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Abstract: Currently, renewable energy resources are becoming more important to reduce 
greenhouse gas emissions and increase energy efficiency. Researchers have focused on all 
components of wind turbines to increase reliability and minimize cost. In this paper, a 
procedure including a cost analysis method and a particle swarm optimization algorithm 
has been presented to efficiently design low cost steel wind turbine towers. A virtual tool is 
developed in MATLAB for the cost optimization of wind turbine steel towers with ring 
stiffeners using a particle swarm optimization algorithm. A wind turbine tower 
optimization problem in the literature is solved using the developed computer program.  
In the optimization procedure the optimization results match very well with the 
optimization results obtained previously. The wall thickness of the shell segments and the 
dimensions of the ring stiffeners are selected as the design variables, and the limits of the 
local buckling for the flat ring stiffeners, the local shell buckling limit, the panel ring 
buckling limit and the limitation of the frequency are considered the design constraints. 
Numerical examples are presented to understand the impacts of the design variables on the 
total cost of the wind turbine tower. 

Keywords: wind turbine; steel tower; structural optimization design; cost minimization; 
virtual tool 

 

1. Introduction 

Recently, renewable energy resources are becoming more important to reduce greenhouse gas 
emissions and increase energy efficiency. The efficient use of renewable resources such as wind 
energy, solar thermal power generation, photovoltaics, geothermal power generation, and biomass 
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power generation depends on the cost of clean energy technologies. Some clean energy technologies 
are relatively costly today, but costs may decrease over time as technological improvements occur, 
equipment is standardized, and the economies of scale take hold. If low-cost clean energy resources, 
such as wind energy, constitute a major portion of the portfolio of clean energy resources, the overall 
cost impact of reducing greenhouse gas emissions will be diminished, and efforts to curtail greenhouse 
gas emissions will be more politically and economically feasible [1–3].  

Wind power, which is the fastest growing energy source, will play a vital role in the future  
energy supply of the world. Worldwide, wind energy will also supply a sizeable amount of 
electricity—approximately 16% in 2020, according to the forecasts of the Global Wind Energy 
Council [3]. The wind industry and governments have worked together for more than 20 years to 
advance both large and small wind energy technologies and to decrease the cost of energy. In spite of 
increasing capacities and reducing costs in large wind turbines, technological advances in wind 
turbines are still needed to bring the cost of wind energy to a level competitive with conventional 
generation sources. As reported in the literature, the initial cost of wind turbines is about half of the 
total wind plant development costs. Therefore, reducing the cost of wind turbines through advanced 
technology is one of the successful ways to decrease the cost of wind energy [4]. 

A wind turbine is a complex system in which design is a matter of constant tradeoff between the 
competing demands of lower cost, better energy productivity, increased lifetime, reliability and 
durability, and maintenance cost. Achieving a greater yield of the energy production may be costly 
without appropriate techniques. In this field, reducing materials to reduce capital investment may 
adversely affect operations and maintenance (O&M) costs. As a result, the technical concepts of modern 
wind turbines have to be significantly developed to create more lightweight and cost-effective designs. 

The growth of wind power has led to an interest in addressing wind turbine towers. Negm and 
Maalawi [5] performed a structural optimization of a wind turbine tower. They proposed a simplified 
method that used structural analysis instead of the traditional finite element method (FEM) approach. 
Lavassas et al. [6] studied the static and dynamic behaviour of a 1 MW wind turbine tower using both 
detailed and simplified finite element models. They found that the seismic response was significantly 
less critical than the response caused by wind loading. Bazeos et al. [7] performed a stability analysis 
on a steel wind turbine tower and concluded that seismic analysis does not produce the governing 
design criterion for this type of structure. In recent years, the development of optimization algorithms 
has supplied designers with interesting tools to design wind turbine towers. Uys et al. [8] developed a 
procedure to achieve a design that will minimize the cost of a slightly conical steel tower for a wind 
turbine. This procedure was applied to the 1 MW steel wind turbine tower proposed by Lavassas et al. [6]. 
Silva et al. [9] developed a non-linear dynamic model based on experimental data for the structural 
analysis of reinforced concrete towers. This model was used to formulate some optimization problems 
to minimize the cost of reinforced concrete wind turbine towers. Wind turbine towers with different 
heights were analyzed to find the best solution by considering the cost, reliability and computational 
time. In this study, a computer program was developed to minimize the cost of a wind turbine steel 
tower with ring stiffening. This computer program uses the reliable procedure proposed in [10–15] and 
is based on Det Norske Veritas’ rules [16] and practice rules to optimize the design of a ring stiffened 
cylindrical shell loaded in bending and improve the particle swarm optimization algorithm. The 
optimization results obtained are presented and discussed. 
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To obtain cost-effective wind turbines, reducing the tower head weight, including the gearbox, rotor 
and blades, as well as the tower weight is very important. Because larger towers generally require 
larger transport vehicles and cranes, reducing the weight can decrease transportation and installation 
costs. Installation costs include those associated with transportation, construction, and interconnection. 
New tower technologies and materials, such as self-erecting towers and lightweight materials, have the 
potential to decrease installation costs. Currently, tubular steel towers have been used in wind turbines 
because they are more reliable. Therefore, designers need to find optimum designs for tubular steel 
towers by mainly taking into account the rated torque and maximum wind speeds. Computer tools 
based on reliable optimization algorithms may help designers design wind turbine towers and understand 
the effects of design parameters such as the hub height, the tower diameter and the wall thickness.  
In this paper, a virtual tool is developed to minimize the tower weight and the welding cost of a tubular 
steel tower. This tool is based on particle swarm optimization algorithm and is written in MATLAB. 
This code also allows the influence of some design parameters on the tower weight to be investigated.  

