Therefore, the disadvantage of passive detection methods is that they possess a non-detection zone, 

which hinders the immediate and effective detection of islanding phenomena during utility grid 

outages [8]. 

Active detection methods involve inputting an interference signal into the utility grid and observing 

whether the system voltage or frequency is affected. Under normal conditions, interference should not 
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influence the stability of the utility grid. However, when islanding operations occur, the utility grid is 

unavailable as a reference. Therefore, regardless of whether the total system output power and the total 

load power consumption are balanced, actively initiated interference upsets the balance and generates 

significant voltage and frequency variations to detect islanding operations. Active detection methods 

include the active frequency drift, slip mode frequency shift, active voltage drift, load variation 

methods [9], and active grid impedance measurement method [8]. Nonetheless, a number of external 

factors may generate interference in the power system. In this situation, interference from an active 

detection method can cause islanding detection errors. Recently, there are many AI methods based on 

artificial neural network (ANN) techniques are proposed for the islanding detection of photovoltaic 

power generation systems [11,12]. Using an artificial neural network-based algorithm can recognize 

existent patterns on the system output waveform and then can make it possible to obtain an accurate 

response about islanding operations. However, the ANN training process is very complex, because it 

involves essential issues such as the definition of the ANN architecture, the size of training data 

memory, sampling time and selection of representative training set for the studied problem. Therefore, 

this study uses a cerebellar model articulation controller (CMAC) neural network for islanding 

detection. This method not only reduces the training time, but also features detection tolerance. 

Therefore, this network not only promptly disconnects the photovoltaic power generation system from 

loads when the utility grid is not in a parallel connection, but determines whether the malfunctioning 

signal from the utility grid end is caused by an interference of power quality or an islanding operation. 

2. CMAC Neural Network 

The CMAC neural network proposed by Ablus [13] in the 1970s follows the neural structure of the 

human cerebellum and possesses the characteristics of rapid learning and quick responses. In a CMAC 

neural network, associated memory is activated by the input signals triggering similar memory cells. A 

weighting value is saved in the memory address. When a signal is input, a memory set is activated 

after the memory addresses are quantified, coded, and combined. An output that corresponds to the 

input signal is produced after the weighting values in the activated memory addresses are summed. If 

the input signal contains noise, the original signal activation may be only partial. Thus, some 

characteristics of the original input signal remain after summing the weighting values of the activated 

memory. By establishing a threshold value, the input signal can be correctly determined if the degree 

of distortion is limited. Furthermore, the difference between distorted and ideal output signals can be 

used to adjust the weighting values of the activated memory addresses, generating a more realistic 

output from the re-inputted distorted signals. 

Figure 2 is a schematic diagram of the CMAC neural network architecture, where the input signals 

are quantified and coded and the activated address codes are classified. Next, the activated addresses 

are summed to obtain an output value for categorizing the islanding operation. Various training 

samples are used to activate and train the corresponding memory. For example, the training samples of 

i (i = 1–7) only activate and train the ith layer, which reduces the total training time [14]. 
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Figure 2. Schematic of the CMAC neural network architecture. 
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2.1. Quantification 

The input signal values were divided equally into a specific number of quantification levels between 

the maximum and minimum input signals. Fine-grain quantification levels provide comparatively more 

fine-grain quantification coding, but require greater memory. In this study, the interval between the 

maximum and minimum values was divided into levels ranging between 0 and 15. A quantification 

value of 15 was assigned when the value was greater than the maximum value, and a quantification 

value of 0 was assigned when the value was smaller than the minimum value. If the value was between 

the maximum and minimum values, quantification of the value was based on the corresponding 

quantification level. 
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2.2. Coding the Activated Address and Computing the CMAC Neural Network Output 

The input signal values were converted into binary codes according to their corresponding 

quantification levels. After coding, the codes were combined and classified, and the memory addresses 

were activated. For example, the input signals in this study included the voltages, frequencies, and 

phases, with the quantified levels of (5, 3, 9). Binary conversion provided codes (0101b, 0011b, 

