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Abstract: A new short-term probabilistic forecasting method is proposed to predict the 

probability density function of the hourly active power generated by a photovoltaic system. 

Firstly, the probability density function of the hourly clearness index is forecasted making 

use of a Bayesian auto regressive time series model; the model takes into account the 

dependence of the solar radiation on some meteorological variables, such as the cloud 

cover and humidity. Then, a Monte Carlo simulation procedure is used to evaluate the 

predictive probability density function of the hourly active power by applying the 

photovoltaic system model to the random sampling of the clearness index distribution. A 

numerical application demonstrates the effectiveness and advantages of the proposed 

forecasting method. 

Keywords: smart grid; photovoltaic generation; clearness index; forecasting; probability 

density functions; autoregressive models; Bayesian inference 
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1. Introduction 

In recent years, power systems have been undergoing radical changes and in the near future their 

planning and operation will be undertaken according to the Smart Grid (SG) vision. The SG initiatives 

aim at introducing new technologies and services in power systems to make the electrical networks 

more reliable, efficient, secure and environmentally-friendly [1].  

Increasing the exploitation of renewable energy sources (such as wind and solar energy) is certainly 

one of the most important goals of SGs. Indeed, the random behavior of such energy sources introduce 

challenging issues in the design of advanced tools and techniques for the optimal SG operation and 

control. In tackling these issues, forecasting is a fundamental task for an efficient utilization of the 

available distributed energy resources and for a secure and economic behaviour of the power system [2].  

In general, the power system operator can use accurate forecast information about renewable power 

generation and load consumption to guarantee a balance between generation and demand at all the time 

with reduced capacity and costs of the operating reserves [3,4]. From the perspective of the producers, 

forecasting the renewable power output can be very useful for decision making on the energy market. 

In this way, not only the deviation between scheduled and actual generation can be minimized, but also 

the revenues are increased, thus reducing the penalties related to regulation costs and enhancing the 

competitiveness of renewable energies in comparison with dispatchable energy sources [5]. Finally, 

prosumers can use prediction models to plan their consumption patterns so as to match the power they 

generate on-site thus maximizing their benefits [6]. 

In the relevant literature, various forecasting methods have been proposed to estimate the expected 

power generated from a renewable energy source, which essentially differ in the type of the 

information characterizing the predicted output and in the time horizon of their application.  

Concerning the type of information, two main forecasting methods can be adopted, referred to as 

deterministic and probabilistic forecasting. In the former one, a single value of the renewable power 

generation is provided and no uncertainty of the prediction is considered. In the latter one, the output 

value is accompanied with information on its intrinsic unpredictability and, then, it is more appropriate 

to solve problems of management and control in future SGs [3,5,7]. Probabilistic forecasting methods 

can be distinguished in two further categories according to the adopted approach: the prediction error 

or the direct approach. While the first one provides the uncertainty of the error deriving from the 

application of a deterministic forecasting method, the second one directly yields the statistic 

representation of the predicted output. 

Concerning the time horizon, renewable generation forecasting can basically be divided into 

different time intervals, depending on the time frames corresponding to the tasks of grid operation and 

control and to the sessions of electricity markets. Short-term forecasting covers time intervals ranging 

from less than 1 hour to few hours ahead and is very useful for frequency regulation and load 

balancing. Medium term forecasting, up from several hours to few days ahead, is needed for unit 

commitment and energy trading. Finally, long-term forecasting can be required to support system 

planning and economic analyses in seasonal and annual horizons. However, recent renewable 

integration studies have shown that it is the short term forecasting that gains the most in a SG [3]. 

One of the most promising renewable energy conversion system to be integrated in SGs is the 

PhotoVoltaic (PV) power generation, due to the expected cost reduction and the increased efficiency of 
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both PV panels and converters [8]. The power generated by a PV power system varies according to the 

solar radiation on the earth’s surface, which mainly depends on the installation site and the weather 

conditions. While the dependence on the specific location can be essentially predicted on a 

deterministic way, the atmospheric conditions (such as cloud cover, ambient temperature, relative 

humidity) are the main causes of the randomness of the solar radiation and it is very important to 

consider them when short-term forecasting is concerned [9,10]. 

Several methods have been proposed in the relevant literature for forecasting the PV power 

generated in a short time horizon. In [11] a recurrent neural network has been proposed to perform a 

short term forecasting of the PV power production using meteorological data of the last 16 days and 

has been compared with a feed-forward neural network. A method to predict PV power output has 

been presented in [12] by deriving hourly site-specific irradiance forecasts from data provided by a 

weather forecasts center. In [13] an advanced Grey-Markov chain model has been applied to predict 

the daily power production of grid-connected PV systems using operating data collected at 15 minute 

intervals. A two-stage method to predict hourly value of the PV power for time horizon up to 36 hours 

has been proposed in [14]. In [15] Kalman filters are applied to predict sub-hourly and hourly PV 

power production using solar irradiance as input. First studies on the application of Bayesian theory for 

PV power production forecasting are shown in [16,17]. 