2. Particle Swarm Optimization (PSO) 

Because evolutionary algorithms such as genetic algorithms and evolutionary programming do not 
need to apply mathematical assumptions to the optimization problems and have better global search 
abilities when compared with conventional optimization algorithms, they have gained importance in 
structural and mechanical optimization problems in recent years [17–26]. Currently, a new evolutionary 
computation technique, called particle swarm optimization (PSO), has been successfully applied to 
structural and mechanical optimization problems.  

PSO was inspired by the social behavior of biological organisms, especially the ability of the 
groups of some species of animals to work as a whole in locating desirable positions in a given area, 
e.g., birds flocking to a food source. In PSO, such social behavior is modeled as an optimization 
algorithm that guides a population of particles moving towards the most promising area of the search 
space. These particles are called the swarm. Unlike in the other evolutionary computation techniques, 
each particle in PSO is also associated with a velocity that is dynamically adjusted according to the 
historical behaviors of the particle. Hence, the particle’s position is changed according to its own 
behavior and that of its neighbors. Therefore, the particles have a tendency to move towards a suitable 
search area over the course of the search process. 

Particle Swarm Optimization for Constrained Engineering Design Problems 

The particle swarm algorithm was first introduced by Eberhart and Kennedy [17]. The motivation 
behind the algorithm was the intelligent collective behavior of organisms in a swarm (e.g., a flock of 
migrating birds) because the behavior of a single organism in the swarm may be totally inefficient. 
PSO was first designed to simulate birds seeking food, which is defined as a “cornfield vector”. 
Similar to other evolutionary algorithms, PSO can solve a variety of hard optimization problems but 
with a faster convergence rate [26]. Another advantage is that it requires only a few parameters to be 
tuned, making it attractive from an implementation viewpoint. Standard PSO is usually applied to 
solve unconstrained optimization problems. In this paper, the standard PSO algorithm is extended to 
solve constrained mechanical design optimization problems using methods that preserve a feasible 
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population. PSO algorithms have also been applied to constrained optimization problems. For example, a 
bird finds food through social cooperation with other birds around it (within its neighborhood). PSO 
was then expanded to a multidimensional search. If the search space is d dimensional, the ith particle 
of the swarm can be represented by a d dimensional vector x. The velocity of this particle can be 
represesented by another d dimensional vector v. The original PSO algorithm is described below: 

𝑣𝑖𝑑  =  𝑤 𝑣𝑖𝑑  +  𝑐1𝑅1(𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖𝑑)  + 𝑐2𝑅2(𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖𝑑)  (1)  

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (2)  

where the index i represents the number of particles in the population and the index d represents the 
dimension of the solution; xi and vi are the current position and velocity of the ith particle, respectively; 
c1 and c2 are learning factors and are the social and cognitive components, respectively; and R1 and R2 
are two random numbers between [0,1]; w is the inertial weight factor, and shows the effect of 
previous velocity vector on the new vector. Equation (1) calculates a new velocity (vi+1) for each 
particle based on its previous velocity, the best location it has achieved (pbest) so far, and the global 
best location (gbest) the population has achieved. Equation (2) provides the particle’s updated position 
in the search space.  

Many researchers have expanded on the original idea with alterations ranging from minor parameter 
adjustments to complete a reworking of the algorithm. Others have used PSO to compare other global 
optimization algorithms, including genetic algorithms and differential evolution. 

In the last few decades, great attention has been paid to structural optimization because raw material 
consumption is one of the most important factors that influence building construction. Material cost 
increases are offset entirely by the reduction of the use of that material due to the material being 
stronger and therefore less of the material being required. Additionally, as structures become larger 
such as wind turbine tower, production, transportation and installation costs will also rise. Because of 
the increasing demand for high-performance and low-cost structures, designers prefer to minimize the 
volume or the weight of the structure by optimization. 

Many researchers have been working to find a technique to maintain a feasible population. There 
are a number of techniques proposed to handle constrained optimization problems. One of them is a 
technique called “fly back mechanism” and is proposed by He et al. [26]. This technique maintains a 
feasible population by incorporating a well-known basic PSO algorithm for solving structural 
optimization problems. PSO algorithms based on this technique are more reliable when compared with 
other algorithms based on penalty functions. According to this technique, the particles are initialized in 
a feasible search space. When the particles fly in feasible space to search for the solution, if any 
particle passes into infeasible space, it returns to a previous feasible position by flying back. Thus, a 
solution in feasible space will be guaranteed. Because the particle is most likely close to the boundary, 
the particle swarm optimization algorithm, improved by using a fly-back mechanism, has the 
important advantage of finding the global minimum faster than other algorithms for constrained 
structural optimization problems.  