1001b), which were then combined into a 12-bit code (010100111001b). Because four bits comprise a 

group, the 12-bit code can be divided into three groups. The three codes for the activated addresses, 

listed in sequence from the least significant bit (LSB) to the most significant bit (MSB),  

where 1n  = 1001b = 9; 2n  = 0011b = 3; and 3n  = 0101b = 5. If the initial weighting value of all 

memories is 0, the sum of 9
1W , 3

2W , and 5
3W  is 0. Therefore, the output of the CMAC neural network 

is expressed as Equation (1): 


=

=
*

1

N

i
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iwy  (1)

In Equation (1), y represents the output value; *N  represents the number of the activated memory 
addresses; in

iw  represents the weighting values of the activated memories; and in  represents the 

memory addresses. 

2.3. Adjustment of the Memory Weighting Values 

In this study, the target output of the CMAC neural network was set as 1. The supervised learning 

method was used because the goal of the output was specific. The steepest descent method [15] was 

also employed to adjust the weighting values, as shown in Equation (2): 
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where in
newiw )(  represents the new weighting values after adjusting the activated memories; in

oldiw )(  

represents the original weighting values before adjusting the activated memories; β  represents the 

learning gain ( 10 ≤< β ); and dy  is the target value. 

2.4. Detection Tolerance 

The islanding detection method proposed in this study has excellent interference immunity. Using 

the 12-bit code of the input signal described in Section 2.2 as an example, if the original code 

(010100111001b) is changed to (010101011001b), the activated address ( 1n , 2n , 3n ) becomes (9, 5, 5) 

from (9, 3, 5), where only 2n  is erroneous, and 1n  and 3n  can be normally outputted. Therefore, the 

detection method possesses tolerance. If the number of groups increases, the code can be saved 

separately in additional positions. This reduces the influence of incorrect adjacent bit detections, 

improving the overall accuracy. 
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2.5. Evaluation of Training 

During the CMAC neural network training process, an evaluation value can be used to determine 

whether training can be terminated. The evaluation value is calculated using Equation (3): 
2)1( −= yF  (3)

where F represents the evaluation value. When F is smaller than the predetermined error value, the 

training process is complete. 

2.6. Training a CMAC Neural Network 

Figure 3 shows the training process of a CMAC neural network. The training samples are input for 

quantification, code combination, code classification, and to activate the corresponding memory 

addresses. Subsequently, the weighting values in the activated addresses are summed and adjusted 

according to Equation (2). When all the training samples have been applied, an assessment of whether 

the evaluation value has reached the predetermined error value is conducted. If the evaluation value is 

found to have reached the predetermined value, the training process can be terminated. Otherwise, 

whether the required number of training sessions has been conducted is assessed; if the required 

number was reached, the training process is terminated. 

3. Islanding Detection Using a CMAC Neural Network 

The islanding detection method proposed in this study uses the voltage, frequencies, phase 

differences, and current at the point of common coupling in the grid connection between the 

photovoltaic power generation system and utility grid as characteristics of an islanding operation. A 

description of these characteristics is provided below: 

(1) Voltage: Peak value of the maximum voltage at the point of common coupling; 

(2) Voltage frequency: Frequency of the voltage at the point of common coupling; 

(3) Phase difference: Difference in phase between the voltage and current at the point of  

common coupling. 

Figure 4 shows the architecture of the proposed islanding detection system, which includes a 

photovoltaic module array, DC/DC convertor, inverter, LC filter, islanding detection controller, utility 

grid, and loads. In Figure 4, Vpv represents the output voltage of the photovoltaic module array. 

Nevertheless, both natural and manmade factors cause variations in the voltage and power 

harmonics, such as swells, dips, and flickers, which lead to islanding detection system malfunctions. 

Therefore, this study employs a CMAC neural network to detect islanding under various power 

qualities and to distinguish between power quality interferences and islanding operations in the 

photovoltaic power generation system.  

