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Abstract: Lithium ion (Li-ion) batteries have been widely used in various kinds of 

applications, including consumer electronics, green energy systems and electrical vehicles. 

Since the charging method has a significant influence on the performance and lifetime of 

Li-ion batteries, an intelligent charging algorithm which can properly determine the 

charging current is essential. In this study, a fuzzy-logic-control-based (FLC-based)  

five-stage Li-ion battery charger is proposed. The proposed charger takes the temperature 

rise and the gradient of temperature rise of battery into account, and adjusts the charging 

current accordingly. To further improve the performance of the proposed FLC, the  

fuzzy-based Taguchi method is utilized to determine the optimal output membership 

functions (MFs). Comparing with the conventional constant current-constant voltage  

(CC-CV) method, the charging time, charging efficiency, average temperature rise and the 

obtained cycle life of the Li-ion battery are improved by about 58.3%, 1.65%, 26.7% and 

59.3%, respectively. 

Keywords: fuzzy logic control; five-stage constant current charging algorithm;  

Taguchi method 
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1. Introduction 

Secondary batteries are commonly utilized as energy storage solutions for modern technologies 

such as portable devices, renewable energy systems and electric vehicles. Among secondary batteries, 

the lithium ion (Li-ion) battery has become most popular because it offers many advantages such as 

high power and energy density, high open circuit voltage, low self-discharge rate, low maintenance 

requirement and no memory effect. Recent trends show that Li-ion batteries are not only widely used 

in portable consumer electronics, but are also gaining popularity for renewable energy, electric vehicle 

and military applications. According to the literature, charging methods have a significant influence on 

the performance and lifetime of Li-ion batteries. Therefore, designing a high-quality battery charger is 

essential. The objectives of a high-quality charger include high charging efficiency, short charging 

time and prolonged cycle life [1–5]. 

The commonly adopted charging method for Li-ion batteries is the constant current-constant 

voltage (CC-CV) method. For the CC-CV method, a large constant current is applied at the beginning 

of the charging cycle when the battery state of charge (SOC) is low. When the battery voltage raises to 

some predefined limit, the charger switches to constant voltage charging mode and continues in that 

mode until the charging current decreases to a predetermined small value. Although the CC-CV is 

simple to implement, it is not suitable for rapid charging because CV charging seriously extends the 

overall charging time and also reduces the cycle life of the battery. 

To deal with this problem, many advanced battery charging techniques are proposed in the  

literature [6–20]. In [6] and [7], PLL-based battery chargers (PLBC) are proposed. Based on PLBC, 

optimal pulse frequency and optimal duty cycle can then be determined using sweeping method to 

improve the performance of the PLBC [8,9]. In addition, the effect of the internal resistance on the 

open circuit voltage is also taken into account in [10] to improve the charging speed of PLBC. In [11] 

and [12], a sinusoidal-ripple current charging strategy is proposed; this approach can minimize the 

battery impedance and consequently maximize the energy transfer efficiency. The reason for using 

pulsed charging and sinusoidal current charging technique is that the internal pressures obtained by 

pulsed charging and sinusoidal current charging are smaller than that obtained by CC charging [6–12]. 

However, these methods require dedicated hardware to generate pulsed or sinusoidal charging current. 

In addition, these methods are not truly “adaptive” because additional “search mode” should be 

utilized to determine the optimal pulse frequency/duty cycle value [8,9]. Another way which can be 

utilized to reduce the charging time is to adjust the charging current in accordance with the battery 

status using an intelligent controller. To achieve this goal, an fuzzy-based controller is employed in [13] 

and a grey-predicted controller is applied in [14]. In both [13] and [14], the proposed intelligent 

controllers only replace the CV mode in CC-CV charging method, thus the charging current in CC 

mode is kept constant. In [15], a genetic algorithm trained generalized regression neural network is 

used to determine the charging current of an ultra-fast charger. The proposed charger can significantly 

reduce the charging time; however, it can only be applied to Ni-Cd battery. Global optimization 

techniques, including ant colony algorithm and Taguchi approach, are proposed to obtain the optimal 

multi-stage CC charging profile [16–18]. These methods intend to find an optimal charging pattern 

covering the whole charging process and do not regulate charging current in real time. In [19], a new  

digital-controlled technique for battery charger is presented to achieve CC-CV control without 
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requiring current feedback. In [20], a DSP-based probabilistic fuzzy neural network controller is 

proposed to replace the traditional proportional-integral controller. The transient of voltage regulation 

during load variation can be significantly improved. 