According to He et al. [26], regarding the proposed constraint handling technique, the improved 
particle swarm optimization with fly-back mechanism requires a feasible initial population to guarantee 
that the solution of successive generations are feasible. To generate a feasible initial population, an 
extra loop at the beginning of the algorithm is required to keep randomly re-initializing infeasible 
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particles to ensure that they stay inside the feasible search space. General experience indicates that this 
is simple method is sufficiently good most mechanical and structural design problems since their 
feasible search spaces are usually large and feasible particles can be easily generated. Small size 
populations are preferred to minimize the time to find a feasible initial population. When examining all 
results presented in [26] it can be seen that the optimization results by the particle swarm optimization 
algorithm with fly-back mechanism are better or equal to other existing methods such as Genetic 
algorithm, Genetic search technique, Runarsson stochastic ranking method. However, a more 
important drawback of this technique is the requirement of an all-feasible initial population. This may 
be a disadvantage when dealing with problems with a very small feasible region. The “fly-back” 
mechanism keeps particles from flying out of the feasible region by discarding those flights which 
generate infeasible solutions. Since a large number of the particles' flying behaviors are wasted, due to 
searching outside the boundary in the complex structure optimization problem, iteration number may 
rise and time cost may increase. In this study, the particle swarm optimization algorithm with fly-back 
mechanism is used for the cost minimization of wind turbine towers. The particle swarm optimization 
algorithm can be described using the general flowchart given in Figure 1. 

Figure 1. The flowchart of the particle swarm optimization. 
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3. The Optimal Design of a Wind Turbine Steel Tower 

In a wind turbine, the tower that carries the rotor and the nacelle is one of the key components. 
Towers for large wind turbines may be either tubular steel towers, lattice towers, or concrete  
towers [9]. Approximately 90% of all wind turbine towers are tubular steel towers. They are called 
tapered tubular towers because they gradually narrow towards the top. Because a wind turbine tower 
supports the rotor, nacelle and power transmission and control systems in the nacelle, it increases the 
weight of the rotating blades. The tower affects the efficiency and reliability of the wind turbine. 
Therefore, it should be designed and manufactured taking into account constraints such as the strength, 
frequency, stability and weight. The weight of the tower in a wind turbine has to be minimized for easy 
transportation and assembly. Today, a minimum weight structural design is of utmost importance for 
the successful and economical operation of a wind turbine. The reduction in the weight of the tower is 
very beneficial because of the manufacturability and cost. Therefore, modern optimization algorithms 
may help in obtaining successful tower designs under many constraints. 

In this study, the cost calculation procedure for a wind turbine tower proposed by [8] is used to 
conduct the structural optimization of a wind turbine tower. This procedure finds the minimum cost 
depending on constraints such as the local buckling of the flat ring stiffeners, local shell buckling, and 
panel ring buckling in the tubular steel structure of the wind turbine. The procedure is extended with a 
natural frequency constraint. There are four design variables, the height and thickness of a flat ring 
stiffener (hr and tr, respectively), the wall thickness (t) and the diameter (D). The constrained 
optimization problem of a steel wind turbine tower and the objective function and constraints are 
described below: 

3.1. Objective Function to be Minimized 

The cost estimation is important in structural design. Thus recent advances achieved in technology 
such as integrated engineering, provide a new concept in the cost estimation starting from the design 
phase. In a structural design, designers should consider many important variables such as loads, 
materials, geometry, fabrication, transport, installation, maintenance and costs. Designers need cost 
function to be mathematically formulated as a function of these variables. Farkas and Jarmai [12] 
developed a cost calculation method for various welded steel structures. The model performs a cost 
function based on knowledge in practice and considered manufacturing operations. The cost function 
includes the cost of material, cutting, forming, assembly, welding and painting. This cost function has 
been applied to minimum cost design problems of various steel structures such as welded beams, 
layered sandwich beams, tubular trusses, frames, stiffened plates and shells. The virtual tool developed 
in this study uses this cost function for minimum cost design of wind turbine towers constructed with 
welded shells. The cost function, namely, the objective function, including the cost of material, 
assembly, welding and painting, is formulated according to the manufacturing process as in Equation (3):  

𝐾(𝑅, 𝑡) = 𝐾𝑀 + 5(𝐾𝐹0 + 𝐾𝐹1) + 𝐾𝐹2 + 𝐾𝐹3 + 𝐾𝐹4 + 𝐾𝑝 (3)  

The total cost also includes the cost of forming shell elements from a flat plate into near cylindrical 
shapes, the cost of cutting the flat ring stiffeners as well as the cost of painting and welding (Figure 2). 
When five shell elements with a length of 3 m without rings are manufactured, two axial butt welds are 
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needed for each shell element. To avoid shell ovalization the number of stiffeners is suggested between 
5 and 15 in [10]. It is clear that the cost increases as the number of stiffeners increase in wind turbine 
tower. In this paper, the number of stiffeners is set to 5 as a constant. In [8] it was mentioned the cost 
difference for the variation in number of ring-stiffeners (5–15) was too small (1.5%–3.6%). 

Figure 2. Cost function for the wind turbine tower. 