The factors that influence power quality are listed below [16]: 

(1) Voltage swell: According to IEEE Std. 1159–1995 [16], voltage swell indicates that the 

effective value of the utility grid ranges between 1.1 p.u and 1.8 p.u. for longer than a 0.5 cycle; 
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(2) Voltage dip: According to IEEE Std. 1159–1995 [16], voltage dip indicates that the effective 

value of the utility grid ranges between 0.1 p.u and 0.9 p.u. for a duration of a 0.5 cycle  

to 1 min; 

(3) Power harmonics: Power harmonics indicate that the utility grid system has been found to 

possess a third, fifth, or seventh harmonic component, and these harmonic components are 

defined as 10%, 7%, and 5% of the base frequency, respectively;  

(4) Voltage flicker: In this study, voltage flickers were simulated by synthesizing a low-frequency 

voltage source (15 Hz and 20 Hz) with the standard voltage of 60 Hz, as expressed  

in Equation (4):  

)202(sin22.7)152(sin33.10)602(sin220)( ttttV πππ ++=  (4)

where 220, 10.33, and 7.22 respectively represent the effective value of voltages with a frequency 

of 60, 20, and 15 Hz. 

Figure 3. Flowchart of the islanding detection training process for CMAC neural networks. 
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Figure 4. Architecture of the proposed islanding detection system. 

 

uv

 

The input signals of the proposed islanding detection mechanism based on a CMAC neural network 

were the voltages, frequencies, and phase differences between the voltage and current. The voltage and 

frequency detection requirements are defined in the international standards for islanding operations. 

Table 1 lists the standards specified in IEEE Std. 1547 [17] and specifications of the proposed method 

for islanding voltage detection, and Table 2 shows the standards specified in IEEE Std. 1547 and 

specifications of the proposed method for islanding frequency detection. As indicated in the Table 2, 

the normal operation frequency range is between 59.3 Hz and 60.5 Hz. The standards shown in Tables 

1 and 2 were used in this study to determine the trip time during islanding detection, which was 

defined as the period where the voltage and frequency were abnormal. 

Table 1. The IEEE Std. 1547 and specifications of the proposed method for islanding 

voltage detection. 

Voltage (%) 
Maximum trip time (s) 

IEEE Std. 1547 The proposed method 

V < 50 0.16 0.001875 
50 ≤ V < 88 2 N/A 

88 < V < 110 Normal range Normal range 
110 < V < 120 1 N/A 

V ≥ 120 0.16 0.005608 

Table 2. The IEEE Std. 1547 and specifications of the proposed method for islanding 

frequency detection. 

Frequency (Hz) 
Maximum trip time (s) 

IEEE Std. 1547 The proposed method 

f < 59.3 0.16 0.00133 
59.3 < f < 60.5 Normal range Normal range 

60.5 < f 0.16 0.00138 

Because of the various load characteristics, the current may precede or lag behind the voltage at the 

point of common coupling. This phenomenon is known as phase difference. The ideal phase difference 

size is not specified in the IEEE Std. 1547 islanding detection standards. However, the Taiwan Power 



Energies 2013, 6 4160 

 

 

Company’s technical guidelines for renewable power generation systems connected in parallel state 

that the power generated by renewable power-generating equipment at the point of common coupling 

should be maintained at between 85% of the phase lag and 95% of the phase advance. The phase 

difference between the voltage and current should range between −31.78° and 18.19°; otherwise, the 

operation can be considered an islanding operation. 

In this study, the operations exhibited seven states, namely, voltage swell, voltage dip, power 

harmonics injection, normal operations, islanding operation over the range of normal operations, 

islanding operation below the range of normal operations, and voltage flicker. In addition, the 360 data 

entries for the seven states were divided into 235 entries of training data and 125 entries of testing data. 