From the descriptions above, it is obvious that an intelligent charging algorithm which can properly 

determine the charging current according to measured battery parameters is essential. In this study, a  

fuzzy-logic-control-based (FLC-based) five-stage Li-ion battery charger is proposed based on the 

concept presented in [21]. The proposed charger takes the temperature rise and the gradient of 

temperature rise of battery into account, and adjusts the charging current accordingly. Recently, fuzzy 

logic controllers (FLCs) have been successfully applied to various fields of engineering. FLCs are 

robust and are relatively simple to design as they do not require the knowledge of the accurate 

mathematical model [22–26]. The proposed FLC-based controller is then improved by using Taguchi 

method to optimize the output membership function (MF) of the fuzzy system. The Taguchi method 

provides a systematic and effective way for conducting experiments to determine optimal  

values [17,27]. By using orthogonal arrays (OAs), the Taguchi method can search in the parameter 

space with a reduced number of experiments [18,28]. Since the aim of this study is to develop an 

intelligent charger with short charging time, high charging efficiency and low temperature increment; 

therefore, the optimization can be regarded as a multiple performance characteristic index (MPCI) 

problem [29,30]. To solve this kind of problem, fuzzy logic is combined with Taguchi method to 

obtain the optimal output MF of the proposed FLC-based battery charger. The design procedures will 

be described in detail, and experiments will be carried out to validate the effectiveness of the proposed 

methods. According to the experimental results, the proposed FLC-based battery charger is capable of 

charging Li-ion batteries to 85% capacity in 43.6 min. Comparing to conventional CC-CV and  

multi-stage CC charging strategy, the charging time, charging efficiency, maximum temperature 

increment and the lifetime of the Li-ion battery can be improved. 

2. System Configuration 

Figure 1 shows the block diagram of the proposed battery charger. In Figure 1, the input power 

source of the proposed Li-ion battery charger is a commercially available adaptor, and the battery used 

is a 4.2 V, 2000 mAh 18650 Li-ion battery for notebook computers. From Figure 1, the whole system 

can be divided into three major parts: (a) input/output interfacing unit; (b) digital control unit and  

(c) power conversion unit. Detailed descriptions about each unit will be given in the  

following subsections: 

(a) Input/output interfacing unit: the I/O interfacing unit includes feedback circuits which are used 

to measure the voltage, current and temperature of the battery, and signal conditioning circuits which 

perform amplification and range adaptation on feedback signals. In this study, the battery voltage and 

current are sensed using differential amplifier circuits. The temperature is sensed using LM35 

precision temperature sensor IC from Texas Instrument Corp. In order to record the long-term 

experimental data, a graphical user interface (GUI) based on LabVIEW from National Instruments 

Corp. is also developed to offer a user-friendly monitoring interface of the proposed charger. 

(b) Digital control unit: the digital control unit regulates the charging current according to the 

battery status. In this study, the dsPIC33FJ16GS502 digital signal controller (DSC) from Microchip 
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Corp. is used to implement the proposed charging algorithm. PWM modulation strategies and 

interfacing IC driving signals are also realized using the same DSC to achieve better performance. 

After the required battery status data (voltage, current and temperature) is acquired, proper charging 

current can then be determined through the proposed FLC-based battery charger. Detailed description 

of the software part will be provided in Section 3. 

(c) Power conversion unit: a power conversion unit is used to supply the electric power to the  

Li-ion battery. As shown in Figure 1, a simple buck type DC-DC converter is used as the charging 

unit. By adequately controlling the PWM gating signal, the power conversion unit can transfer the 

required energy to the Li-ion battery. The design and implementation of this part of circuit is 

conventional; therefore, it will not be discussed further here. 

Figure 1. Hardware configuration of the proposed charger. 