 

The total material cost for each shell is: 

𝐾𝑀 = 𝑘𝑀𝜌𝑉2 (4)  

where kM is the material cost factor and is taken as kM = 1 $/kg in this paper; 𝜌 is density of the tower 
material and is 7.85 × 103 kg/m3 for steel. The volume of material for a shell, V2, is found by: 

𝑉2 = 5𝑉1 +  (𝐷 − ℎ𝑟)𝜋ℎ𝑟𝑡𝑟𝑛 (5)  

where tr, hr are the ring stiffener thickness, the ring stiffener height respectively; D is the elements of 
diameter to be welded; n is the number of elements to be assembled; V1 is the volume of an element:  

𝑉1 = 𝐷𝜋𝑡 ∙ 3000 (6)  

The cost required to form a shell element into a slightly conical shape is considered in the factor 
KF0, which is given by:  

𝐾𝐹0 = 𝑘𝐹𝜃𝐹𝑇 (7)  

where T is the time spent on bending a plate element 3 m wide for 4 mm ≤ t ≤ 40 mm and  
1750 mm ≤ D ≤ 3500 mm and can be calculated by Equuation (5). This formulation was derived from 
real data obtained from industry by Farkas and Jarmai [10]. θF is the difficulty factor, including the 
difficulty of fabrication and θF = 3 is used in this paper as proposed by Farkas et al. [12]. kF is the 
labor cost factor for each unit time and kF = 1 $/min as proposed by Farkas [11]:  

𝑙𝑛𝑇 = 6.85825 − 4.5272𝑡−0.5 + 0.0095419𝐷0.5 (8)  

In this equation, which also includes the time to form the plate and reduce the initial imperfections 
due to forming, t is the plate thickness and D is the diameter. The general formula for the welding cost 
of a shell element the cost of welding is as follows: 

𝐾𝐹1 = 𝑘𝐹 �𝜃𝑊�𝜅𝜌𝑉1�+ 𝑘𝐹[1.3 ∙ 0.224 ∙ 10−3𝑡2(𝜅 ∙ 3000)] (9)  

where θW is a difficulty factor expressing the complexity of the assembly and is set to 2, as used  
in [11]. Here, the first member calculates the time of the assembly, 𝜅 is the number of structural parts 
to be assembled, the second member estimates the time of welding. The formulas in Equations (9)  
and (10), and are obtained depending on the welding technology and weld type specified. 

The welding cost for a complete unstiffened shell segment is found by combining the five elements 
using four circumferential butt welds. This implies that the welding costs [8] can be calculated for a 
shell segment: 
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𝐾𝐹2 = 𝑘𝐹 �𝜃𝑊�5 ∙ 5𝜌𝑉1�+  1.3 ∙ 0.2245 ∙ 10−3𝑡2 ∙ 4 ∙ 𝐷𝜋 (10)  

The cutting cost of n flat plate rings using acetylene gas is as follows: 

𝐾𝐹3 = 𝑘𝐹𝜃𝐶𝐶𝐶𝑡𝑟0.25𝐿𝐶 (11)  

where θc is the difficulty factor for cutting and is taken as 3; and Cc is the cutting parameter with value 
Cc = 1.1388 × 10−3. The approximate value of the cutting length Lc is calculated as below: 

𝐿𝐶 ≈ 𝐷𝜋𝑛 + (𝐷 − 2ℎ𝑟)𝜋𝑛 (12)  

The welding cost of n rings into the shell segment with double-sided GMAW-C fillet welds [8] is: 

𝐾𝐹4 = 𝑘𝐹 �𝜃𝑊�(𝑛+ 1)𝜌𝑉2�+  1.3 ∙ 0.3394 ∙ 10−3𝑎𝑊2 ∙ 2 ∙ 𝐷𝜋𝑛 (13)  

The size of the weld for a ring of thickness tr is aW = 0.5 tr, but if the calculated value of aw is less 
than 3 mm, its value should be set to 3 mm in equation (13) (aW < 3 mm → aW = 3 mm). The cost of 
painting can be calculated as: 

𝐾𝑃 = 𝑘𝑝𝑆𝑃 (14)  

The surface area to be painted can be calculated as below: 

𝑆𝑃 = 4𝑅𝜋1500 + 5 ∙ 2 ∙ 2(𝐷 − ℎ𝑟)ℎ𝑟 (15)  

where the paint cost factor is kP = 14.4 × 10−6 $/mm2. 

3.2. Constraints 

3.2.1. Constraint 1 

According to [10–14], the constraint on the height to thickness ratio of a flat ring stiffener is  
as follows: 

𝑔1(𝑥) =
ℎ𝑟
𝑡𝑟
− 0.375�

𝐸
𝑓𝑦
≤ 0 (16)  

where tr is the ring stiffener thickness. The elastic modulus E = 2.1 × 105 MPa and the yield stress  
fy = 355 MPa for steel. 

3.2.2. Constraint 2 

To prevent local shell buckling, the sum of the axial (a) and bending (b) stresses should be less than 
the critical buckling stress value [8,16]: 

𝑔2(𝑥) = 𝜎𝑎 + 𝜎𝑏 − 𝜎𝑐𝑟 =  
𝐺𝑊
𝐷𝜋𝑡

+
𝑀

𝜋(𝐷/2)2𝑡
−  

𝑓𝑦
�1 + 𝛾4

≤ 0  (17)  

where: 

𝛾2 =  
𝑓𝑦

𝜎𝑎 + 𝜎𝑏
 �
𝜎𝑎
𝜎𝐸𝑎

+
𝜎𝑏
𝜎𝐸𝑏

� (18)  
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𝜎𝐸𝑎 =  (1.5 − 50𝛽) 𝐶𝑎  
𝜋2𝐸

12(1 − 𝑣2) �
𝑡
𝐿𝑟
�
2

 (19)  

𝜎𝐸𝑏 =  (1.5 − 50𝛽) 𝐶𝑏  
𝜋2𝐸

12(1 − 𝑣2) �
𝑡
𝐿𝑟
�
2

 (20)  