The 235 pieces of training data were used to train the CMAC neural network, as explained in  

Section 2.6. Following computation, the weighing values of the islanding operation detection network 

were obtained. The parameters used for training the CMAC neural network are listed below: 

(1) Number of quantification levels: 16; 

(2) Number of bits per group: 4; 

(3) Number of groups: 3; 

(4) Learning constant ( β ):1; 

(5) Number of training session: 10. 

After training the CMAC neural network, the system proceeds detects the state of islanding 

operations. The steps of the detection process are as follows: 

Step 1: Read the weighting values of the CMAC neural network after completing training; 

Step 2: Read the test sample data; 

Step 3: Quantify the data, combine and classify the codes, and then activate the address codes; 

Step 4: Sum the weighting values of the activated addresses and output the resulting value; 

Step 5: Determine the output weighting value. The closer the value is to 1, the more likely the 

operation is the corresponding state of the islanding operation; 

Step 6: Output the results of islanding detection. 

4. Simulation Results  

To identify an islanding operation or system power quality issue, the voltage swell, voltage dip, 

power harmonics, and voltage flicker were adopted as variables for islanding detection. This study also 

employed the states shown in Table 3 for detecting islanding operations. 

Table 4 shows 14 test data entries of various islanding operation states. The test data were output by 

the CMAC neural network and categorized into the states listed in Table 3. As shown in Table 5, the 

states of the 14 test data entries were correctly determined. Considering the eighth entry in Table 4 for 

example, Table 4 indicates that this entry was in the I1 islanding operation state. Meanwhile, the results 

in Table 5 show that regarding the output of the eighth entry, the output in the I1 state possessed the 

highest weighting value (0.7618). Therefore, the data was determined to be in the I1 state. To 

demonstrate that the framework is immune to interference, variances of ±5% in voltage peak value, 

±0.5% in frequency, and ±10% in phase difference were separately added to the test samples, as shown 

in Table 6. The detection results in Table 7 show that the states could be detected after the variances 
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were added. Therefore, the state of an islanding operation can be correctly determined regardless of 

whether variance is included. 

To demonstrate the superiority of the proposed CMAC neural network in photovoltaic system 

islanding detection, Table 8 shows the islanding detection results with difference neural networks. It 

indicates that the proposed method has a short learning time and more learning accuracy and 

recognized accuracy than the multilayer perceptions (MLP) method with different perceptions. 

Table 3. States for detecting islanding operation. 

State Description Test range of voltage (V)
Test range of voltage 

frequency (Hz) 

Test range of phase 

difference (Degree) 

I1 Voltage swell 277.938–572.271 59.1848–60.4438 −31.6–19.4 

I2 Voltage dip 157.355–280.805 59.2636–60.8026 −30.3249–17.6751 

I3 
Voltage containing power 

harmonics 
273.315–342.098 59.7185–60.3985 −170.29732–179.7027 

I4 Normal operation 279.646–342.677 59.302–60.57 −34.8554–17.8086 

I5 

Islanding operation over the 

range of normal operations 
347.506–3554.61 60.671–1018.64 20–180.688 

I6 

Islanding operation below the 

range of normal operations 
0.334–278.949 0.4–59.34 −180.555–−32 

I7 Voltage flicker 270.19–345 57.3–64.69 −174.12–178.5 

Table 4. Test data for detecting islanding. 

Test No. Voltage peak (V) Frequency (Hz) Phase difference (Deg.) State of islanding operation