In this paper, extending and improving the approach based on the Bayesian theory outlined in [16–18], a 

new method for short-term probabilistic forecasting is proposed, that directly yields to the statistic 

representation of the predicted PV power output. The proposed method forecasts at the generic hour ݄ 

the probability density function (pdf) of the active power produced by a PV power system at the hour 

݄  ݇ with ݇ ൌ 1, . . . ,  starting from the evaluation of samples of the pdf of the hourly clearness ,ܭ

index at hour ݄  ݇. The forecast of the pdf of the hourly clearness index is obtained firstly selecting 

for the pdf an analytical expression and, then, evaluating the pdf parameters by applying the Bayesian 

Inference (BI). To this aim, an Auto Regressive (AR) time series model, representing the relationship 

between the pdf parameters, the clearness index and some explanatory meteorological variables, is 

used together with appropriate sets of historical measurements of the random variables involved in the 

AR model. Finally, a Monte Carlo (MC) simulation procedure is applied to generate the predicted pdf 

of the PV active power: a random sampling of the pdf of the hourly clearness index is performed and, 

using the PV system model, the PV power samples are obtained. 

The key steps of the proposed method are: (i) the choice of the analytical expression of the pdf 

modeling the hourly clearness index; (ii) the definition of an adequate AR time series model so as to 

consider only the meteorological variables that most affect the hourly clearness index behaviour; and 

(iii) the selection of appropriate data vectors from historical measurements collected before the time of 

the forecast.  

The peculiarity of the method is that it takes into account the dependence of the terrestrial solar 

radiation on some explanatory atmospheric variables and combines probabilistic techniques, such as BI 

and MC simulation, to provide a probabilistic forecasting of the PV power generation useful for 

optimal SG operation and control. 

This paper is organized as follows: Section 2 briefly recalls the probabilistic forecasting method 

based on the Bayesian approach. In Section 3 the probabilistic method is applied to forecast the power 
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production of a PV system. Finally, numerical simulations are reported in Section 4 to give evidence of 

the effectiveness of the proposed approach. 

2. Probabilistic Forecasting method based on the Bayesian approach  

The probabilistic forecasting method based on the Bayesian approach predicts at the generic hour 

ݐ ൌ ݄  the pdf of a random variable ܺ௧  at the hour ݐ ൌ ݄  ݇ , with ݇ ൌ 1,… , K . For the sake of 

simplicity, in the following the analysis is referred to the case of ݇ ൌ 1. 

In applying this method, the starting point is the knowledge of the analytical expression of the pdf 

݂ሺܺ௧ሻ  of the random variable to be forecasted. Usually, the analytical expression of the pdf is 

characterized by some distribution parameters and it is modeled as a conditional pdf. For the sake of 

conciseness, reference is made to only one distribution parameter (i.e., the mean value), generically 
referred to as ߴ௧	, and the conditional pdf is indicated as ݂ሺܺ௧|ߴ௧	ሻ.  

Forecasting at ݐ ൌ ݄ the pdf ݂�శభሺܺାଵ|ߴାଵ	ሻ requires an estimation of ߴାଵ. To this aim, a first 

order AR time series model can be used, representing the relationship between ߴାଵ	and both the 
measurements ݔ and (ݒଵ,, …	,  collected at the hour ݄ of, respectively, the random variable ܺ௧ to	ெ,ሻݒ

be forecasted and the ܯ explanatory random variables ଵܸ,௧, …	, ெܸ,௧ influencing ܺ௧: 

ାଵߴ ൌ ݔଵߙ  ଵ,ݒଵߚ . . .  ெ,ݒெߚ   (1)ߙ

where ߙ, ,ଵߙ ,ଵߚ …	,  ெ are the coefficients of the AR model. Explanatory variables are variables suchߚ

that changes in their value are thought to cause changes in another variable. 

In the classical statistics, ߙ, ,ଵߙ ,ଵߚ …	, ெߚ  are assumed to be constant. Indeed, when Bayesian 

approach are adopted, such coefficients are modeled as random variables, known as prior random 
parameters, and the BI [19] allows to estimate the conditional pdf ሺߙ, ,ଵߙ ,ଵߚ …	,  ሻ of theࢎࢄࡿ	|ெߚ
parameters ߙ, ,ଵߙ ,ଵߚ …	, ࢎࢄࡿ ெ given the setߚ ൌ ሺݔ௦భ, . . . ,  ௦ಿሻ composed of ܰ measurements of ܺ௧ݔ

observed before the hour ݄. The pdf ሺߙ, ,ଵߙ ,ଵߚ …	,  ሻ is known as a posteriori distribution ofࢎࢄࡿ	|ெߚ

the prior random parameters and it is very difficult to obtain its expression in closed form. Actually, 

only a simplified expression, known as unnormalized a posteriori distribution of the prior random 
parameters, and indicated as ݍሺߙ, ,ଵߙ ,ଵߚ …	,  ൯, can be provided. Fortunately, the knowledgeࢎࢄࡿ	ห	ெߚ

of the unnormalized a posteriori distribution of the prior random parameters is sufficient for 

developing algorithms that provide information about the normalised a posteriori distributions. 

The unnormalized a posteriori distribution of the prior random parameters is derived from the 

application of the Bayes’ rule assuming the independency of the prior random parameters so that: 

,ߙሺݍ ,ଵߙ ,ଵߚ … , ሻࢎࢄࡿ|	ெߚ ൌ ,ߙหࢎࢄࡿ൫	 ,ଵߙ ,ଵߚ … , ெߚ ሻ ෑ ሻߙሺ
ଵ

ୀ
ෑ ሻߚሺ

ெ

ୀଵ
 (2)

where ൫ࢎࢄࡿหߙ, ,ଵߙ ,ଵߚ …	, 	ሻ	ெߚ is the likelihood function; and ሺߙሻ  and ሺߚሻ  are the a priori 

distributions of the prior random parameters.  