 

3. FLC-Based Five-Stage Li-Ion Battery Charger 

According to the literature, the multi-stage CC charging algorithm has certain advantages such as 

long cycle life, high charging efficiency and short charging time. However, due to the complex 

electrochemical characteristics of the Li-ion batteries, the optimal charging current for each stage is 

hard to obtain [16–18]. The Taguchi method is utilized by the authors in [17] to obtain an optimal 

multi-stage CC charging pattern. However, the obtained charging profile is fixed and cannot adapt to 

the operating condition in real time. In order to achieve higher charging efficiency, a FLC similar to 

that presented in [21] is integrated into the obtained five-stage CC charging algorithm to fine-tune the 

charging current. Figure 2 shows the block diagram of the proposed FLC. Because improper charging 

results in excessive temperature rise in the battery and temperature will also affect the effective 

charging resistance; therefore the temperature rise TR and the gradient of temperature rise ΔTR are 

chosen as the inputs of the proposed FLC in this study. TR and ΔTR can be defined as: 

( ) ( ) ( )R B AT k T k T k= −  (1)

( ) ( ) ( 1)R R RT k T k T kΔ = − −  (2)

where TB is the battery surface temperature and TA is the ambient temperature. 
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Figure 2. Block diagram of the proposed FLC. 

 

The MFs of the proposed FLC are shown in Figure 3. Figure 3a depicts the MF of the input variable 

TR, Figure 3b illustrates the MF of the input variable ∆TR and Figure 3c displays the MFs of the output 

current command, respectively. Since the proposed FLC will be realized using a low cost DSC, 

triangular-shaped MFs are chosen to represent both the input and output variables so that the 

computation complexity can be reduced. It should be noted that the five-stage charging algorithm is 

employed in this study. Therefore, there are five sets of output MFs. In Figure 3, the linguistic 

variables S, MS, M, ML, L, NB, NS, ZE, PS and PB, represents small, medium small, medium, 

medium large, large, negative big, negative small, zero, positive small and positive big, respectively. It 

should also be noted that the center value (i.e., IX,M, x = 1–5) of the output MFs is set as the values 

equal to the optimal charging current values obtained in [17]. 

From Figure 3, each of the input variables TR and ∆TR is mapped into five different linguistic 

values. Therefore, the rule base of the proposed FLC will contain 25 different rules. The basic 

principle of designing the rules is to adjust the charging current according to the temperature variation. 

The charging current will decrease when TR or ∆TR increases, and vice versa. Based on this concept, 

the complete set of fuzzy control rules for the proposed system is tabulated in Table 1. The 

defuzzification method used in this study is the commonly used center of gravity (COG) method and is 

shown in Equation (3): 
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where Wi is the inference result of rule I; Bi is the corresponding output of rule i; and y is the output. 
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Figure 3. The MF definition of the proposed FLC (a) MF of the input variable TR; (b) MF 

of the input variable ΔTR; (c) MFs of the output variable Io. 

(a) (b) 

 

(c) 

Table 1. Complete rule base for the proposed FLC. 

TR 
ΔTR 

NB NS ZE PS PB 

S 
L L ML ML ML 

Rule1 Rule2 Rule3 Rule4 Rule5 

MS 
L ML ML M M 

Rule6 Rule7 Rule8 Rule9 Rule10

M 
ML ML M MS MS 

Rule11 Rule12 Rule13 Rule14 Rule15

ML 
M M MS MS S 

Rule16 Rule17 Rule18 Rule19 Rule20

L 
MS MS MS S S 

Rule21 Rule22 Rule23 Rule24 Rule25
  

S MLMMS L

0

1

I1I1,M + I1,
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(1.5)
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(1.1)

S MLMMS L

0

1

I2I2,M

(1.2)

S MLMMS L

0

1

I3I3,M

(0.9)

S MLMMS L

0

1

I4

I4,M

(0.65)

S MLMMS L

0

1
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(0.4)
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(0.01) 
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(1.6)
I2,M - I2,

(0.8)

I3,M + I3,

(1.3)
I3,M - I3,

(0.5)

I4,M - I4,

(0.25)
I4,M + I4,

(1.05)

0.5(I4, ) 0.5(I4, )

0.5(I3, ) 0.5(I3, )

0.5(I2, ) 0.5(I2, )

0.5(I1, ) 0.5(I1, )
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4. FLC Optimization Using Fuzzy-Based Taguchi Method 

Despite using the operator expertise and knowledge in the derivation of the control rules and the 