𝐶𝑎 =  �1 + (𝜌𝑎𝜉)2 (21)  

𝐶𝑏 =  �1 + (𝜌𝑏𝜉)2 (22)  

𝜌𝑎 =  0.5 �1 +
𝐷/2
150𝑡�

2

 (23)  

𝜌𝑏 =  0.5 �1 +
𝐷/2
300𝑡�

2

 (24)  

𝜉 = 0.702 ∙ 𝑍 (25)  

𝑍 =  
2𝐿𝑟2

𝐷𝑡
 �1 − 𝑣2  (26)  

𝐿𝑟 =  
𝐿

𝑛 + 1
 (27)  

The shell buckling strength should be multiplied by the imperfection factor (1.5–50 β), where β is a 
reduction factor derived by Farkas [11]. Firstly, Farkas [11] derived a differential equation using the 
bending theory of cylindrical shells. Then, an approximate formula in Equation (28) for maximum 
radial deformation was obtained from the solution of this equation. Using the maximum radial 
deformation limits proposed by The European Convention for Constructional Steelwork (ECCS), the 
imperfection factor and reduction factors given above were obtained. The solution of this equation The 
detailed derivation of it is presented in [11]: 

0.04√0.5𝐷𝑡 ≤  𝑢𝑚𝑎𝑥 ≤  0.08√0.5𝐷𝑡 (28)  

Introducing a reduction factor of β for which: 

0.01 ≤ 𝛽 =  
𝑢𝑚𝑎𝑥

√8𝐷𝑡
≤ 0.02 (29)  

𝛽 < 0.01 → 𝛽 = 0.01  

𝛽 > 0.02 → 𝛽 = 0.02 (30)  

The maximum radial deformation of a shell caused by the shrinkage of a circumferential weld is: 

𝑢𝑚𝑎𝑥 =  0.64 𝐴𝑇𝑡�
𝐷/2
𝑡

 (31)  

where ATt is the area of specific strains near the weld and is calculated for steel as follows [8]: 

𝐴𝑇𝑡 = 0.844 10−3𝑄𝑇 (32)  

For the calculation of residual deflection the Okerblom-method is used, which has been adopted by 
Farkas and Jármai [10], Farkas [11]. The specific heat induced by welding can be calculated for butt 
welds as follows: 
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𝑄𝑇 =  60.7𝐴𝑤 (33)  

𝑡 ≤  10 𝑚𝑚 →  𝐴𝑤 = 10𝑡 (34)  

𝑡 >  10 𝑚𝑚 →  𝐴𝑤 = 3.5𝑡 (35)  

where 𝐴𝑤  is the cross-sectional area of the weld and its commonly used values are given in  
Equations (34) and (35) when estimating the cost of making a butt weld.  

3.2.3. Constraint 3  

The panel ring buckling constraint for a ring stiffener [8,16] is calculated as follows: 

𝑔3(𝑥) = ℎ𝑟𝑡𝑟 − �
2
𝑍2

 + 0.06� 𝐿𝑟𝑡 ≥ 0  (36)  

𝐼𝑟 =  
ℎ𝑟3𝑡𝑟
12

∙
1 + 4𝜔
1 + 𝜔

 ≥ �
𝜎𝑚𝑎𝑥𝑡(𝐷/2)4

500𝐸𝐿𝑟
� (37)  

𝑅0 = 𝑅 − 𝑦𝐺𝑢𝑚𝑎𝑥 =  0.64 𝐴𝑇𝑡 �
𝐷/2
𝑡

 (38)  

𝑦𝐺 =  
ℎ𝑟

2(1 + 𝜔) (39)  

𝜔 =  
𝐿𝑒𝑡
ℎ𝑟𝑡𝑟

 (40)  

𝐿𝑒 = 𝑚𝑖𝑛 (𝐿𝑟 , 𝐿𝑒0 = 1.5√0.5𝐷𝑡) (41)  

3.2.4. Constraint 4  

The natural frequency should be less than the rotation frequency of the blades: 

 𝑔4(𝑥) = 1.75�
𝐸𝐼𝑥

𝐿𝑡𝑜𝑡𝑎𝑙3 (𝐺𝑊 + 0.23 𝑊𝑡𝑜𝑤𝑒𝑟)
− 1.1 𝑓𝑏𝑙𝑎𝑑𝑒 ≤ 0 (42)  

where Ltotal is the total height of the tower; GW is the total mass of the rotor and nacelle at the top of the 
wind turbine; Wtower is the weight of the tower; and Ix is the moment of inertia. Wtower and Ix are 
obtained by: 

𝐼𝑥 =  𝜋(0.5𝐷)3𝑡  (43)  

𝑊𝑡𝑜𝑤𝑒𝑟 =  𝜋𝐷𝑡𝐿𝑇𝑜𝑡𝑎𝑙 𝜌  (44)  

4. Estimation of Wind Loads on Wind Turbine Tower 

Wind load on a structure depends on several factors such as wind velocity, surrounding terrain and 
the size, shape and dynamic response of the structure. Conventional theory assumes that the horizontal 
wind load pressures act normally on the face of the structure. Computations for wind in all directions 
are performed to find the most critical loading condition. In this study, the most common procedure 
introduced in the Eurocode Part 2–4 [27] is used to calculate wind loads on wind turbine tower. 
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According to the Eurocode Part 2–4 [27], the average wind force FW acting on a structure or a 
structural component (see Figure 3) can be determined by using: 