The a priori distributions are the initial pdfs of the prior random parameters which are not 

conditional on observed data. Their expressions can be vague or informative and reflects the 

knowledge that we have in advance about the pdfs that we are interested in. 

The likelihood function is the conditional data distribution, that is the pdf modeling ܺ௧ , whose 
realizations are contained in ࢎࢄࡿ , given the prior random parameters. Its expression can be  
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derived making use of the ݂ሺܺ௧|ߴ௧	ሻ  for the set ࢎࢄࡿ  and assuming that ݔ௦భ, . . . , ௦ಿݔ  are  

independent realizations of ܺ௧ . Substituting for ߴ௧	the AR time series model and using the vectors 
ࢎ,ࢂࡿ ൌ ሺݒଵ,௦భ, . . . , ࢎ,ࡹࢂࡿ , … ,ଵ,௦ಿሻݒ ൌ ሺݒெ,௦భ, . . . ,  ெ,௦ಿሻ of the ܰ measurements of the explanatoryݒ

variables ଵܸ,௧, …	 , ெܸ,௧ corresponding to ࢎࢄࡿ, it obtains:  

,ߙหࢎࢄࡿ൫ ,ଵߙ ,ଵߚ …	, ெߚ ሻ ൌ 	ෑ ݂൫ݔ௦ห ௦ߴ ൌ ௦ିଵݔଵߙ  ଵ,௦ିଵݒଵߚ . . .  ெ,௦ିଵݒெߚ 	ߙሻ
ே

ୀଶ
 (3)

Once the unnormalized a posteriori distribution of the prior random parameters is known, it is 

trivial to evaluate the normalised a posteriori distributions of each parameter by applying the theory of 

the joint pdfs [20]. Then, the Monte Carlo Markov Chain (MCMC) simulation method based on the 

Metropolitan-Hasting algorithm [21] can be directly applied to the unnormalized distributions of every 

parameter to obtain samples of their a posteriori distributions. In the MCMC approach, a Markov 

chain is constructed, characterized by a transition probability matrix reflecting the a posteriori 

distributions of the prior random parameters. Then, the Markov chain is simulated until the samples are 

representative of the a posteriori distributions of every parameter.  

Eventually, incorporating the AR time series model in this procedure, the samples derived from the 

a posteriori pdfs of ߙ, ,ଵߙ ,ଵߚ …	, ெߚ  can be used together with the measurements ݔ  and 
,ଵ,ݒ …	,  ାଵ. Finally, for each simulated sample ofߴ collected at the hour ݄ to obtain samples of	ெ,ݒ

 ାଵ, the samples of the random variable ܺ௧ are drawn from the analytical expression of the pdf so asߴ
to provide the full predictive distribution ݂�శభሺܺାଵ|ߴାଵ	ሻ. 

3. Probabilistic Forecasting of the Photovoltaic Generation 

In the following, the probabilistic forecasting method described in Section 2 is applied to predict at 

hour ݄	the pdf of the PV power production at hour ݄  1, starting from an estimation of the terrestrial 

hourly solar radiation, expressed in terms of the pdf of the hourly clearness index at hour ݄  1. The 

next four subsections dealt with: 

 The description of the adopted model for the PV system; 

 The description of the pdf modeling the hourly clearness index; 

 The definition of the AR time-series model including meteorological variables; and 

 The probabilistic characterization of the prior random parameters. 

3.1. PV System Model  

The hourly active power produced by a PV system depends on the availability of the solar radiation 

at the installation site. The solar radiation in a given locality cannot be exactly predicted owing mainly 

to the irregular presence of clouds. The sky conditions are often taken into account by representing the 

terrestrial solar radiation in terms of clearness index that is defined as the ratio of the surface radiation 

to the extraterrestrial radiation for a given period [22].  

When the PV system is equipped with a maximum power point tracker, an analytical relationship 
exists between the PV active power ܲ at the hour ݐ and the corresponding hourly clearness index  

 ௧, [22–24] that is defined as the ratio of the hourly total solar radiation on an horizontal plane It to theܭ

extra-terrestrial hourly total solar radiation I0; it results: 
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ܲ ൌ ܵ ሺܶܭ௧ െ ܶ ௧ܭ′
ଶሻ (4)

where ܵ is the array surface area;  is the efficiency of the PV system; and ܶ and ܶᇱ are defined as: 

ܶ ൌ ൬ܴ  
1 െ cos 

2
൰  ൬

1  cos 
2

െ ܴ൰ ൨ ௗݎ
ܪ
3600

 (5)

ܶᇱ ൌ ൬
1  cos 

2
െ ܴ൰ ௗݎݍ

ܪ
3600

 (6)

where ܴ is the ratio of beam radiation on a tilted surface to that on a horizontal surface at any time;  

ρ is the reflectance of the ground;  is the inclination of the array surface to the horizontal plane; ݎௗ is 

the ratio between diffuse radiation in hours and diffuse radiation in a day; ܪ is the extra-terrestrial 

total solar radiation; and ,  are coefficients reported in [23], which link the diffuse fraction of the ݍ

hourly total solar radiation on horizontal plane with the hourly clearness index.  