MFs of FLC, there are still some difficulties in determining the range of the MFs. To improve the 

proposed FLC, the fuzzy-based Taguchi method is utilized to determine the optimal output MFs. This 

is achieved according to the following procedures: 

a. Problem Description 

Both the input MFs and output MFs may affect the performance of the FLC; however, the attention 

is focused on the tuning of the output MF due to its stronger impact on the overall performance of the 

controller. From Figure 3c, the output MFs are defined by two parameters—the center value Ix,M and 

the adaption range Ix,Δ. From Section 3, the center value Ix,M should be equal to the optimal charging 

current values obtained in [17]. Therefore, Ix,Δ is chosen to be the target optimization parameter of this 

study. Figure 4 shows the experimental results of two FLC-based battery chargers (denoted as charger-

1 and charger-2). All the parameters of these two FLC-based battery chargers are identical, except for 

that charger-1 uses a larger Ix,Δ than charger-2. From the experimental results, the charging time is 

shorter but the charged capacity is lower for charger-1, and vice versa. To reiterate, a larger Ix,Δ leads 

to lower temperature rise but also results in lower charged capacity, while a smaller Ix,Δ increases the 

temperature rise and consequently impairs the charging efficiency. Therefore, a tradeoff between the 

charging efficiency and the charged capacity should be addressed. 

Figure 4. Experiment results of two FLC-based battery controllers with different output MF settings. 
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b. Basic Concept of Taguchi Method 

For parameter optimization problems with a given cost function, the Taguchi method provides a 

simple, systematic, and efficient approach for obtaining the optimal parameter settings. The Taguchi 

method was developed on the basis of the orthogonal array (OA) concept. An OA can be built from the 

knowledge of the number of parameters and their levels. In general, the OA can be expressed by 

LB(CD), where B, C, and D represent the number of experimental runs, the number of levels of each 

parameter, and the maximum number of parameters that the table can handle, respectively. In most 

cases, B is much smaller than the value of CD, which is the total number of experiments required for D 

parameters having C levels. Consequently, the Taguchi method can dramatically reduce the number of 

necessary experiments by using OA. There are also mixed-level OA LB(CD × EF), which can deal with 

D factors with C levels and F factors with E levels. Once the OA has been determined, experiments 

can be conducted accordingly, and the measured performance from each experiment can then be used 

to analyze the effect of different parameters. One of the key features of the Taguchi method is using 

the signal-to-noise ratio (S/N ratio) to interpret the performance characteristic in the optimization 

process. The S/N ratio can be calculated as: 

2
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1 1
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   (4)

where yi (i = 1–n) represents the response values obtained at the i-th test; and n is the total number of 

tests for the same levels of parameters. 

c. Fuzzy-Based Taguchi Method with MPCI 

The goals of the proposed charger are to reduce charging time, increase charging efficiency and 

lessen the temperature rise simultaneously; therefore, it can be regarded as a multiple performance 

characteristic index (MPCI) problem. However, conventional Taguchi method can only find the 

optimal parameters based on a single performance characteristic. Hence, the fuzzy logic is combined 

with Taguchi method in this study to optimize the parameters [29,30]. In fuzzy-based Taguchi method, 

several fuzzy rules will be derived based on the performance requirement of the system. The S/N ratio 

corresponding to each performance characteristic is fuzzified and then a combined performance index 

(CPI) is obtained through fuzzy reasoning. The CPI can then be used to optimize the target system. 

d. Application of Fuzzy-Based Taguchi Method to the Optimization of Output MF Parameter 

Figure 5 shows the implementation procedures of the utilized fuzzy-based Taguchi method. The 

steps of applying the fuzzy-based Taguchi method to optimize the proposed charger will be described 

in detail as follows: 
  



Energies 2013, 6 3536 

 

 

Step 1. OA Design 

From the description above, Ix,Δ setting will affect the performance of the proposed charger. 

Therefore, an optimization of this parameter is required. Since there are five Ix,Δ setting values, 

consequently the number of the parameters is 5 (I1,Δ–I5,Δ). Assuming that the levels for each parameter 

are chosen as 3, a L18(2
1 × 37) OA can be selected to minimize the number of experiments required. 