𝐹𝑤 = 𝑐𝑒(𝑧)𝑞𝑟𝑒𝑓𝑐𝑠𝑐𝑑𝑐𝑓𝐴𝑟𝑒𝑓 (45)  

where z is the reference height for external wind action; Aref is the reference area of the structure or 
structural element; cs and cd is the size factor and the dynamic factor, respectively. The structural factor 
cscd should take into account the effect of wind actions from the nonsimultaneous occurrence of peak 
wind pressures on the surface (cs) together with the effect of the vibrations of the structure due to 
turbulence (cd). cf is the force factor for the structure or structural element. qref is the reference velocity 
pressure in N/m2 and ce(z) is the exposure factor at height z.  

The reference velocity pressure (qref) is calculated from the basic value of the reference wind speed 
(vref) at different heights with an air density of ρ =1.25 kg/m3 as follows: 

𝑞𝑟𝑒𝑓 =
𝜌
2
𝑣2𝑟𝑒𝑓 (46)  

The exposure factor at height z can be found as: 

𝑐𝑒(𝑧) = 𝑐2𝑟𝑐2𝑡(1 + 7𝑙𝑣) (47)  

where lv is the turbulence intensity and can be defined by:  

𝑙𝑣 =
𝑘𝑟
𝑐𝑟𝑐𝑡

 (48)  

𝑐𝑟 = 𝑘𝑇 ln �
𝑧
𝑧0
� (49)  

where kr is the turbulence factor; The recommended value for kr is 1,0 in [8]; kT is the terrain factor 
and ct is the orography factor; z0 is the roughness length and is determined between 0.003 and 1 
depends on the ground roughness and the distance with uniform terrain roughness in an angular sector 
around the wind direction. The values of kT, ct and z0 can be obtained for sea or level area from tables 
and graphs in [13]. The force factor is given by [13]: 

𝑐𝑓 = 𝜓𝜆𝑐𝑓0  (50)  

where ψλ is the end-effect factor and cf0 is the force coefficient of structures or structural elements 
without free-end flow. cf 0 is presented as a function of the Reynolds number (Re) in [8] 

The uniformly distributed wind loads for the three shell segments indicated by Pw1, Pw2 and Pw3 in 
Figure 2 are calculated by the relation: 

𝑃𝑤 = 𝑞𝑟𝑒𝑓𝑐𝑠𝑐𝑑𝑐𝑓𝐷  (51)  

where D is the average diameter of the wind turbine tower. 
In this paper, optimization is performed for the three shell segments using an average diameter and 

bending moment. Assuming that the tower behaves like a cantilever beam with a concentrated loads 
acting in the middle of every shell segment, the bending moments are found as seen in Figure 3. 
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Figure 3. The 45 m wind turbine tower model used in [8]. 

 

5. Developed Virtual Tool for Particle Swarm Optimization 

Physics-based modeling and simulation is important in all engineering problems. The development 
of computer software and hardware makes it possible to numerically solve complex mechanical and 
structural problems such as wind turbine design. In-house codes are primarily used for research 
projects and graduate studies; commercial packages are widely used to solve almost every engineering 
problem. In this study, a computer program is developed using MATLAB’s m-files for the particle 
swarm optimization of wind turbine towers. MATLAB is a high-performance language for technical 
computing. The developed program has graphical user interfaces (GUIs) and easy-to-use design steps 
for a novice to design a wind turbine tower and find optimization results depending on design variables 
such as the wall thickness, outer diameter of the tower, tower height and tower weight. The flowchart 
of the developed computer program is given in Figure 4. The main interface is basically composed of 
three main areas: the PSO parameters, the problem specification and the obtained results. The required 
input values can be inserted in GUI’s window, as shown in Figure 5. The right side of the window is 
reserved for user-specified parameters required for executing the particle swarm algorithm. The 
movements of the particles are shown on the left side of the window. Hence, designer can see the 
calculated values of parameters during the process of particle swarm optimization on the graph. The 
main idea of this program is to make it easier for the designer to try new parameters easily and quickly 
during the design process of the wind turbine tower. Furthermore, similar virtual tools have the 
potential to impact teaching and learning in a classroom. 
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Figure 4. The flowchart of the developed computer program. 

 

Figure 5. A view of the developed computer program. 

 

6. Results and Discussions 

In this paper, a computer program, WindTower, is validated using a numerical optimization 
problem for the structural design of the wind turbine tower proposed by Lavassas et al. and  
Uys et al. [6,8]. Numerical data for a sample wind turbine tower is given in Table 1 and Figure 2.  
In this study, particle swarm optimization parameters are selected to obtain the best solution after a 
number of trials and searching the literature. In this example, for PSO, the value of each learning  



Energies 2013, 6 3835 
 

 

factor (c1,c2) is taken as 1.49618. Empirical results have shown that the learning factors with  
c1 = c2 = 1.49618 provide good convergent behavior [17,23]. The maximum velocity (vmax) and the 
inertia weight factor (w) are selected as 0.5 and 0.9, respectively. The maximum generation number is 
500 and the population is 50 for this example. The minimum and maximum values of the design 
variables are determined according to standard practice rules and are given in Table 2. The wind load 
acting on the shell tower is calculated according to Eurocode 1 Part 2–4 [27] (Table 1). The wind force 
and bending moment acting on the top of a 45 m tower for a 1MW wind turbine in Greece are given by 
Lavassas et al. and Uys et al. [6,8]. The load due to the self-weight of the nacelle is also considered.  