The analysis of the relationship (4) clearly reveals that ܭ௧ is the only variable affecting ܲ, once 

the hour of the day, the installation site and the technical characteristics of the PV system are assigned. 

The hourly clearness index ܭ௧	is a random variable modelling the uncertain behaviour of the terrestrial 

solar radiation. The hourly PV active power ܲ, as function of ܭ௧, is itself a random variable and its 

pdf can be determined by the pdf of the hourly clearness index. 

In this paper, a MC simulation procedure is used to generate at the hour ݐ ൌ ݄ samples of the 
predictive pdf of the hourly PV active power ݂ುೇశభሺ ܲశభሻ by performing a random sampling of the pdf 

of the hourly clearness index ݂శభሺܭାଵሻ estimated for the hour ݐ ൌ ݄  1 and applying Equation (4).	

3.2. Probability Density Function of the Hourly Clearness Index 

The analytical expression of the pdf of the hourly clearness index can be experimentally obtained 

by a statistical analysis of historical solar measurements collected in the site in which the PV system is 

installed. In the literature, starting from the fitting of the hourly clearness index data collected in a 

specific location, the investigation has often resulted in the individuation of pdfs characterized by 

standard distributions. In [25] the hourly clearness index measurements recorded at various locations 

in Algeria are conveniently described by Beta distributions. In [26] bimodal distributions are 

considered more adequate to model clear and cloudy sky conditions of hourly clearness index 

measurements collected in different cities in the U.S.A. On the other hand, several attempts have been 

made to find universal standard pdfs that are independent of the location and the time period used to 

define the clearness index [27–29]. Following the latter approach, in this paper the model proposed  
in [29] has been adopted and the following modified Gamma distribution ݂ሺܭ௧|ܥ௧, ௧ሻ is used to 

model the pdf of the hourly clearness index ܭ௧: 

݂ሺܭ௧|ܥ௧, ௧ሻ ൌ ௧ܥ
ത݇
௨ െ ௧ܭ
ത݇
௨

݁ (7)

where ത݇௨  is the upper bound of the observed values of ܭ௧ ; and ܥ௧  and ௧  are the distribution 

parameters, defined as: 

௧ܥ ൌ
௧
ଶ ത݇

௨

൫݁തೠ െ 1 െ ௧ ത݇௨൯
 (8)
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௧ ൌ
ሺ2ܨ௧ െ 17.519݁ିଵ.ଷଵଵ଼ி െ 1062݁ିହ.ସଶிሻ

ത݇
௨

 (9)

with: 

௧ܨ ൌ
ത݇
௨

ത݇
௨ െ 

 (10)

where is the mean value of the hourly clearness index ܭ௧ at hour ݐ. Assuming the knowledge of ത݇௨, 

the distribution parameters ܥ௧ and ௧ only depend on the mean value  and the pdf in Equation (7) 

can be rewritten as: 

݂ ቀܭ௧ቚቁ ൌ ௧ሺሻܥ
ത݇
௨ െ ௧ܭ
ത݇
௨

݁ሺ಼ሻ (11)

3.3. AR Time-Series Model  

To predict at the hour ݐ ൌ ݄ the pdf ݂�శభሺܭାଵ|శభሻ at the hour ݐ ൌ ݄  1 an estimation of the 

mean value శభ is required, as shown in the Subsection 3.2. To this aim, an AR time series model 

can be used to define the relationship among such mean value and the measurements of the clearness 

index and of some meteorological variables influencing the solar radiation, such as the ambient 

temperature ܶܣ, the relative humidity ܴܪ, the wind speed ܹܵ and the cloud cover ܥܥ	, where the 

cloud cover is defined as the ratio in % of the sky hidden by all visible cloud. In this paper, the 

following first order AR time series model is adopted: 

శభ ൌ ଵ݇ߙ  ݐଵܽߚ  ݄ݎଶߚ  ݏݓଷߚ  ସܿܿߚ   (12)ߙ

where ݇,ܽݐ, ,݄ݎ ,ݏݓ ܿܿ	are the measurements of, respectively, the clearness index, the ambient 

temperature, the relative humidity, the wind speed and the cloud cover, which are collected at the hour 

ݐ ൌ ݄.  

The inclusion of meteorological variables in the AR model significantly increases the computational 

efforts in the application of the proposed forecasting method. Despite of the highest complexity of the 

procedure, taking into account the dependence of the clearness index on the meteorological variables 

allows to perform a more accurate forecasting [10,30]. To reduce computational efforts, a correlation 

analysis can help to individuate the meteorological variables presenting the highest influence on the solar 

radiation. Such analysis is performed “off-line” and correlates historical measurements collected in the 

specific site in which the PV system is installed. In this way, only the meteorological variables 

presenting the highest correlation value with the clearness index are selected so as to found a good 

compromise between results’ accuracy and computational efforts. 