The utilized L18 OA is shown in Table 2. In Table 2, numbers 1–3 stand for the high, middle, and low 

levels for each parameter, respectively. In this study, the setting values of these parameters are 

summarized in Table 3. 

Table 2. L18(2
137) Orthogonal array. 

No. X I1 I2 I3 I4 I5 X X 

1 1 1 1 1 1 1 1 1 
2 1 1 2 2 2 2 2 2 
3 1 1 3 3 3 3 3 3 
4 1 2 1 1 2 2 3 3 
5 1 2 2 2 3 3 2 1 
6 1 2 3 3 1 1 1 2 
7 1 3 1 2 1 3 2 3 
8 1 3 2 3 2 1 3 1 
9 1 3 3 1 3 2 1 2 
10 2 1 1 3 3 2 2 1 
11 2 1 2 1 1 3 3 2 
12 2 1 3 2 2 1 1 3 
13 2 2 1 2 3 1 3 2 
14 2 2 2 3 1 2 1 3 
15 2 2 3 1 2 3 2 1 
16 2 3 1 3 2 3 1 2 
17 2 3 2 1 3 1 2 3 
18 2 3 3 2 1 2 3 1 

Table 3. Setting values of the OA. 

Level I1,Δ(C) I2,Δ(C) I3,Δ(C) I4,Δ(C) I5,Δ(C) 

H(1) 0.4 0.4 0.4 0.4 0.4 
M(2) 0.267 0.267 0.267 0.267 0.267 
L(3) 0.133 0.133 0.133 0.133 0.133 

Step 2. Conduct the Experiment 

The experiments are carried out utilizing an implemented FLC-based battery charger as shown in 

Figure 1. The output MF parameter is read from the designed OA and is programmed into the 

firmware of the proposed charger. After charging the batteries, the discharging processes are then 

carried out using a WBCS3000 battery cycle life tester (5 A, 5 V, and eight channels) from WonATech 

Corp. Because large discharging current tends to degrade the discharging efficiency, a small 

discharging current of C/10 is utilized to obtain a more accurate total charged capacity value. The 
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obtained charged capacity, charging time and temperature rise are then recorded for performance 

evaluation. In this study, experimental trials corresponding to the same OA levels will be performed 

three times. 

Step 3. Design of the Fuzzy Logic Unit 

The objective of the proposed charger is to find a compromise between the charged capacity and the 

charging time. Therefore, the performance index should take the charged capacity, the charging time 

and the temperature rise into account. In this study, a three-input-one-output fuzzy logic unit (FLU) is 

employed to combine these three performance characteristics into a single performance index, as 

shown in Figure 5. 

Figure 5. Implementation procedures of the utilized fuzzy-based Taguchi method. 
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From Figure 5, the inputs of the designed FLU are the charged capacity, charging time and the 

temperature rise. Figure 6 shows the input MFs of the proposed FLU. From Figure 6, each of the input 

MFs can be defined by five linguistic variables, the values of these variables can be calculated as: 

DC Max Min= −  (5)

* 0.2L M ax DC= +  (6)

* 0.2S M in D C= −  (7)

2

L S
M

+=  (8)

2

S M
MS

+=  (9)

2

M L
ML

+=  (10)

where Max and Min corresponds to the maximum and minimum obtained value for each  

input variables. 

Figure 6. Input MFs of the proposed FLU (a) Input membership function for the charged 

capacity; (b) Input membership function for charging time; (c) Input membership function 

for temperature rise. 

(a) (b) 

(c) 

The output MF of the proposed FLU is shown in Figure 7. To increase the resolution, nine linguistic 

variables are utilized to define the output MF, these linguistic variables are evenly distributed in  

the [0,1] interval. In this study, triangular MFs are chosen to represent both the input and output 

variables. In Figures 6 and 7, the linguistic variables VS, SS, S, MS, M, ML, L, LL and VL represents 

extremely small, very small, small, medium small, medium, medium large, large, very large and 

extremely large, respectively. 
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Figure 7. Output MF of of the proposed FLU. 

 

From Figure 6, there are three input variables and each of the input variables is mapped into five 

different linguistic values. Therefore, the rule base of the proposed FLU will contain 5 × 25 different 

rules. The basic principle for designing the rules is that the performance index will be larger for higher 

charged capacity value, lower charging time and lower temperature rise. Based on this concept, the 

complete sets of fuzzy rules for the proposed FLU are summarized in Tables 4–8. The defuzzification 

method used in the proposed FLU is also the COG method. 