Table 1. An example of numerical data. 

Input Data 
Pw1 6.334 kN/m FW0 282 kN 
Pw2 6.883 kN/m Safety factor 1.5 - 
Pw3 6.864 kN/m Yield stress 355 MPa 
GW 950 kN Wind speed 1 36 m/s 
MW0 997 kNm Blade frequency 1 0.37 Hz 

1 This value is taken from [6] and [8]. 

Table 2. Minimum and maximum values of the design variables. 

Design variables Minimum Maximum 
t 4 mm 40 mm  
hr  20 mm 200 mm 
tr  4 mm 20 mm 
D 1750 mm 3500 mm 

The mass and costs for five ring stiffeners are calculated in Table 3. These results agree well  
with [8], and the results obtained using the particle swarm optimization algorithm with fly-back 
mechanism are better than those obtained by the Rosenbrock search algorithm in [8]. The total cost 
and mass are reduced by 5.2% and 4.4%, respectively. Furthermore, the total tower mass is 
approximately 30% lower when compared with the wind turbine tower proposed in [6]. Table 4 
represents the optimum values of design parameter for best solution. All optimization results presented 
in this paper are the best values of 15 runs. Since the optimization results in Table 3 are agreed with the 
results in [8] the trial number is set to 15. The developed computer program allows changing  
trial number. 

Table 3. Comparison of the optimization results. 

Shell parts 
Reference [8] This study 

Mass K-KP K Mass K-KP K 
Top  5,398 kg 12,096 $ 15,316 $ 5,278 11,625 $ 14,770 $ 

Middle  9,472 kg 19,772 $ 23,574 $ 9,456 19,761 $ 23,453 $ 
Bottom  15,648 kg 30,941 $ 35,330 $ 14447 27,962 $ 32,201 $ 
Total 30,518 kg 62,809 $ 74,220 $ 29,181 59,348 $ 70,424 $ 
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Table 4. Optimization results for design parameters. 

Shell parts Wall thickness Stiffener thickness Stiffener height 
Top  6.30 mm 4.60 mm 41.50 mm 

Middle  9.20 mm 5.30 mm 47.30 mm 
Bottom  11.50 mm 6.50 mm 57.50 mm 

The results of PSO for wind turbine tower shown in Figure 5 including the worst value, the best 
value and the mean value of total cost are presented in Table 5. These results are obtained after  
15 runs. This study examines the effects of increasing the wall thickness, diameter at the base and 
taper ratio on the mass and cost of a tower using a wind turbine tower with a height of 45 m with an 
external base diameter of 3.30 m and a diameter of 2.10 m at the top. Each segment of the tower (top, 
middle and bottom) is analyzed for various wall thicknesses. The optimization results for the top, 
middle and bottom segments are presented in Tables 4–8. The results show that the diameter decreases 
as wall thickness increases. In addition, the mass and cost increase.  

Table 5. Results of PSO for wind turbine tower. 

Objective function K in 15 runs 
Shell parts Worst (Max) ($) Best (Min) ($) Mean ($) Standard deviation ($) Mean time (s) 

Top 15,381 14,770 14,928 2,259 99.07 
Middle 23,597 23,453 23,482 4,501 104.79 
Bottom 35,276 32,201 32,755 5,238 106.12 
Total 74,254 70,424 71,165 11998 106.88 

Table 6. Optimization results for the bottom segment. 

Wall thickness Average outer diameter Mass Stiffener height Stiffener thickness K 
12 mm 3,153 mm 13,998 kg 57.6 mm 6.5 mm 30,822 $ 
13 mm  2,916 mm 14,023 kg 61.8 mm 7.2 mm 31,137 $ 
14 mm 2,754 mm 14,263 kg 44.6 mm 5.1 mm 31,372 $ 
15 mm 2,718 mm 15,088 kg 56.9 mm 6.7 mm 33,246 $ 
16 mm 2,720 mm 16,094 kg 61.7 mm 6.9 mm 35,210 $ 

Table 7. Optimization results for the middle segment. 

Wall thickness Average outer diameter Mass Stiffener height Stiffener thickness K 
9 mm 2,904 mm 9,670 kg 47.3 mm 5.3 mm 22,853 $ 
10 mm  2,575 mm 9,529 kg 48.4 mm 5.6 mm 22,715 $ 
11 mm 2,360 mm 9,606 kg 37.9 mm 4.5 mm 22,834 $ 
12 mm 2,225 mm 9,882 kg 39.4 mm 5.0 mm 23,564 $ 
14 mm 2,208 mm 11,434 kg 57.9 mm 5.4 mm 26,878 $ 
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Table 8. Optimization results for the top segment. 