3.4. Probabilistic Characterization of the Prior Random Parameters  

In this paper, the coefficients ߙ, ,ଵߙ ,ଵߚ ,ଷߚ,ଶߚ  ସ of the AR time series model in Equation (12) areߚ

assumed to be the prior random parameters of the BI. The a priori pdfs of	the prior random parameters 

,ሺሻ ,ሺଵሻ ,ଵሻߚሺ ,ଶሻߚሺ ,ଷሻߚሺ  ,ସሻ are usually chosen with a large variance so that the dataߚሺ

rather than the a priori distributions, determine the relevant parameters values in the a posteriori 
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distributions [19–21]. In this paper the a priori pdfs are assumed to be Gaussian with a mean value 

ߤ ൌ 0.5 and a standard deviation ߪ ൌ 0.5 so as:  

ሺሻ ൌ
1

2√ߪ
݁
ሺఓିሻమ
ଶఙమ ൌ

1

0.5√2
݁

ି
మ

ଶሺ.ହሻమ ݅ ൌ 0,1 (13)

൯ߚ൫ ൌ 	
1

2√ߪ
݁
ሺఓିఉೕሻమ

ଶఙమ ൌ
1

0.5√2
݁

ିఉೕ
మ

ଶሺ.ହሻమ ݆ ൌ 1, … , 4 (14)

The likelihood function ൫ࢎࡷࡿหߙ, ,ଵߙ ,ଵߚ ,ଶߚ ,ଷߚ  is the pdf in Equation (11) specified for the set	ሻ	ସߚ
ࢎࡷࡿ ൌ ሺ݇௦భ, . . . , ݇௦	, . . . , ݇௦ಿሻ of ܰ measurements of ݇௧ observed before the hour ݄: 

,ߙหࢎࡷࡿ൫ ,ଵߙ ,ଵߚ ,ଶߚ ,ଷߚ ሻ	ସߚ ൌ 	ෑ ݂ሺ݇௦|ೞሻ
ே

ୀଶ
ൌෑ ݅ݏܭሺܥ

ሻ
ത݇ݑ െ ݅ݏ݇
ത݇ݑ

݁
ሺ݅ݏܭ

ሻ݇݅ݏ
݄ܰ

݅ൌ2
 (15)

where:  

ೞ
ൌ ଵ݇௦ିଵߙ	  ௦ିଵݐଵܽߚ  ௦ିଵ݄ݎଶߚ  ௦ିଵݏݓଷߚ  ସܿܿ௦ିଵߚ   (16)ߙ

Relationship (15) is obtained by substituting for ೞ
 the AR time series model in Equation (16). 

The generic measurements ݇௦షభ, ,௦షభݐܽ ,௦షభ݄ݎ ,௦షభݏݓ ܿܿ௦షభ are contained in the sets  
ࢎࡷࡿ ൌ ሺ݇௦భ, . . . , ݇௦, . . . , ݇௦ಿሻ ࢎࢀࡿ , ൌ ሺܽݐ௦భ, . . . , ,௦ݐܽ . . . , ௦ಿሻݐܽ ࢎࡴࡾࡿ , ൌ ሺ݄ݎ௦భ, . . . , ,௦݄ݎ . . . , ௦ಿሻ݄ݎ , 

ࢎࡿࢃࡿ ൌ ሺݏݓ௦భ, . . . , ,௦ݏݓ . . . , ௦ಿሻݏݓ ࢎࡿ , ൌ ሺܿܿ௦భ, . . . , ܿܿ௦	, . . . , ܿܿ௦ಿሻ , including ܰ measurements 

collected before the hour ݄ of, respectively, the clearness index and the meteorological variables.  
According to Equation (2), the a posteriori unnormalized distribution ݍሺߙ, ,ଵߙ ,ଵߚ ,ଶߚ ,ଷߚ ,	ସߚ  ሻࢎࡷࡿ

of the prior random parameters is equal to  

,ߙ൫ݍ ,ଵߙ ,ଵߚ ,ଶߚ ,ଷߚ ,	ସߚ ൯ࢎࡷࡿ ൌ ቈෑ ሺೞܥ
ሻ
ത݇
௨ െ ݇௦
ത݇
௨

݁
ሺ಼ೞ

ሻೞ
ே

ୀଶ
ෑ

1

0.5√2
݁

ି
మ

ଶሺ.ହሻమ
ଵ

ୀ
ෑ

1

0.5√2
݁

ିఉೕ
మ

ଶሺ.ହሻమ
ସ

ୀ
 (17)

and the samples of the individual a posteriori distributions are evaluated by applying the MCMC 
simulation method based on the Metropolitan-Hasting algorithm. The samples of the a posteriori pdfs 
of ߙ, ,ଵߙ ,ଵߚ ,ଶߚ ,ଷߚ 	ସߚ  are used in Equation (12) together with the measurements 
݇, ,ݐ ,ݎ ,ݓ ܿܿ	collected at the hour ݄ to provide samples of the mean value శభ. Finally, for each 

samples of శభ , the samples of the hourly clearness index ܺାଵ  are drawn from the analytical 

expression of the pdf in Equation (11). The simulated samples of ܺାଵ  describes the predictive 
distribution ݂శభሺܭାଵ|శభሻ. 