1 528.698 59.9808 −20.7360 I1 

2 161.074 59.9760 5.5000 I2 

3 273.324 59.7700 −92.6530 I3 

4 311.106 59.9808 −19.5264 I4 

5 615.778 59.9800 −19.0656 I5 

6 3.428 60.0096 −45.0144 I6 

7 321.108 58.8780 3.4270 I7 

8 341.559 58.997 −21.3333 I1 

9 190.405 59.3000 −17.0000 I2 

10 278.975 59.8174 −78.8108 I3 

11 305.856 60.0096 −0.0288 I4 

12 603.338 60.0096 −19.9584 I5 

13 2.756 60.0096 −27.3024 I6 

14 304.875 59.8382 −0.0454 I7 

To further demonstrate that the proposed islanding detection method can correctly determine the 

states of islanding operations and disconnect photovoltaic power generation systems from loads within 

a predetermined time, this study adopted simulation software PSIM [18] to simulate the islanding 

detection of a Kyocera KC40T photovoltaic power generation system [19]. This system has a rated 

voltage of 208 V (in a serial connection of 12 modules), rated output current of 2.48 A, and rated 

output power of 516 W. Figure 5 shows the circumstances where the output of a power regulator is 
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connected in parallel to the utility grid, and the utility grid disconnects from the system at second 4. 

The proposed detection system successfully identified islanding operations within a 0.5 cycle 

(approximately 8.3 ms) and disconnected the loads. The trip time met the standards for islanding 

operations published by the U.S.’s Sandia National Laboratories [20]. The maximum trip cycle was 

one (approximately 16 ms). 

Table 5. Results of the islanding detection method based on a CMAC neural network. 

Test No. 
Output weight for various fault type Known fault  

type 

Diagnosed 

results I1 I2 I3 I4 I5 I6 I7 

1 0.9989 0.7111 0.1875 0.6000 0.7503 0.8750 0 I1 I1 

2 0.4284 1.0976 0.1875 0.6001 0.7508 0.7500 0.4284 I2 I2 

3 0 0.2889 0.9375 0 0 0 0.1432 I3 I3 

4 0.8568 0.7111 0.1875 1.0000 0.7503 0.8750 0.4284 I4 I4 

5 0.8568 0.7111 0.1875 0.6000 1.0000 0.8750 0 I5 I5 

6 0.4284 0.3555 0.1875 0.4000 0.5004 1.0000 0 I6 I6 

7 0.3333 0.4835 0 0.6001 0.2504 0 0.8568 I7 I7 

8 0.7618 0.3555 0 0.1999 0.2499 0.2500 0 I1 I1 

9 0 0.7085 0 0.2001 0.2504 0 0.4284 I2 I2 

10 0.3333 0.2889 0.9375 0 0 0 0.1432 I3 I3 

11 0.4284 0.8390 0.1875 1.0002 0.7508 0.6250 0.8568 I4 I4 

12 0.8568 0.7111 0.1875 0.6000 1.0000 0.8750 0 I5 I5 

13 0.8568 0.7111 0.1875 0.6000 0.7503 1.0625 0 I6 I6 

14 0 0.4835 0.1875 0.6001 0.2504 0 1.0000 I7 I7 

Table 6. Test data for detecting islanding with added variance. 

Test No. Voltage peak (V) Frequency (Hz) Phase difference (Deg.) State of islanding operation 

1 555.133* 59.6809* −20.7360 I1 
2 161.074 59.6761* 6.0500* I2 
3 273.324 59.4711* −92.6530 I3 
4 311.106 59.6809* −21.4791* I4 
5 646.567* 59.9800 −17.1590* I5 
6 3.599* 60.0096 −49.5158* I6 
7 305.052* 59.1724* 3.4270 I7 
8 324.481* 58.997 −21.3333 I1 
9 190.405 59.3000 −18.7000* I2 

10 278.9755 60.1164* −78.8108 I3 
11 305.856 60.0096 −0.0260* I4 
12 633.505* 59.7095* −19.9584 I5 
13 2.756 60.0096 −30.0326* I6 
14 320.119* 60.1374* −0.0454 I7 

Variance ±5% ±0.5% ±10%  

*indicates the addition of variance to the test samples. 



Energies 2013, 6 4163 

 

 

Table 7. Detection results for the test data with added variance. 