Table 4. Rule base of the proposed FLU for Te = S. 

Ti 
Ca 

S MS M ML L 

S 
L LL VL VL VL 

Rule1 Rule2 Rule3 Rule4 Rule5 

MS 
ML L LL VL VL 

Rule6 Rule7 Rule8 Rule9 Rule10

M 
M ML L LL VL 

Rule11 Rule12 Rule13 Rule14 Rule15

ML 
MS M ML L LL 

Rule16 Rule17 Rule18 Rule19 Rule20

L 
S MS M ML L 

Rule21 Rule22 Rule23 Rule24 Rule25

Table 5. Rule base of the proposed FLU for Te = MS. 

Ti 
Ca 

S MS M ML L 

S 
ML L LL VL VL 

Rule1 Rule2 Rule3 Rule4 Rule5 

MS 
M ML L LL VL 

Rule6 Rule7 Rule8 Rule9 Rule10

M 
MS M ML L LL 

Rule11 Rule12 Rule13 Rule14 Rule15

ML 
S MS M ML L 

Rule16 Rule17 Rule18 Rule19 Rule20

L 
SS S MS M ML 

Rule21 Rule22 Rule23 Rule24 Rule25
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Table 6. Rule base of the proposed FLU for Te = M. 

Ti 
Ca 

S MS M ML L 

S 
M ML L LL VL 

Rule1 Rule2 Rule3 Rule4 Rule5 

MS 
MS M ML L LL 

Rule6 Rule7 Rule8 Rule9 Rule10

M 
S MS M ML L 

Rule11 Rule12 Rule13 Rule14 Rule15

ML 
SS S MS M ML 

Rule16 Rule17 Rule18 Rule19 Rule20

L 
VS SS S MS M 

Rule21 Rule22 Rule23 Rule24 Rule25

Table 7. Rule base of the proposed FLU for Te = ML. 

Ti 
Ca 

S MS M ML L 

S 
MS M ML L LL 

Rule1 Rule2 Rule3 Rule4 Rule5 

MS 
S MS M ML L 

Rule6 Rule7 Rule8 Rule9 Rule10

M 
SS S MS M ML 

Rule11 Rule12 Rule13 Rule14 Rule15

ML 
VS SS S MS M 

Rule16 Rule17 Rule18 Rule19 Rule20

L 
VS VS SS S MS 

Rule21 Rule22 Rule23 Rule24 Rule25

Table 8. Rule base of the proposed FLU for Te = L. 

Ti 
Ca 

S MS M ML L 

S 
S MS M ML L 

Rule1 Rule2 Rule3 Rule4 Rule5 

MS 
SS S MS M ML 

Rule6 Rule7 Rule8 Rule9 Rule10

M 
VS SS S MS M 

Rule11 Rule12 Rule13 Rule14 Rule15

ML 
VS VS SS S MS 

Rule16 Rule17 Rule18 Rule19 Rule20

L 
VS VS VS SS S 

Rule21 Rule22 Rule23 Rule24 Rule25
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Step 4. Obtaining the Optimal Solution Through Taguchi Approach 

In Step 3, a FLU is proposed to combine three performance characteristics into a single 

performance index. In this study, the output of the FLU is called CPI. Based on the above discussion, 

the performance of the charger is better if the obtained CPI is larger. Since the experimental design is 

orthogonal, it is then possible to separate out the effect of each parameter at different levels and 

determine the optimal combinations of the output MF parameter levels. 

Step 5. Performing Confirmation Tests 

Once the optimal level of the parameters is obtained, confirmation experiments under these 

conditions will be performed to compare the results with the predictions. If the results agree with the 

predictions, the obtained results can be regarded as valid. Otherwise, the above steps must be repeated. 

5. Experimental Results 

From Section 4, the designed fuzzy-based Taguchi method utilizes a L18 OA to obtain the optimal 

setting values of Ix,Δ After performing the experiments, the measured results are summarized in  

Table 9. Based on the data shown in Table 9, the average S/N ratio responses of each parameter can be 

calculated at each level.  