It should be noted that the choice of the measurements contained in the sets 
,ࢎࡷࡿ ,ࢎࢀࡿ ,ࢎࡴࡾࡿ  represent a key issue in the BI, since they are used to make inference	ࢎࡿ	,ࢎࡿࢃࡿ	

about the prior random parameters ߙ, ,ଵߙ ,ଵߚ ,ଶߚ ,ଷߚ  . In general, these sets contain ܰ measurements	ସߚ

recorded before the hour ݄ of the forecast. Actually, these data are not necessarily the ones collected 

from the hour ݄ െ 1 to ݄ െ ܰ െ 1, but can be selected with adequate criteria thus improving the 

accuracy of the proposed forecasting method. In [16] the homologue and the coded group criteria have 

been proposed. In the first one, the sets contain measurements at the hour ݄ which are collected ܰ 

days before the forecast (e.g., if the forecast has to be performed at h = 10:00, the sets include 

measurements recorded ܰ days before at 10:00). In the second one, the sets contain a coded group of 

measurements around the hour ݄ collected some days before the forecast (e.g. if the forecast has to be 

performed at h = 10:00, the sets include measurements from the 8:00 to 10:00 recorded ܰ 3⁄  days 
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before). In addition, the measurements contained in ࢎࡷࡿ, ,ࢎࢀࡿ ,ࢎࡴࡾࡿ  can be collected atࢎࡿ	,ࢎࡿࢃࡿ	

time intervals different from an hour. In [17] the data of the clearness index and of the meteorological 

variables contained in the vectors are extracted from measurements registered at time intervals of  

15 minutes. If this is the case, the application of the proposed forecasting method will provide at the 

hour ݄	the predictive distribution of the clearness index at the first 15 minutes of the hour ݄  1. To 

estimate the pdf at the hour ݄  1 the following approach is adopted in this paper: 

݂శభ ቀܭାଵቚశభቁ ൌ ݂శభఱᇲ
ሺܭାଵହᇲ |శభఱᇲ

ሻ (18)

that is the pdf forecasted at ݄  1 is assumed to be equal to the pdf forecasted at the first 15 minutes of 

the hour ݄  1. Eventually, Figure 1 shows a block diagram describing the main steps applied in the 

proposed Bayesian approach. 

Figure 1. Block diagram describing the main steps applied in the proposed Bayesian approach. 
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4. Experimental Section 

In this section, the proposed Bayesian forecasting method is applied to a 75-kWp PV system, 

presenting an array surface Sେ ൌ 600	m2 and an efficiency  ൌ 0.09. Measurements of the clearness 

indexand of the meteorological variables cited in the Subsection 3.4 (air temperature, relative 

humidity, wind speed and total cloud cover) are available at the website of the National Renewable 

Energy Laboratory. In particular, a meteorological station in Colorado (39.742° N, 105.18° W) has 

been selected and measurements referred to the time interval [8 a.m., 8 p.m.] and collected every 

15 minutes are chosen. 

In the following, at first a correlation analysis is performed to individuate the meteorological 

variables to be included in the time series AR model; then, the proposed method is used to forecast the 

pdf of the hourly active power produced by the PV system. 
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To individuate the most suitable AR time series model, an “off-line” correlation analysis between 

the clearness index and the meteorological variables is carried out, on the basis of measurements 

recorded from January to December 2010. Figure 2 reports the time evolution of the correlation 

coefficient between the clearness index and the meteorological variables. To avoid excessive 

computational efforts, only the meteorological variables furnishing the highest values of the correlation 

coefficient are taken into account. As such, the analysis of the Figure 2 clearly reveals that the total 

cloud cover and the relative humidity are the meteorological variables presenting the highest influence 

on the clearness index; consequently, the AR time-series model in Equation (12) reduces to: 

శభ ൌ ଵ݇ߙ  ݄ݎଵߚ  ଶܿܿߚ   (19)ߙ

To make inference about the prior random parameters α, αଵ, βଵ and βଶ, the sets ࢎࡷࡿ, ,ࢎࡿ	  ࢎࡴࡾࡿ

(see Subsection 3.4) contain ܰ ൌ 144  measurements collected at time intervals of 15 minutes 

recorded before the hour ݄ of the forecast. 

Figure 2. Time evolution of the correlation coefficient between the clearness index and the 

selected meteorological variables. 

 

The application of the proposed approach to forecast the hourly PV active power is performed 

referring to the four seasons of the 2011. Figures 3–6 show, respectively, the actual measured values of 

the PV active powers (red lines), the mean value (blue line) and the range between the 5th and 95th 

percentile values of the forecasted pdfs of hourly PV active power. In particular, the results refer to the 

Recommended Average days of winter (Figure 3), spring (Figure 4), summer (Figure 5) and autumn 

(Figure 6). In [22] Recommended Average Days are days which have the extraterrestrial radiation 

closest to the average value in the month. A similar behavior characterizes the vast majority of the 

considered days (in almost all considered days).  
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Figure 3. Actual measures of the hourly PV active power (red line); mean values (blue 

line) and range between 5th and 95th percentile values of the forecasted pdfs of the hourly 

PV active power. (a) 17 January; (b) 16 February; and (c) 10 December. 

 

(a) (b) (c) 

Figure 4. Actual measures of the hourly PV active power (red line); mean values (blue 

line) and range between 5th and 95th percentile values of the forecasted pdfs of the hourly 

PV active power. (a) 16 March; (b) 15 April; and (c) 15 May. 

 

(a) (b) (c) 

Figure 5. Actual measures of the hourly PV active power (red line); mean values (blue 

line) and range between 5th and 95th percentile values of the forecasted pdfs of the hourly 

PV active power. (a) 11 June; (b) 17 July and; (c) 16 August. 