Test No. 
Output weight for various fault type Known fault 

type 

Diagnosed 

results I1 I2 I3 I4 I5 I6 I7 

1 0.7618 0.3555 0 0.1999 0.5006 0.2500 0 I1 I1 

2 0 0.7421 0 0.2001 0.2504 0.1250 0.4284 I2 I2 

3 0 0.2889 0.7500 0 0 0 0 I3 I3 

4 0.4284 0.3555 0 0.6000 0.2499 0.2500 0.4284 I4 I4 

5 0.4284 0.8390 0.1875 0.6001 1.0005 0.6250 0.4284 I5 I5 

6 0.4284 0.3555 0.1875 0.4000 0.5004 0.8125 0 I6 I6 

7 0 0.4835 0 0.6001 0.2504 0 0.8568 I7 I7 

8 0.7618 0.3555 0 0.6000 0.2499 0.2500 0.4284 I1 I1 

9 0.4284 0.5805 0 0.1999 0.2499 0.2500 0 I2 I2 

10 0.3333 0.2889 1.0000 0 0 0 0 I3 I3 

11 0.4284 0.8390 0.1875 1.0002 0.7508 0.6250 0.8568 I4 I4 

12 0.4284 0.3555 0 0.1999 0.4996 0.2500 0 I5 I5 

13 0.4284 0.3555 0.1875 0.4000 0.5004 0.8125 0 I6 I6 

14 0 0.4835 0.2500 0.6001 0.2504 0 0.8568 I7 I7 

Table 8. Accuracy comparison between CMAC and MLP neural network methods. 

Method Learning epochs Learning accuracy Islanding detection accuracy 

CMAC 10 100% 100% 
MLP (4-7-10) 1063 90.84% 93.33% 
MLP (4-8-10) 1386 85.68% 90% 
MLP (4-9-10) 1075 96.64% 93.33% 

Figure 5. Diagram of simulated islanding detection when the utility grid is disconnected at 

second 4. 

 

 

Figure 6 shows that three cycles of voltage swelling occurred in the system before the utility grid 

end outage at Second 4. The islanding detection method based on a CMAC neural network determined 
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that the swell in voltage was caused by signal interference rather than an islanding operation. 

Therefore, the system did not disconnect the loads until 0.5 cycle after the islanding operation had 

occurred. Figure 7 shows that a voltage dip occurred and the utility grid end was disconnected at 

approximately Second 4. These results indicate that the proposed method correctly determined that the 

voltage dip was caused by power interference. Therefore, the loads were not disconnected until a 0.5 

cycle after the islanding operation had occurred. 

Figure 6. Diagram of simulated islanding detection during voltage swelling. 

 

Figure 7. Diagram of simulated islanding detection during voltage dipping. 

 

Figure 8 shows a simulation of harmonic component interference before an islanding operation; this 

was conducted to determine whether such interference influences islanding detection. The harmonic 

components comprised third, fifth, and seventh harmonics at 10%, 7%, and 5% of the base frequency, 

respectively. As shown in Figure 8, an islanding operation occurred at Second 4. However, the 
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interference from harmonic components before the islanding operation did not cause the detection 

method based on a CMAC neural network to malfunction. Figure 9 shows the detection of an islanding 

operation under the influence of voltage flickering. Voltage flickering was achieved by synthesizing  

15 Hz and 20 Hz voltage flickers and a standard voltage of 60 Hz, where islanding operations occur at 

Second 4. The controller can disconnect loads within a 0.5 cycle. 

Figure 8. Simulation diagram of islanding detection influenced by power harmonics. 

 

 

Figure 9. Simulation diagram of islanding detection influenced by voltage flickering. 