Table 9. Measured results for the L18 OA. 

No. Fuzzy Results1 Fuzzy Results2 Fuzzy Results3 y(Avg.) S S/N 

1 0.274 0.429 0.478 0.3937 0.1065 11.356 
2 0.407 0.485 0.484 0.4587 0.0447 20.215 
3 0.437 0.548 0.552 0.5123 0.0653 17.897 
4 0.420 0.539 0.421 0.4600 0.0684 16.552 
5 0.402 0.553 0.554 0.5030 0.0875 15.194 
6 0.363 0.439 0.534 0.4453 0.0857 14.317 
7 0.456 0.517 0.556 0.5097 0.0504 20.097 
8 0.436 0.467 0.552 0.4850 0.0601 18.143 
9 0.457 0.573 0.588 0.5393 0.0717 17.527 
10 0.478 0.538 0.594 0.5367 0.0580 19.324 
11 0.493 0.548 0.647 0.5627 0.0780 17.159 
12 0.402 0.436 0.592 0.4767 0.1013 13.451 
13 0.396 0.457 0.601 0.4847 0.1053 13.263 
14 0.445 0.434 0.574 0.4843 0.0778 15.878 
15 0.444 0.626 0.612 0.5607 0.1013 14.864 
16 0.479 0.496 0.649 0.5413 0.0936 15.241 
17 0.360 0.429 0.589 0.4593 0.1175 11.844 
18 0.408 0.451 0.594 0.4843 0.0974 13.934 

C.E 0.556 0.632 0.672 0.6200 0.0589 20.442 

Table 10 shows the response table and Figure 8 shows the response graph for the S/N ratio. Since 

larger S/N ratio corresponds to better performance characteristic, it can be seen that the factor-level 

combination [I1,Δ(1), I2,Δ(2), I3,Δ(3), I4,Δ(2), I5,Δ(2)] contributes to maximize the performance index. 
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Since this combination does not exist in the original L18 OA, confirmation test should be conducted to 

verify the correctness of this optimization procedure. The results of the confirmation test using the 

optimal parameters are shown in the last line of Table 9. 

Table 10. Response table for the S/N ratio. 

S/N X I1 I2 I3 I4 I5 X X 

Level1 - 16.57 15.97 14.88 15.46 13.73 - - 

Level2 - 15.74 16.41 16.03 16.41 17.24 - - 

Level3 - 16.13 15.33 16.80 15.84 16.74 - - 

E1–2 - (0.83) 0.43 1.14 0.95 3.51 - - 

E2–3 - 0.39 (1.07) 0.77 (0.57) (0.50) - - 

Range - 0.83 1.07 1.92 0.95 3.51 - - 

Rank - 5 3 2 4 1 - - 

Figure 8. Response graph for the S/N ratio. 

 

In order to verify the performance of the obtained optimal parameter setting, several experiments 

are also carried out. Figure 9 shows the measured temperature rise of the CC-CV method and the 

utilized five-stage CC charging algorithm.  

Figure 9. Temperature rise of the five-stage CC charging algorithm and the conventional 

CC-CV algorithm. 
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From Figure 9, the temperature rise of the utilized five-stage CC charging algorithm is lower than 

that of the conventional CC-CV method. Therefore, the charging efficiency of the five-stage CC 

charging algorithm is higher. Similarly, Figure 10 shows the measured temperature rise of the utilized 

five-stage CC charging algorithm and two FLC-based charging algorithms with different output  

MF settings. 

Figure 10. Temperature rise of the five-stage CC charging algorithm and the proposed 

FLC-based charging algorithm. 

 

In Figure 10, the curve denoted as “FLC-all_min” is the FLC-based battery charger with all the Ix,Δ 

parameters set as low level [I1,Δ(3), I2,Δ(3), I3,Δ(3), I4,Δ(3), I5,Δ(3)], and the curve denoted as  

“FLC-all_max” is the charger with all the Ix,Δ parameters set as high level [I1,Δ(1), I2,Δ(1), I3,Δ(1), 

I4,Δ(1), I5,Δ(1)]. From Figure 10, the proposed FLC-based battery charger has higher charging efficiency 

than the five-stage CC charging algorithm regardless of the parameters setting value. Figure 11 shows the 

measured temperature rise of the proposed FLC-based battery charger with different settings.  