Wall thickness Average outer diameter Mass Stiffener height Stiffener thickness K 
7 mm 2,027 mm 5,248 kg 41.4 mm 4.6 mm 14,408 $ 
8 mm  1,805 mm 5,341 kg 74.5 mm 8.7 mm 15,189 $ 
9 mm 1,807 mm 6,016 kg 49.0 mm 5.4 mm 16,210 $ 
10 mm 1,772 mm 6,558 kg 42.1 mm 5.3 mm 17,364 $ 
12 mm 1,779 mm 7,896 kg 46.1 mm 5.6 mm 20,241 $ 

A parametric study is carried out for towers with three different tapered ratios. The taper ratio is the 
ratio of the difference between the top diameter and the base diameter to the tower height. To obtain 
different taper ratios, the diameter at the top is fixed at 2100 mm, and the base diameter is increased. 
Table 9 compares the results for towers with three different base diameters. As the base diameter 
increases, the wall thickness decreases from 14 mm to 11 mm at the bottom segment. In this study, 
varying the taper ratio has a small effect on the mass and cost. 

Table 9. Optimization results depending on the taper ratio. 

Taper ratio Mass K Wall thickness range 
0.018 28,876 kg 69,452 $ 6.5–14.0 mm 
0.020 28,900 kg 69,417 $ 6.5–13.5 mm 
0.027 28,880 kg 70,404 $ 6.5–12 mm 
0.031 28,760 kg 69,670 $ 6.5–11.5 mm 
0.038 29,417 kg 70,812 $ 6.0–11.0 mm 

For a fixed taper ratio, the impact of increasing the diameter on the mass and cost is investigated. 
Table 10 shows the variation of the cost, mass and wall thickness as the diameter increases. The table 
shows that the minimum mass and minimum cost can be obtained by varying the diameter. According 
to the optimization results, as the diameter decreases, the wall thickness increases. This case affects 
both the mass of the material and the welding, manufacturing and painting costs significantly. It is not 
possible to clearly describe the influence of the variation of the design variables. Therefore, to find the 
optimum results, each case is examined and analyzed under specific conditions. These results are in 
agreement with the optimization results of a conical shell cantilever column obtained by  
Farkas et al. [15]. Because the labor and material cost factors can change in different countries, the 
optimization results may vary. 
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Table 10. Optimization results depending on the same taper ratio. 

 Diameter base Diameter top D/t  Mass K 
Top 1,600 mm 2,800 mm 234 5,145 kg 14,272 $ 
Middle 1,600 mm 2,800 mm 183 9,733 kg 23,706 $ 
Bottom 1,600 mm 2,800 mm 173 14,416 kg 32,207 $ 
Total 1,600 mm 2,800 mm - 29,294 kg 70,185 $ 
Top 1,800 mm 3,000 mm 290 5,080 kg 14,109 $ 
Middle 1,800 mm 3,000 mm 224 9,510 kg 23,155 $ 
Bottom 1,800 mm 3,000 mm 205 14,075 kg 31,862 $ 
Total 1,800 mm 3,000 mm - 28,665 kg 69,126 $ 
Top 2,100 mm 3,300 mm 371 5,278 kg 14,770 $ 
Middle 2,100 mm 3,300 mm 281 9,456 kg 23,453 $ 
Bottom 2,100 mm 3,300 mm 254 14,447 kg 32,201 $ 
Total 2,100 mm 3,300 mm - 29,181 kg 70,424 $ 
Top 2,300 mm 3,500 mm 416 5,540 kg 15,138 $ 
Middle 2,300 mm 3,500 mm 322 9,699 kg 23,481 $ 
Bottom 2,300 mm 3,500 mm 277 13,909 kg 31,396 $ 
Total 2,300 mm 3,500 mm - 29,148 kg 69,929 $ 
Top 2,500 mm 3,700 mm 473 5,687 kg 15,884 $ 
Middle 2,500 mm 3,700 mm 360 9,846 kg 23,545 $ 
Bottom 2,500 mm 3,700 mm 321 14,056 kg 31,246 $ 
Total 2,500 mm 3,700 mm - 29,589 kg 70,675 $ 

7. Conclusions 

In this study, a virtual tool was developed to optimize the cost of a wind turbine steel tower with 
ring stiffeners using a particle swarm algorithm. A wind turbine tower model existing in the literature 
was used to verify the optimization results obtained. In the present study, an optimization problem for 
wind turbine steel towers with ring stiffening was considered using particle swarm optimization 
algorithm. The effects of design variables such as the wall thickness, dimension of the ring stiffener 
and tower diameter are investigated, and the optimum value was found for each case. It is found that 
the variations of the wall thickness and diameter have an important effect on the mass and cost of wind 
turbine towers. The optimization results were verified with previous optimization results using 
different optimization algorithms. When obtained results are compared with [8] the total cost and mass 
were reduced by 5.2% and 4.4%, respectively. Furthermore, the total tower mass was approximately 
30% less than the wind turbine tower proposed in [6]. It should be noted that these results and the 
developed program can be used for reference for similar structural design problems.  

Though the particle swarm optimization is one of the new methods for the analysis of many 
structural problems, it seems to be very promising in the structural design problems. Algorithmic 
optimization is becoming popular for structural design, but it is still not widely used in industry. 
Further development is needed to make computing approaches more accurate and consistent, and along 
with improved optimization tools allow designers to make more reliable and efficient structural 
designs. One of the inhibitors to the use of optimization algorithms in industry is optimization tools 
with interactive GUI. Future success of structural optimization is in application of expert knowledge 
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with existing and emergent algorithmic and computing approaches to large-scale designs such as wind 
turbine tower. Therefore, the virtual tool introduced in this study may lead to new studies and 
applications for a cost-effective wind turbine tower design. This virtual tool and optimization results 
will be developed to help designing efficient structures and solve actual design problems. 
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