 

(a) (b) (c) 
  

8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]
8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]
8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]

8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]
8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]
8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]

8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]
8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]
8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

 P
V

 p
ow

er
 [

kW
] 

hours [h]



Energies 2013, 6 744 

 

 

Figure 6. Actual measures of the hourly PV active power (red line); mean values (blue 

line) and range between 5th and 95th percentile values of the forecasted pdfs of the hourly 

PV active power. (a) 15 September; (b) 15 October and; (c) 14 November. 

 

(a) (b) (c) 

From the analysis of the figures, it appears that the actual values of the hourly PV active power are 

always comprised between the 5th and 95th percentile values. In addition, it should be noted that the 

mean value appears in most cases a good estimator for the forecasted pdfs, particularly in the range of 

hours between 11 a.m. and 3 p.m. At the beginning (end) of the period characterized by the presence of 

solar radiation, usually higher (lower) percentiles appear the most adequate estimators. Anyway, if the 

mean value of forecasted pdf would be used as the only estimator of the forecasted PV power, the 

Mean Absolute Relative Error (MARE), defined as: 

ܧܴܣܯ ൌ
1
ܰ


ห ܲ െ ܲ
∗ ห

ܲ

ே

ୀଵ

 (20)

is estimated between 14.5% (winter season) and 18.0% (autumn season). 

Finally, Figures 7 and 8 show the forecasted (represented by a blue histogram) and the analytical 

(represented by a continuous red line) pdfs of the hourly PV active power in March (Figure 7a), April 

(Figure 7b), August (Figure 8a) and September (Figure 8b). The analytical pdf is obtained applying the 

fundamental theorem for the function of a random variable to Equation (9) proposed in [31]. From the 

analysis of Figures 7 and 8 it is evident that in different conditions of solar radiation the forecasted pdfs 

are close to the analytical distributions.  

Figure 7. Forecasted (histogram) and analytical (red line) pdfs of PV power. (a) h = 1 p.m. 

of 16 March; and (b) h = 11 a.m. of 15 April. 
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Figure 8. Forecasted (histogram) and analytical (red line) pdfs of PV power. (a) h = 2 p.m. 

of 16 August and; (b) h = 1 p.m. of 15 September. 

(a) (b) 

5. Conclusions  

A new method based on the Bayesian inference has been proposed to perform a short-term 

forecasting of the active power produced by a photovoltaic system starting from an estimation of the 

hourly clearness index. It takes into account the dependence of the terrestrial solar radiation on some 

explanatory atmospheric variables, including the cloud cover and humidity. The combination of 

probabilistic techniques, such as Bayesian inference and Monte Carlo simulation, allows to provide the 

predictive probability density function of the photovoltaic generated power, which is very useful for 

the optimal operation and control of the smart grids of the future.  

However, if only a value is requested as estimator of the forecasted photovoltaic power, arises the 

problem of individuate which pdf parameter (mean value, percentiles ...) is the most representative for 

the distribution. Moreover, the non-linear relationship between the clearness index and the 

photovoltaic power output can reflect in not negligible errors in the forecasted distributions of the 

photovoltaic power. Then, future works will investigate the direct application of the proposed 

probabilistic forecasting method to the active power produced by the PV system, even if the 

application of the Bayesian inference in this case seems to be arduous. The research will also focus on 

the choice of the best parameter to be extracted from the predicted probability distribution so as to test 

the performance of the proposed method in terms of traditional measures of the forecasting accuracy; 

in this case comparison with ARIMA and neural networks methods will be affected.  

6. Acknowledgements  

This paper has been developed in the context of the Italian project PON Research and 

Competitiveness 2007–2013, Action II-PON 01_02864 “FC SMART GEN”—Fuel cell and smart 

hybrid generation from fossil and renewable sources. 

References 

1. Bouhafs, F.; Mackay, M.; Merabti, M. Links to the future: Communication requirements and 

challenges in the smart grid. IEEE Power Energy Mag. 2012, 10, 24–28. 

10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

 f
P

14

Power [kW]
10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

 f
P

13

Power [kW]



Energies 2013, 6 746 

 

 

2. Pilo, F.; Pisano, G.; Soma, G.G. Optimal coordination of Energy resources with a two-stage 

online active management. IEEE Trans. Ind. Electron. 2011, 58, 4526–4537. 

3. Potter, C.M.; Archambault, A.; Kenneth, W. Building a smarter smart grid to better renewable 

energy information. In Proceedings of Power Systems Conference and Exposition (PSCE 09), 

Seattle, WA, USA, 15–18 March 2009.  

4. Smith, J.C.; Milligan, M.R.; De Meo, E.A.; Parson, B. Utility wind integration and operating 

impact state of art. IEEE Trans. Power Syst. 2007, 22, 900–907. 

5. Pinson, P.; Chevallier, C.; Kariniotakis, G.N. Trading wind generation from short-term 

probabilistic forecasts of wind power. IEEE Trans. Power Syst. 2007, 22, 1148–1156. 

6. Sharma, N.; Sharma, P.; Irwin, D.; Shenoy, P. Predicting solar generation from weather forecast 

using machine learning. In Proceedings of IEEE International Conference on Smart Grid 

Communications (SmartGridComm), Bruxelles, Belgium, 17–20 October 2011; pp. 528–533.  