Figure 11. Temperature rise of the proposed FLC-based charging algorithm with different 

parameter settings. 
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charger with the optimal parameter setting has the lowest temperature rise. In order to provide clearer 

overall comparison, temperature rise data of all the tested algorithms are again illustrated in Figure 12. 

Figure 12. Temperature rise of five tested algorithms. 

 

To further validate the effectiveness of the proposed charger, additional experiments are carried out. 

Table 11 and Figure 13 show the calculated MCPI results obtained from charging three brand-new 

batteries using five different charging algorithms. From Figure 13, the proposed FLC-based battery 

charger with optimal parameter setting has the best MCPI value for all the three sample batteries. 

Table 12 summarizes the charging efficiency, the average ΔT, the charged capacity, the charging time 

required and the combined MCPI value for five different charging patterns. In Table 12, the charging 

efficiency is defined as the discharged capacity divided by the charged capacity, and the average ΔT is 

defined as the integration of the temperature rise for the whole charging period (the area under the 

temperature curve) divided by the charging time required. From Table 12, although the discharged 

capacity of the proposed FLC-based charger is lower than that of the CC-CV method, the charging 

time required can significantly be improved. Figure 14 illustrates the remaining capacity (in %) versus 

cycle numbers for two new batteries from the same manufacturer (2000 mAh), charged using the  

CC-CV charging method and the proposed charger. From Figure 14, the cycling number of the 

proposed algorithm when the capacity drop to 93.3% of the original capacity is 118; the cycling 

number of the conventional CC-CV method is 48 for the same capacity drop. That is, the proposed 

charge algorithm can provide 59.3% more cycle-life count than that of the conventional CC-CV 

method. Comparing with the CC-CV method, the charging time, charging efficiency, average 

temperature rise and the obtained cycle life of the Li-ion battery are improved by about 58.3%, 

1.65% ,26.7% and 59.3%, , respectively. Comparing with the five-stage CC algorithm, adding the FLC 

to fine-tune the current can improve the charging time, the charging efficiency and the average 

temperature rise of the Li-ion battery by about 8.35%, 0.99% and 20.3%, respectively. 

Table 11. Obtained MCPI results of five tested algorithms. 

MCPI_results CC-CV Five-stage FLC all_min FLC all_max FLC-best 

Sample1 0.250 0.253 0.265 0.274 0.556 
Sample2 0.250 0.280 0.361 0.429 0.632 
Sample3 0.281 0.348 0.421 0.478 0.672 
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Table 12. Comparison of five tested algorithms. 

Performance CC-CV Five-stage FLC all_min FLC all_max FLC-best

Charging efficiency (%) 97.50 98.16 98.64 98.81 99.15 
Charging avg. ΔT (°C) 1.3326 1.2257 1.1840 1.1778 0.9771 

Charging time (sec) 6268 2852 2616 2395 2614 
Discharged cap. (%) 100 87.65 84.10 81.89 85.02 

MCPI_results 0.250 0.284 0.364 0.401 0.625 

Figure 13. Obtained MCPI results of five tested algorithms. 

 

Figure 14. Comparison of cycle life test between the proposed charger and the CC-CV method. 

 

6. Conclusions 

In this study, a FLC-based five-stage Li-ion battery charger is first proposed. Based on an obtained 

optimal five-stage charging current setting value, the proposed charger integrates a FLC to fine-tune 

the charging current according to the battery temperature. Comparing with the conventional CC-CV 

and five-stage CC charging methods, the proposed charger is capable of charging the Li-ion batteries 

with shorter charging time, higher charging efficiency and lower temperature rise. To further improve 

the performance of the proposed charger, a fuzzy-based Taguchi method is utilized. The fuzzy-based 

Taguchi method can obtain the optimal output MFs in only 54 experimental tests. According to the 
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experimental results, the performance characteristics such as the charging time, the charged capacity 

and the temperature rise can simultaneously be considered and improved through this approach. 

Comparing with the conventional CC-CV method, the charging time, the charging efficiency, average 

temperature rise and the obtained cycle life of the Li-ion battery are improved by about 58.3%, 1.65%, 

26.7% and 59.3%, respectively. 
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