 

 

5. Experimental Results 

To provide further evidence that the proposed islanding detection method correctly detects islanding 

operations and promptly disconnects the power system from the parallel connection, this study 

empirically tested and analyzed the system. During the test, a programmable system-on-chip (PSoC) 
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manufactured by Cypress [21] was used to implement the islanding operation detection method based 

on a CMAC neural network. A Chroma 6530 AC power source has been employed in order to test the 

tolerance of the proposed CMAC Neural Network islanding detection method to grid voltage and 

frequency variations. Four islanding tests have been carried out in order to evaluate the performance of 

the proposed islanding detection method under diverse operation conditions, namely, voltage swell, 

voltage dip, distorted grid voltage, and voltage flicker. As shown in Figure 10, the system voltage 

operation was normal before the three cycles of voltage swelling. At Second 4, the utility grid was 

disconnected to induce an islanding operation. The results in Figure 10 show that the islanding 

operation detection method based on a CMAC neural network can recognize when a voltage swell is 

caused by power quality interference rather than an islanding operation. Therefore, the system only 

disconnected the load from the photovoltaic power generation system within a 0.5 cycle (i.e., precisely 

0.003 s) after disconnection of the utility grid (i.e., the islanding operation).  

Figure 10. Diagram of islanding detection (voltage swelling before utility grid disconnection). 

 

Figure 11 indicates that a voltage dip occurred in the system voltage. Furthermore, during the three 

voltage dip cycles, the islanding operation detection method based on a CMAC neural network did not 

disconnect the loads. The proposed method determined the occurrence of islanding operations and 

disconnected the loads from the photovoltaic power generation system within a 0.5 cycle (i.e., 

precisely 0.003 s) after the utility grid was disconnected at Second 4 and islanding occurred.  

Figure 12 shows the conditions where the voltage waveforms contained harmonic components that 

interfered with the power quality. These conditions can be used to determine whether islanding 

detection technology is influenced by harmonic components. The harmonic components of voltage 

added to the power system were third, fifth, and seventh harmonics at 10%, 7%, and 5% of the 

fundamental frequency voltage, respectively. As Figure 12 shows, the system operated normally before 

the three cycles of harmonic interference. At Second 4, the utility grid was disconnected and an 

islanding operation occurred. The proposed islanding detection method based on a CMAC neural 

network was not influenced by harmonic interference prior to the islanding operation and did not 

malfunction. Instead, the loads were disconnected from the photovoltaic power generation system 

within a 0.5 cycle (i.e., precisely 0.003 s) after the utility grid was disconnected and the islanding 

phenomenon occurred. Figure 13 shows the detection of an islanding operation influenced by voltage 

flickering. The flicker voltage was obtained by synthesizing flicker voltages at 15 Hz and 20 Hz and 
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the standard voltage of 60 Hz. The system operation was normal prior to the three cycles of voltage 

flickering. The islanding operation occurred at approximately Second 4. The islanding detection 

method based on a CMAC neural network effectively disconnected the loads from the photovoltaic 

power generation system within a 0.5 cycle. 

Figure 11. Diagram of islanding detection (voltage dipping before utility grid disconnection). 

 

 

Figure 12. Diagram of islanding detection (harmonic components added to the system 

voltage before utility grid disconnection). 

 

 

Figure 13. Diagram of islanding detection (voltage flickering before utility grid disconnection). 
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6. Conclusions 

This study proposed an islanding detection method using a CMAC neural network for photovoltaic 

power generation systems. The detection method was also employed to analyze various types of power 

quality interferences (e.g., voltage swelling, voltage dipping, power harmonics, and voltage flickering) 

in the utility grid to determine whether abnormalities at the point of common coupling were caused by 

power quality interferences or islanding operations. Because of the proposed CMAC neural network 

islanding detection method adopt the quantification and binary coding techniques, it not only reduces 

the network training time but features detection tolerance. Therefore, the proposed method needs only 

4K Bytes memory for using the 12-bit code of the input signal and takes average four epochs for each 

training process and islanding detection. And then, the influence of interference can be reduced. 

Finally, the simulation and experiment results showed that the proposed islanding detection method 

can correctly identify islanding operations. Regardless of interference, the proposed method can 

accurately detect the corresponding state and promptly terminate islanding operations within a 

predetermined time. Therefore, the results of this study demonstrate the validity of the proposed method. 
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