7. Watson, R. IEA Expert Meeting on Wind Forecasting Techniques; NREL Report; NREL 

(National Renewable Energy Laboratory): Golden, CO, USA, 2000. 

8. Liserre, M.; Sauter, T.; Hung, J.Y. Future energy systems: Integrating renewable energy sources 

into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag.2010, 4, 18–37. 

9. Mellit, A; Massi Pavan, A. A 24-h forecast of solar irradiance using artificial neural network: 

Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 

2010, 84, 807–821. 

10. Al Riza, D.F; Gilani, S.I.; Aris, M.S. Hourly solar radiation estimation using ambient temperature 

and relative humidity data. Int. J. Environ. Sci. Dev. 2011, 2, 188–193. 

11. Yona, A.; Senjyu, T.; Funabashi, T. Application of recurrent neural network to short-term-ahead 

generating power forecasting for photovoltaic system. In Proceedings of IEEE Power 

Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007. 

12. Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance forecasting for the power prediction 

of grid-connected photovoltaic systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 

2–10. 

13. Li, Y.; He, L.; Nie, R. Short-term forecast of power generation for grid-connected photovoltaic 

system based on advanced Grey-Markov chain. In Proceedings of IEEE International Conference 

on Energy and Environment Technology (ICEET ’09), Guilin, China, 16–18 October 2009; 

Volume 2, pp. 275–278. 

14. Bacher, P.; Madsen, H.; Nielsen, P. Online short-term solar power forecasting. Sol. Energy 2009, 

83, 1772–1783. 

15. Hassanzadeh, M.; Etezadi-Amoli, M.; Fadali, M.S. Practical approach for sub-hourly and hourly 

prediction of PV power output. In Proceedings of IEEE Conferences North American Power 

Symposium, Arlington, TX, USA, 1–5 September 2010. 

16. Bracale, A.; Caramia, P.; Fantauzzi, M.; Di Fazio, A.R. A Bayesian-based approach for 

photovoltaic power forecast. In Proceedings of Cigrè International Symposium on Smart Grid, 

Bologna, Italy, 13–15 September 2011. 
  



Energies 2013, 6 747 

 

 

17. Bracale, A.; Caramia, P.; De Martinis, U.; Di Fazio, A.R. An improved Bayesian-based approach 

for short term photovoltaic power forecasting in smart grids. In Proceedings of International 

Conference on Renewable Energies and Power Quality (ICREPQ 2012), Santiago De Compostela, 

Spain, 28–30 March 2012. 

18. Bracale, A.; Caramia, P.; Carpinelli, G.; Di Fazio, A.R.; Varilone, P. A Bayesian-based approach 

for very short-term steady-state analysis of a smart grid. IEEE Trans. Smart Grids 2013, in press. 

19. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chaoman & Hall: 

London, UK, 1995. 

20. Papoulis, A. Probability, Random Variables and Stochastic Processes; McGraw-Hill: New York, 

NY, USA, 1991. 

21. Zhang, J.; Pu, J.; McCalley, J.D.; Stern, H.; Gallus, W.A., Jr. A Bayesian approach to short term 

transmission line thermal overload risk assessment. IEEE Trans. Power Deliv. 2002, 17, 770–778. 

22. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 2nd ed.; Wiley 

Interscience: New York, NY, USA, 1991. 

23. Orgill, J.F; Hollands, K.T.G. Correlation equation for hourly diffuse radiation on a horizontal 

surface. Sol. Energy 1977, 19, 357–359. 

24. Kroposki, B.; Emery, K.; Myers, D.; Mrig, L.A comparison of photovoltaic module performance 

evaluation methodologies for energy ratings. In Proceedings of First World Conference on 

Photovoltaic Energy Conversion (WPEC 1994), Hawaii, HI, USA, 5–9 December1994; pp. 858–862. 

25. Ettoumi, F.Y.; Mefti, A.; Adane, A.; Bouroubi, M.Y. Statistical analysis of solar measurements in 

Algeria using beta distributions. Renew. Energy 2002, 124, 28–33. 

26. Ibanez, M.; Beckman, W.A.; Sanford, A.K. Frequency distributions for hourly and daily clearness 

indices. J. Sol. Energy Eng. 2002, 26, 47–67. 

27. Liu, B.Y.H.; Jordan, B.C. The interrelationship and characteristic distribution of direct, diffuse 

and total solar radiation. Sol. Energy 1960, 4, 1–19. 

28. Bendt, P.; Collares-Pereira, M.; Rabl, A. The frequency distribution of daily insolation values. 

Sol. Energy 1981, 27, 1–19. 

29. Hollands, K.T.G.; Huget, R.G. A probability density function for clearness index, with 

applications. Sol. Energy 1983, 30, 195–209. 

30. Huang, Y.; Lu, J.; Liu, C.; Xu, X.; Wang, W.; Zhou, X. Comparative study of power forecasting 

methods for PV stations. In Proceedings of International Conference on Power System 

Technology (POWERCON 2010), Hangzhou, China, 24–28 October 2010; pp. 1–6. 

31. Conti, S.; Raiti, S. Probabilistic load flow using Monte Carlo techniques for distribution networks 

with photovoltaic generators. Sol. Energy 2007, 81, 1473–1481. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


